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Abstract: Optomechanical systems are suitable for realizing the ground-state cooling of macroscopic
objects. Based on a dynamical approach that goes beyond the validity of the standard linearization
approach, we simulate the detailed cooling processes for a membrane-in-middle optomechanical
system. In addition to the cooling results, we especially study the cooling speed, which is indicated
by how soon the first minimum thermal phonon number is reached. Their relevance to the system
parameters provides essential knowledge about how to achieve the best and/or fastest cooling under
various combinations of different driving fields.
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1. Introduction

Rich quantum phenomena will appear when a system is cooled down to an ultra-low
temperature. Examples of these phenomena include superconductivity, superfluidity, Bose–
Einstein condensation, etc. (see, e.g., [1]). Quantum coherence will be preserved well at
low temperatures, since the decoherence due to the thermal noise is highly suppressed [2].
For this purpose, ground-state cooling by various means is regarded as an essential ap-
proach to macroscopic quantum states, which can be used to test whether there exists a
boundary between the classical and quantum worlds [3,4]. Due to their various advantages,
optomechanical systems (OMSs) were considered to be good candidates for realizing such
ground-state cooling [5], and a large number of theoretical schemes (see, e.g., [6–16]), as
well as several experiments (see, e.g., [17–27]), have been devoted to this field of research
in recent years.

An OMS is a nonlinear physical system, and the existence of optomechanical non-
linearity is the core factor for realizing ground-state cooling, macroscopic entanglement
generation [28–32], optical frequency combs [33], optical chaos [34], and other physical
processes. The quantum properties of an OMS are described by the quantum nonlinear
Langevin equations, the solutions of which have not yet been made generally available.
The common approach to dealing with such quantum dynamics is a standard linearization
procedure by expanding the system operators around the equilibrium states of an evolved
system [5,28], which is borrowed from classical nonlinear dynamics. Based on the assump-
tion of such a steady state, the cavity mode is expanded as â → α + δâ, where α is the
steady-state value of the cavity mode. Then, the nonlinear equations can be linearized to
find the cooling limit (n f

m/nth)× (Γopt/γm) = 1 [5], where n f
m is the final phonon number,

nth is the phonon number of the thermal reservoir, Γopt is the effective optomechanical
damping rate related to the cavity’s steady-state value, and γm is the mechanical damping
rate. In fact, steady states should be evolved from an initial state after a period of time. A
consideration based on steady states, therefore, cannot provide any information about the
evolution process. A different approach based on a dynamical process [15] predicts another
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optomechanical cooling limit (n f
m/nth)× (κ/γm) = 1 (κ is the cavity damping rate) and

indicates that the cooling result is relevant to cooling speed, which can be measured by the
time for reaching the minimum phonon number. Such conclusions were drawn about a
single-cavity system driven by a continuous-wave (CW) laser field, for which it was also
suggested that, within a wide range of system parameters, a faster cooling process could
be beneficial to the cooling result.

The above cooling limit in a single cavity with a CW drive can be generalized to a
pulse-driven OMS [35–37] or a membrane-in-middle (MIM) OMS [38,39], where it is more
obvious that system steady states in equilibrium do not generally exist. In these situations,
the phonon number will not decrease directly to its minimum, but will keep oscillating
with time. How their cooling speeds relate to the best cooling results, together with which
characteristic quantities depict a cooling process well, have not yet been well understood.
The current work fills the gap by studying the real-time cooling processes in MIM systems.
To this type of OMS, we apply pulsed drives, CW drives, or their combinations, which
necessitate a completely dynamical approach to the corresponding cooling processes. The
understanding about ground-state cooling provided here enables the proper choice of
system parameters to achieve the best cooling result.

2. Method

An MIM optomechanical system can be built by inserting a thin membrane into an
optical cavity of two fixed mirrors, as shown in Figure 1. Its physical properties and appli-
cation to ground-state cooling were investigated in Refs. [40–47], but the corresponding
dynamical evolution processes have not yet been well studied. If the membrane is exactly in
the middle, the lengths of the left and right cavities will be the same, and they will have the
same resonant cavity frequency, i.e., ωc1 = ωc2 = ωc. Two driving fields are injected into
the left and right cavities, respectively, so that the radiation pressure induces the interaction
of the two cavity modes with the mechanical mode. Then, the system Hamiltonian is given
as (h̄ = 1)

H(t) =ωc â†
1 â1 + ωc â†

2 â2 + ωm b̂† b̂ + i
2

∑
j=1

[
â†

j Ej(t)e−iωLt − âjE∗j (t)e
iωLt
]

︸ ︷︷ ︸
HL(t)

−gm(â†
1 â1 − â†

2 â2)(b̂ + b̂†) + J(â†
2 â1 + â†

1 â2)︸ ︷︷ ︸
HOM

+ i
2

∑
j=1

√
2κj

[
â†

j ξ̂cj(t)− âj ξ̂
†
cj
(t)
]
+ i
√

2γm

[
b̂† ξ̂m(t)− b̂ξ̂†

m(t)
]

︸ ︷︷ ︸
HSR(t)

. (1)

where ωm is the mechanical frequency, â1(2) is the cavity field mode, and b̂ is the mechanical
mode. The drive frequency ωL of the external drive field can be freely adjusted, and
the profile E(t) depends on the drive that we use. The single-photon coupling strength
gm = XZPL/L× ωc [5] (XZPL is the zero-point fluctuation amplitude and L is the cavity
size) is an important parameter, as it is the strength of the optomechanical interaction in
the Hamiltonian HOM. The cavity lengths of the left and right cavities are changed to the
opposite directions to have the coupling terms of the two cavity modes with the mechanical
mode with the opposite signs. The final part of the stochastic Hamiltonian HSR(t) denotes
the coupling of the cavity and mechanical modes to the reservoirs corresponding to the
damping rate κ and γm, respectively, since the system is an open system here. The cavity
and thermal noises are both treated as the white noises, and the corresponding stochastic
Langevin noise operators ξ̂c, ξ̂m of the reservoirs in thermal equilibrium satisfy [5,48]

〈ξ̂†
c(m)(t)ξ̂c(m)(τ)〉R = nc(m)δ(t− τ), (2)
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where nc = 1/(eh̄ωc/kBT − 1) ≈ 0, nm = 1/(eh̄ωm/kBT − 1) = nth � 1 (nm before cooling is
equal to nth at a certain temperature). In many other similar systems, the direct coupling of
the left and right cavity modes can exist with a strength J, but we assume J = 0 (opaque
membrane) below. The reason for this choice is that a possible transmission through the
membrane can lower the radiation pressure acting on it; obviously, the radiation force on
the membrane is highest when the fields are totally reflected from it. It is quantitatively
concluded in Ref. [38] that the inter-cavity coupling J should be as small as possible for a
cooling process.

Figure 1. The setup of a membrane-in-middle optomechanical system. A thin membrane is inserted
into an optical cavity, and it acts as a mechanical resonator. The system is driven by Gaussian pulses,
a continuous-wave field, or both, respectively, on the left and right side, thus creating radiation
pressure on the membrane.

One can obtain the dynamical equations of the OMS through the evolution operator
U(t) = T exp{−i

∫ t
0 dτH(τ)}, which is defined as a time-ordered exponential (note that

U(t) is not a unitary one due to the stochastic Hamiltonian part) by means of the corre-
sponding Ito rules for the stochastic part of the Hamiltonian [48]. Here, the time-ordered
exponential should be used because the Hamiltonian H(t) does not commute at different
moments of time t. However, it is almost impossible to find the solutions of the nonlinear
dynamical equations directly. The linearization of the system dynamics is beyond the reach
of the standard approach based on steady states, especially when the driving fields involve
the pulsed ones. In what follows, we apply a method based on the decomposition of the
evolution operators [49,50] to deal with the quantum dynamical processes. The first step is
to decompose the overall operator U(t) as

U(t) =U1(t)U2(t)× T exp{−i
∫ t

0
dτ[He f f (τ) + HN(τ)]}, (3)

where

U1(t) = exp{−i(ωc â†
1 â1 + ωc â†

2 â2 + ωm b̂† b̂)t}

U2(t) = exp{−i
∫ t

0
dτU†

1 (τ)HL(τ)U1(τ)}, (4)

and

He f f (t) + HN(t) = U†
2 (t)U

†
1 (t){HOM(t) + HSR(t)}U1(t)U2(t). (5)

The operators U1(t) and U2(t) are reduced to the ordinary exponentials because
their corresponding Hamiltonians commute at different times. The specific forms of the
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Hamiltonians He f f and HN can be then found with the following transformations of the
cavity modes â1 and â2 and the mechanical mode b̂:

U†
2 (t)U

†
1 (t) â1 U1(t)U2(t) = e−iωct(â1 +

∫ t

0
dτE1(τ)ei∆τ) ≡ e−iωct(â1 + F1(t)),

U†
2 (t)U

†
1 (t) â2 U1(t)U2(t) = e−iωct(â2 +

∫ t

0
dτE2(τ)ei∆τ) ≡ e−iωct(â2 + F2(t)),

U†
2 (t)U

†
1 (t) b̂ U1(t)U2(t) = e−iωmt b̂, (6)

with ∆ = ωc − ωL being the detuning of the drives, while the effective drive profile
F1(2)(t) can be transformed from the original drive profile E1(2)(t). This procedure is like a
consecutive application of the interaction picture with respect to the free oscillation part
and the driving part in Equation (1).

If a CW drive E(t) = E is used, the effective drive profile will be

F(t) =
iE
∆
(1− ei∆t). (7)

On the other hand, when a Gaussian pulse drive E(t) = ∑n E exp−(t−nt0)
2/σ2

(n = 1, 2, · · · )
is applied, the effective drive profile will take the form

F(t) = ∑
n

∫ t

0
dτE exp

{
− (τ − nt0)

2

σ2

}
ei∆τ

= ∑
n

i
√

πσE
2

exp
{

i∆ · nt0 −
∆2σ2

4

}
Erfi

[
−2i(t− nt0)− ∆ · σ2

2σ

]
, (8)

where t0 is the center moment of the Gaussian pulse, 2σ is the pulse width, and
Erfi(z) = −iErf(iz) is the imaginary error function. From the transformations in Equation (6),
one will have the following:

He f f (t) =− gm

{[
F1(t)â†

1 + F∗1 (t)â1 + |F1(t)|2
]
−
[

F2(t)â†
2 + F∗2 (t)â2 + |F2(t)|2

]}
× (e−iωmt b̂ + eiωmt b̂†) + i

2

∑
j=1

√
2κj

{
eiωct

(
â†

j + F∗j (t)
)

ξ̂cj(t)− H.c.
}

+ i
√

2γm

(
eiωmt b̂† ξ̂m(t)− H.c.

)
,

HN(t) =− gm(â†
1 â1 − â†

2 â2)(e−iωmt b̂ + eiωmt b̂†) (9)

transformed from the original Hamiltonian.
The effective Hamiltonian He f f explicitly displays the beam-splitter (BS) action and

squeezing (SQ) action with the terms that it contains

− gm
iE
∆
(1− ei∆t)e−iωmt b̂â†

1 + gm
iE
∆
(1− ei∆t)e−iωmt b̂â†

2 + H.c. ≡ HBS,

− gm
iE
∆
(1− ei∆t)eiωmt b̂† â†

1 + gm
iE
∆
(1− ei∆t)eiωmt b̂† â†

2 + H.c. ≡ HSQ (10)

(here, we simply consider the situation of two identical CW drives for clarity). The BS
Hamiltonian acts as a conversion between the cavity modes and mechanical mode, so that
the mechanical oscillation is transferred to the cavity fields coupled to a cold reservoir,
realizing the cooling of the mechanical oscillator. The SQ Hamiltonian, however, acts like
a magnifier to increase the cavity and mechanical occupations together, having the effect
of raising the the equivalent temperature of the mechanical oscillator. If ∆ = ωm, one
oscillating phase factor in HBS will be canceled so that the BS action is enhanced to have a
coefficient JE = gm/ωm × E/κ1 without being accompanied by the oscillating phase factor
that suppresses the BS effect. This coefficient is called the effective coupling intensity [15],
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and it appears in both HBS and HSQ with a difference in whether it is with oscillating
phase factors or not. On the other hand, the Hamiltonian HN(t) is still a nonlinear one,
but it does not contain the effective drive F(t). Under the conditions gm/ωm � 1 (here,
gm/ωm = 10−7), the effect of HN(t) can be safely neglected [32]. Moreover, the addition of
the phase terms and the displacements for the system operators due to the combined action
of U1(t) and U2(t) do not change the properties of the stochastic Hamiltonian HSR with
the redefinition of the noise operators [32]. Therefore, the effective Hamiltonian He f f (t)
leads to the following linearized dynamical equations:

˙̂a1 =− κ1 â1 + igmF1(t)(e−iωmt b̂ + eiωmt b̂†)− κ1F1(t) +
√

2κ1eiωct ξ̂c1(t),
˙̂b =− γm b̂ + igmeiωmt

[
F1(t)â†

1 + F∗1 (t)â1 − F2(t)â†
2 − F∗2 (t)â2

]
+ igmeiωmt(|F1(t)|2 − |F2(t)|2) +

√
2γmeiωmt ξ̂m(t),

˙̂a2 =− κ2 â2 − igmF2(t)(e−iωmt b̂ + eiωmt b̂†)− κ2F2(t) +
√

2κ2eiωct ξ̂c2(t), (11)

which determine a cooling process.

3. Results

Applying the dynamical equations in Equation (11), we will simulate various cooling
processes and clarify the relevance of the cooling results and cooling speeds with the system
parameters. A cooling process is illustrated by the dynamical evolution the thermal phonon
number nm(t) = 〈b̂†(t)b̂(t)〉 − 〈b̂†(t)〉〈b̂(t)〉 from the numerical solutions of Equation (11).
One needs to see how fast nm(t) reaches the minimums and how these minimums could
be. Here, all system parameters in the numerical simulations are scaled with respect to the
damping rate κ1 so that we only deal with their dimensionless quantities.

3.1. Dynamical Evolution of the Thermal Phonon Number

To analyze the relations between the cooling result and cooling speed, we first simu-
late some dynamical evolution processes of the thermal phonon number under different
combinations of drives, which are illustrated in Figure 2. Here, the effective drive intensity
is set to be JE = 0.5, 1, 2, 4. In Figure 2a, two Gaussian pulsed drives with the same pulse
width σ = 3/κ1 and peak time t0 = 2σ are applied to the left and right cavity, respectively.
By setting the starting time of the right drive ts = 2σ, the large portions of the fields created
by these two pulsed drives act on the membrane in turn, and then a better cooling effect can
be achieved as compared to the other time lags between the peaks of the two pulsed drives.
The phonon number will thus be decreased to less than 1, which can be regarded as the
mechanical resonator being cooled to its ground state. It is evident that a cooling process
speeds up with the increase in effective drive intensity JE, together with the decrease in
the minimum achievable phonon number. For example, the first minimum achievable
phonon number is n1

m = 0.139 for JE = 2 (pink line), which is associated with the evolution
time κ1t1 = 4.530; for JE = 4 (black line), the first minimum achievable phonon number is
slightly decreased to be n1

m = 0.111, and the evolution time is decreased to κ1t1 = 3.444. On
the other hand, in Figure 2a, after evolving for the time κ1t f = 12.281, the phonon number

under JE = 2 reaches the final minimum n f
m = 0.1017, while for JE = 4, the evolution time

for reaching this minimum phonon number is slightly decreased to κ1t f = 12.124, and the

final achievable minimum phonon number decreases to n f
m = 0.0511, corresponding to

a ratio of (n f
m/nth)× (κ1/γm) = 0.511, which has surpassed the theoretical cooling limit

(n f
m/nth)× (κ1/γm) = 1 for a single CW drive acting on a single cavity [15]. Moreover,

from this comparison, one sees that the pulsed drives can sometimes outdo the CW ones in
the cooling processes.
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Figure 2. Dynamical evolution processes of the thermal phonon number under different combinations
of a Gaussian pulsed drive and CW drive. Each cavity is driven by one drive, and the effective
coupling intensity is JE = 0.5, 1, 2, 4 for red, blue, pink, and black lines, respectively. For a pulsed
field, the parameter JE is determined by its peak amplitude E. (a) Both drives are Gaussian pulsed.
(b) Both drives are CW ones. (c) One Gaussian pulsed drive and one CW drive are applied to the
left and right cavity, respectively. (d) The pulsed one and CW one in (c) are interchanged in their
positions. The re-scaled optomechanical coupling constant is gm/κ1 = 10−5; the re-scaled mechanical
frequency is ωm/κ1 = 100; the re-scaled mechanical damping rate is γm/κ1 = 10−3; the initial
thermal occupation is nth = 100. The ratio of the damping rates of the two cavities is κ2/κ1 = 1 for
JE = 0.5 and κ2/κ1 = JE for JE = 1, 2, 4, so that most results in (c) are not the same as those in (d).

The overall tendencies are similar in Figure 2c,d. However, there exists one difference from
the pattern in Figure 2b. The evolution time for reaching the first minimum phonon number due
to JE = 4 is shorter than the time due to JE = 2, since the cooling is faster with a higher effective
drive intensity, but the final minimum phonon number under the condition JE = 4 is about
n f

m = 0.1005, which becomes slightly larger than the one at n f
m = 0.0961 under the condition

JE = 2. Therefore, the cooling result and cooling speed do not always match one another. For
example, the cooling speed with the condition JE = 4 is higher, but the corresponding first
minimum phonon number is only n1

m = 1.3458, as compared with n1
m = 0.1581 under JE = 2,

which is a difference of almost one order in this first minimum phonon number.
The illustrated cooling results and cooling speeds reflect the competition of the coex-

isting BS effect and SQ effect. Even when the system works at the resonant point of red
detuning at ∆ = ωm, the SQ effect of heating the mechanical resonator still acts at a certain
rate, though the BS effect dominates in this situation. Under the competition between the
two effects, the phonon number does not decrease directly to the minimum, but oscillates
with time. When the BS effect dominates, the resonator can be quickly cooled down to
the first minimum n1

m, but, as the heating effect accumulates slowly, the phonon number
will rebound from time to time, and an oscillating phonon number manifests. Only after
the competition between the two effects becomes completely balanced can the phonon
number reach its minimum. When the effective coupling intensity is not so large, the BS
effect is enhanced faster than the SQ effect, but the SQ effect grows faster when the effective
coupling intensity JE becomes sufficiently large. Especially when the effective coupling
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intensity is increased from JE = 2 to JE = 4, as shown in Figure 2b, the first minimum
phonon number increases from n1

m = 0.1581 to n1
m = 1.3458 by almost one order. This

clearly indicates a stronger SQ effect, which raises the final minimum photon number when
the coupling JE becomes even higher. In a sense, the illustrated cooling result and cooling
speed in a process directly measure the inherent BS and SQ effects under a certain condition
for OMSs.

3.2. Determination of the Cooling Result and Cooling Speed

From the illustrated dynamical evolution processes, we see that the first minimum
phonon number n1

m, its corresponding evolution time κ1t1, and the final minimum phonon
number n f

m constitute the three characteristic quantities for depicting a cooling process. The
relations between these figures of merit and the effective coupling intensity JE are illustrated
in Figures 3 and 4, respectively, for the systems driven by two pulsed drives or one pulsed
plus one CW drive. In both scenarios, the evolution time κ1t1 to the first minimum n1

m drops
with the increased effective coupling intensity, simply due to an enhanced BS effect during
the initial transient period of a cooling process. However, the reduction of the evolution
time becomes less and less significant as the effective coupling JE is increased further. It
will show a saturation at large values of JE, where the SQ effect grows more quickly.

Figure 3. Relations between the three figures of merit with the effective coupling intensity JE in the
scenario of two pulsed drives. (a) The evolution time for reaching the first minimum phonon number
vs. the effective coupling intensity. (b) The first minimum phonon number vs. the effective drive
intensity. There exists oscillation if JE > 10. (c) The final minimum phonon number vs. the effective
coupling intensity. The quantity increases when JE > 10. The fixed system parameters are the same
as those in Figure 2.

Figure 4. Corresponding relations between the three figures of merit with the effective coupling
intensity JE in the scenario of one pulsed drive to the left cavity plus one CW drive to the right cavity.

Initially, with the increased effective coupling intensity JE, the corresponding first
minimum phonon number n1

m decreases quickly, but the decreasing tendency also becomes
less and less significant when JE > 2. This tendency of this figure of merit reflects the fact
that the SQ effect is obviously enhanced. The condition JE > 2 can be, therefore, seen as
the beginning of having a considerable SQ effect. An obvious periodic tail in Figure 4b
manifests the competition between the BS and SQ effect well. Such a drastic oscillation
of n1

m to large amplitudes exists in the scenario involving CW drives, indicating that the
SQ effect is more significant in this scenario. Here, the CW drive acts continuously in
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contrast to the pulsed ones with gaps of non-action during the cooling process. Because
the SQ action takes a continuous period of time to accumulate its effect, this continuous
process can be interrupted in the scenario of pulsed drives so that it is possible to reduce the
harmful SQ effect by setting the appropriate intervals for a pulsed drive. This is why the
theoretical cooling limit for a single cavity driven by a single CW drive can be surpassed
by pulsed drives [35–37].

When the effective coupling intensity is within the range JE < 10 in Figure 3c or
JE < 6 in Figure 4c, the final minimum phonon number n f

m (the cooling result) is lowered
together with the evolution time κ1t1 to the first minimum. However, once the effect of
coupling intensity becomes even larger, the quantity n f

m will go up together with n1
m due to

the more enhanced SQ effect. Compared with the pulsed scenario, setups involving a CW
drive can achieve their best cooling results with the lower JE, since the action of the CW
drive is continuous. The correspondingly lower pumping power required for cooling is an
advantage for the scenario with CW drive. For the final cooling result n f

m, its increase with
the effective coupling JE is always faster in the scenario involving one CW drive due to the
more significant SQ effect.

The relations between the three figures of merit, n1
m, κ1t1, and n f

m, and the effective
coupling intensity JE are not so trivial, as shown in Figures 3 and 4. Faster cooling does
not necessarily imply better a cooling result. Usually, an effective coupling intensity
leading to a relatively fast cooling together with a low first minimum phonon number n1

m
is a good choice for achieving satisfactory cooling results. In reality, one should set the
proper JE when designing experiments while considering the existing conditions for the
specific setups.

3.3. Effect of the Mechanical Damping Rate

In the above discussion, the mechanical frequency and damping rate are fixed as
ωm/κ = 100 and γm/κ = 10−3, respectively, to be in the resolved sideband regime. As
pointed out in the former works [15,38], under a fixed JE, a larger mechanical frequency
is beneficial for achieving a better cooling result, since the coexisting SQ effect can be
suppressed in this way. The second factor is the damping rate, which obviously improves
the cooling result when it is lowered. How this factor affects the cooling result and cooling
speed is another interesting issue. To clarify this point, we display the dynamical evolution
of the phonon number with different damping rates γm/κ1 = 10−1, 10−2, 10−3, 10−4 under
the effective coupling intensities JE = 2, 4, 10, 20, respectively, in Figure 5. The evolution
processes show that the cooling speeds are almost the same for all different damping rates,
but the corresponding first minimum phonon numbers decrease with γm. For the effective
coupling intensities in Figure 5a,b, the ratios (n1

m/nth)× (κ1/γm) and (n f
m/nth)× (κ1/γm)

are preserved to be the same; n1
m and n f

m are simply proportional to the mechanical damping
rate, so that one will get a better cooling result by decreasing the damping rate.

When the effective coupling intensity becomes larger, as in Figure 5c,d, the ratios
(n1

m/nth)× (κ1/γm) and (n f
m/nth)× (κ1/γm) will no longer be preserved. For example,

the first minimum phonon number is n1
m = 0.1031 for γm/κ1 = 10−3, while n1

m = 0.0149
for γm/κ1 = 10−4, so that the corresponding ratio (n1

m/nth)× (κ1/γm) changes from 1.031
to 1.49. The cooling effect is obviously impaired, as compared to the situations with relative
low effective coupling intensity. Exactly the SQ effect for heating the mechanical resonator
will be enhanced with a larger effective coupling intensity JE, making it harder to improve
the cooling simply by increasing the mechanical quality factor.
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Figure 5. Dynamical evolution processes under two pulsed drives, which are simulated for various
damping rates γm while the effective coupling intensity is fixed (four different values of JE = 2, 4, 10,
and 20 are considered, respectively). Here, γm/κ1 = 10−1 (black), 10−2 (pink), 10−3 (blue), and 10−4

(red), respectively. The fixed parameters are the same as those in Figure 2.

4. Discussion

The results illustrated above actually reflect how the system parameters, including the
drive amplitude E, the single-photon coupling strength gm, the mechanical frequency ωm,
the damping rate γm, and κ1 and κ2 are relevant to a cooling process. This relevance can be
simply reduced to a single parameter, the effective coupling intensity JE = gm/ωm × E/κ1.
Although increasing the cooling rate with JE is beneficial to cooling in a certain regime,
the SQ effect that heats the system will be enhanced at the same time with JE. How to
balance the BS and SQ effect with an effective coupling intensity is always a central issue
in achieving the optimal cooling. The difference in two drive intensities can also affect
the cooling result, but it will not lead to a qualitative change, so we set the drive intensity
of the two drives to be equal (E1 = E2 = E) in the illustrations. It should be noted that
the ratio κ2/κ1 of the damping rates for the two cavities is another relevant factor. The
best choice of the ratio is to let it be approximately equal to the effective drive intensity
JE [38]. In most of the above illustrations, we adopt this ratio to show the capacity of the
concerned setups. Certainly, the realistic setups without such specific choices qualitatively
demonstrate similar behaviors.

5. Conclusions

We applied a dynamical approach in order to study cooling processes with a type of
OMS. The dynamical approach not only enables one to find the cooling limit, but also allows
one to see how fast a cooling process can be. A cooling process can be well depicted by
three figures of merit: n1

m, κ1t1, and n f
m, and their relations to the effective coupling intensity

JE reflect the existing BS and SQ effects in a specific process. Generally, the accumulated SQ
effect takes a longer time to manifest in the cooling process, so it will affect the final cooling
result n f

m more significantly. The BS effect, on the other hand, solely controls the time κ1t1
to reach the first minimum phonon number n1

m, which is also determined by the SQ effect,
especially when the effective coupling intensity is very high. Due to the competition of
these two effects, it is not ideal to implement a cooling with a large JE. An optimal cooling
occurs under a suitable combination of the effective coupling intensity and mechanical
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quality factor. The knowledge obtained here may help to design experiments relevant to
optomechanical cooling.
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