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Abstract: In this work, we experimentally investigate the nonlinear dynamics of an interband cascade
laser (ICL) under variable-aperture optical feedback implemented by a gold mirror combining with
a ring-actuated iris diaphragm (RAID). By continuously varying the diameter of RAID (DR), the
evolution of the dynamical state of ICL with the aperture of the optical feedback can be inspected.
The characteristics of each dynamical state are characterized by time series, power spectra, phase
portraits, and Lyapunov exponents. The results show that, with the decrease of DR, the dynamical
state of the ICL under variable-aperture optical feedback presents an evolution from complex, simple
to stable. Diverse dynamical states including period one state (P1), period two state (P2), multi-period
state (MP), quasi-period state (QP), low-frequency fluctuation (LFF), chaotic state (C), and hyperchaos
have been observed. Through mapping the evolution of dynamical states with DR for the ICL biased
at different currents, different evolved routes of the dynamical states are revealed.

Keywords: interband cascade laser (ICL); nonlinear dynamics; optical feedback

1. Introduction

Interband cascade laser (ICL) is a kind of important mid-infrared semiconductor lasers,
where the advantages of interband optical transition from quantum well lasers (QWLs) and
the electron transport via the cascading stages from quantum cascade lasers (QCLs) are
combined in the ICL [1,2]. Unlike ordinary QCLs, ICL is based on the interband transition
of type-II quantum wells for emitting light, and its carrier lifetime is on the order of sub-
nanoseconds [2–4]. ICL typically has five to ten cascading gain stages in its active region for
enhancing the total gain. The power consumption of ICL is 1–2 orders of magnitude lower
than that of mid-infrared QCL, allowing for battery-powered operation [5,6]. GaSb-based
ICLs can oscillate within a wavelength range from 3 µm to 6 µm [2,3], while InAs-based
ICLs can oscillate at a wavelength beyond 10 µm [7]. As a result, ICLs can be used for
gas sensing [8,9] and free-space optical (FSO) communication [10] due to the unique mid-
infrared spectral range.

Previous research has demonstrated that near-infrared semiconductor lasers exhibit
a variety of dynamical states under external perturbations including optical injection, op-
tical feedback, or optoelectronic feedback [11–17], which is of particular interest in many
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applications, including photonic microwave signal generation [18–20], random bit genera-
tion [21,22], secure communications [23,24], high performance radar, and lidar [25–27], as
well as photonic reservoir computing [28]. For mid-infrared QCLs, related theoretical and
experimental investigations on the nonlinear dynamics and their applications have been
explored, and the results demonstrate that, compared with near-infrared semiconductor
lasers, QCLs are less sensitive to optical feedback [29,30]. Under some special operation
conditions, optical feedback QCLs can exhibit low-frequency fluctuations [31,32]. As for
mid-infrared ICLs, relevant theoretical investigation predicts that an ICL under optical
feedback can exhibit chaotic state [33], which has been experimentally demonstrated very
recently [34].

For near-infrared semiconductor laser, the optical feedback with variable feedback
ratio is relatively easy to be implemented by combining a mirror with a neutral density
filter (NDF). However, for mid-infrared waveband, currently commercial NDF cannot
provide continuously variable attenuation rate. Therefore, in order to build a feedback
system with continuous change of feedback strength, the feedback loop based on polaroid
has been proposed and demonstrated in mid-infrared external cavity QCLs [29–32] and
ICLs [34]. Through changing the polarized state of the feedback light, the feedback ratio
can be adjusted.

In this work, we propose a novel scheme to establish a feedback loop implemented
via a ring-actuated iris diaphragm (RAID) combining with a mirror. Through varying the
diameter (DR) of RAID, the aperture of feedback beam can be adjusted. As a result, we
investigate the nonlinear dynamics of an ICL via the time series, power spectra, phase
portraits, and Lyapunov exponents. Moreover, the dynamical state evolution of the ICL
with DR is also explored.

2. Experimental Setup

Figure 1 shows the schematic diagram of the experimental setup. The interband
cascade laser (ICL) utilized in this experiment is a Fabry–Perot laser operating at the
wave band of 3.3 µm, which is grown on GaSb substrate by solid source molecular beam
epitaxy. The ICL is composed of five cascading stages of W-shaped active regions formed
by InAs/GaInSb type-II quantum wells, and two cleavage planes form the resonant cavity.
The ridge width and cavity length of the ICL are 20 µm and 2.0 mm, respectively. The
purpose of such a relatively broad area laser structure is to obtain high power. An aspheric
lens is encapsulated in the laser to collimate the emission light. The ICL is driven by a
high stability and low-noise current-temperature controller (ILX-Lightwave, LDC-3724C).
During the total experimental processes, the temperature is stabilized at 20.15 ◦C. The laser
beam output from the ICL is divided into two parts by a 75:25 beam splitter (BS). The
75%-part is reflected by a plane gold mirror and then fed back to the ICL. The gold mirror
is placed 21.6 cm away from the ICL. A ring-actuated iris diaphragm (RAID) is added into
the feedback loop for adjusting the aperture of optical feedback, and its diameter (DR) can
be adjusted from 1.0 to 8.0 mm. The 25%-part is converted into electronic signal by a fast
HgCdTe photodetector (PD, Vigo PVI-4TE-5, 525 MHz bandwidth), and then is sent to the
detected system. The time series and electrical spectra are recorded by a digital oscilloscope
with a sampling rate of 20 GS/s (OSC, Agilent DSO9254A with 2.5 GHz bandwidth) and an
electrical spectrum analyzer (ESA, Agilent E4407B with 26.5 GHz bandwidth), respectively.
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Figure 1. Schematic diagram of the experimental setup. ICL: Interband cascade laser, BS: Beam split-
ter, RAID: Ring-actuated iris diaphragm, PM: Power meter, PD: Photodetector, OSC: Oscilloscope, 
ESA: Electrical spectrum analyzer. Solid line: optical path, dashed line: microwave path. 

3. Results 
Figure 2 shows the measured power-current characteristic of the ICL at free-running 

(blue) and subject to variable-aperture optical feedback under DR = 4.0 mm (red). Here, 
the output power of the ICL is monitored by a power meter (PM) at the 25% output port 
of BS. As shown in this diagram, the free-running ICL exhibits a threshold current Ith of 
74.50 mA. After introducing variable-aperture optical feedback under DR = 4.0 mm, the 
threshold current is decreased to 64.80 mA, and, meanwhile, the output power is signifi-
cantly enhanced. Further experimental results show that the power-current characteristic 
of the ICL is not affected by the variation of DR under the case that DR is beyond 3.7 mm. 
In other words, under this experimental condition the size of the optical beam is about 3.7 
mm. Therefore, the red curve in Figure 2 also corresponds to the case that the RAID is 
removed. In the following discussion, the value of DR is set to no more than 3.7 mm. 

 
Figure 2. Power–current characteristic of the ICL at free-running (blue) and subject to variable-ap-
erture optical feedback under DR = 4.0 mm (red). 

Figure 1. Schematic diagram of the experimental setup. ICL: Interband cascade laser, BS: Beam
splitter, RAID: Ring-actuated iris diaphragm, PM: Power meter, PD: Photodetector, OSC: Oscilloscope,
ESA: Electrical spectrum analyzer. Solid line: optical path, dashed line: microwave path.

3. Results

Figure 2 shows the measured power-current characteristic of the ICL at free-running
(blue) and subject to variable-aperture optical feedback under DR = 4.0 mm (red). Here, the
output power of the ICL is monitored by a power meter (PM) at the 25% output port of BS.
As shown in this diagram, the free-running ICL exhibits a threshold current Ith of 74.50 mA.
After introducing variable-aperture optical feedback under DR = 4.0 mm, the threshold cur-
rent is decreased to 64.80 mA, and, meanwhile, the output power is significantly enhanced.
Further experimental results show that the power-current characteristic of the ICL is not
affected by the variation of DR under the case that DR is beyond 3.7 mm. In other words,
under this experimental condition the size of the optical beam is about 3.7 mm. Therefore,
the red curve in Figure 2 also corresponds to the case that the RAID is removed. In the
following discussion, the value of DR is set to no more than 3.7 mm.
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First, we fix the bias current at a relatively low level (I = 86.00 mA) and inspect the
dynamical states of the ICL under variable-aperture optical feedback. Figure 3 displays
the time series (first column), power spectra (second column), and corresponding phase
portraits (third column) for some typical dynamical states of the ICL subject to variable-
aperture optical feedback under different DR. For DR = 3.7 mm, as mentioned above, the
feedback optical beam does not be limited by the RAID. Under this case, a slowly-varying
envelope can be observed from the time series (in Figure 3(a1)), two or more incommensu-
rate frequencies exist in the power spectrum (in Figure 3(b1)), and the phase portrait (in
Figure 3(c1)) is characterized by a torus. Thus, this dynamical state of the ICL corresponds
to a quasi-periodic state (QP). For DR = 3.0 mm (as shown in Figure 3(a2,b2,c2)), the time
series behaves as a periodic oscillation whose fundamental frequency is about 259.4 MHz
from the power spectrum, and the phase portrait shows a limited cycle feature. Therefore,
it can be judged that the ICL operates at a period one state (P1). For DR = 2.6 mm (as shown
in Figure 3(a3,b2,c3)), two peak intensities in the time series can be clearly observed, both
sub-harmonic frequency (about 127.4 MHz) and fundamental frequency (about 256.4 MHz)
appear in the power spectrum, and the corresponding phase portrait possesses two loops
that are intertwined together. All these features mean that the dynamical state of the ICL is
a period two state (P2). For DR = 2.3 mm (as shown in Figure 3(a4,b4,c4)), random intensity
oscillation can be seen from the time series, the corresponding power spectrum covers a
broad frequency range, and the phase portrait shows a widely scattered distribution over a
large area. As a result, the ICL exhibits a chaotic state (C). Finally, for DR = 1.0 mm, which
is the minimum diameter of the RAID, the time series (Figure 3(a5)) has some tiny fluctua-
tions, mainly caused by the system noise. Accordingly, the power spectrum (Figure 3(b5))
almost coincides with the noise floor, and the phase portrait (Figure 3(c5)) shrinks as a small
spot. Therefore, the dynamical state of the ICL is a stable state (S). In short, an evolution
route of QP-P1-P2-C-S is presented under I = 86.00 mA through gradually decreasing DR,
and the reason may be explained as follows. After introducing a RAID into the feedback
loop, the edge portion of the beam beyond the diameter of RAID will be blocked. For a
relatively large value of DR, the fundamental transverse mode is almost unlimited and
can be fed back into the ICL. However, the higher-order transverse mode is limited by
the RAID, which results in a decrease in the feedback. As a result, with the decrease in
DR, the fundamental transverse mode can be driven into a more complex dynamical state.
However, if DR is decreased below the size of fundamental transverse mode, the feedback
strength of the fundamental transverse mode will be weakened with the decrease of DR,
and then the ICL will operate at a steady state for too small DR.

Next, we fix the bias current at a relatively high level (I = 96.00 mA) and examine
the influence of DR on the dynamical states of the ICL, and the corresponding results are
presented in Figure 4. For DR = 3.7 mm (Figure 4(a1,b1,c1)), similar dynamical character-
istics with Figure 3(a1,b1,c1) can be observed, and the dynamical state is QP. When DR
is decreased to 3.3 mm (Figure 4(a2,b2,c2)), the dynamical state of the ICL is P1 with a
fundamental frequency of 239.9 MHz. Further decreasing DR to 2.8 mm (Figure 4(a3,b3,c3)),
the dynamical features of the ICL are similar to that in Figure 3(a3,b3,c3), both the funda-
mental frequency (about 237.9 MHz) and its sub-harmonic frequency (about 118.9 MHz)
present clearly in the power spectrum, and then the dynamics can be identified as P2. For
DR = 2.7 mm (Figure 4(a4,b4,c4)), the time series shows multiple different peaks, multiple
frequency components appear upon the power spectrum, and the phase portrait shows the
overlap alternation of multiple loops. Therefore, the ICL presents a multi-period state (MP).
For DR = 2.5 mm (Figure 4(a5,b5,c5)), the time series fluctuates dramatically, the correspond-
ing power spectrum continuously covers a broad frequency range, and the phase portrait
shows a widely scattered distribution over a large area. Under these circumstances, it can
be determined that the ICL operates at a chaotic state (C). Furthermore, if DR is decreased
to 1.6 mm (Figure 4(a6,b6,c6)), the time series exhibits a sudden power dropout with a
following gradual power recovery. In addition, the time series raises the low-frequency
noise for frequency below about 20 MHz in the power spectrum, and the phase portrait
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shows a cluster sited around −0.13 to 0.06 V. All these features indicate that the ICL exhibits
a low-frequency fluctuation (LFF). In further decreasing DR to 1.0 mm (Figure 4(a7,b7,c7)),
the ICL shows an S state. In a word, with the decrease of DR from 3.7 mm to 1.0 mm, the
ICL shows rich nonlinear dynamical states followed a route of QP-P1-P2-MP-C-LFF-S.
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Figure 3. Time series (a1–a5), power spectra (b1–b5), and corresponding phase portraits (c1–c5) for
some typical dynamical states of the ICL biased at I = 86.00 mA under variable-aperture optical
feedback with DR of 3.7 mm (row 1), 3.0 mm (row 2), 2.6 mm (row 3), 2.3 mm (row 4), and 1.0 mm
(row 5). The gray lines in the power spectra denote the noise floor. QP: quasi-period state; P1: period
one state; P2: period two state; C: chaotic state; S: stable state.

The largest Lyapunov exponent (LLE), which describes the divergence rate of nearby
attractor trajectories, is an effective method to determine the dynamical state [35,36]. A
chaotic state at least possesses one positive Lyapunov exponent [37,38]. Based on the
time series, we have calculated the evolution of LLE with DR under I = 96.00 mA, and
the results are given in Figure 5a. As shown in Figure 5a, when DR is decreased from
3.7 mm to 2.6 mm, the ICL exhibits different states of QP-P1-P2-MP, and the values of
LLE are nearly zero. When further decreasing DR, the ICL is driven into C state, and the
LLE arrives at its maximum value of 1.69 ns−1 under DR = 2.5 mm For the case that DR
is decreased from 2.3 mm to 1.6 mm, the ICL exhibits LFF, and the LLEs are 0.93 ns−1,
0.52 ns−1, respectively. Figure 5b shows the corresponding Lyapunov exponent spectrum
when the LLE arrives at the maximum value of 1.69 ns−1. From this diagram, it can be seen
that five largest Lyapunov exponents are 1.62, 0.94, 0.37, −0.06, and −0.61 ns−1. As a result,
there exist three positive Lyapunov exponents, which demonstrates that the output of ICL
is hyperchaos [39].
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Figure 5. (a) Largest Lyapunov exponent as a function of DR under the ICL biased at I = 96.00 mA,
and (b) Lyapunov exponent spectrum of the chaotic output obtained under DR = 2.5 mm. For
the calculated spectrum, the curves converge to values 1.62 ns−1,0.94 ns−1, 0.37 ns−1, −0.06 ns−1,
−0.61 ns−1, −1.75 ns−1, −4.53 ns−1, and −11.89 ns−1 from the top down.

The above results reveal that the bias current I and the diameter DR of RAID are two
key parameters to seriously affect the dynamical state of the ICL. Finally, a two-dimensional
map of the dynamical evolutions of the ICL under variable-aperture optical feedback in
the parameter space of I and DR is integrated in Figure 6, where the bias current varies
from 80.00 mA to 96.00 mA with a step of 2.00 mA and the diameter of RAID is varied
from 1.0 to 3.7 mm. From this diagram, one can see that a large bias current is helpful for
that the ICL presents rich nonlinear dynamical states. For the ICL biased at 80.00 mA, the
dynamical states only involve P1 and stable state. If the bias current of ICL is increased to
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86.00 mA, with the continuous decrease of DR, the ICL can be entered into C state via a
route of QP-P1-P2-C. For a larger bias current of the ICL, the evolution of dynamical state
with DR follows a route of QP-P1-P2-MP-C-LFF-S.
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4. Discussion

In this work, based on a ring-actuated iris diaphragm (RAID) combining with a mirror,
a novel feedback scheme is proposed for driving an ICL into different dynamical states,
which have application prospects in free-space optical communication and sensing, optical
generation of microwave, radar and lidar, etc. For such a feedback scheme, the variation
of feedback strength is realized through changing the transverse field distribution imple-
mented by adjusting the aperture of RAID. Therefore, compared to the feedback loop based
on polarizers [29–32,34], such a feedback scheme is more simple and easily implemented.

Additionally, as proved in Ref. [40], the beam shaping with optical feedback in QCLs
is a flexible solution to obtain high-quality mid-infrared sources by controlling the fila-
mentation. Due to a similar principle, it can be predicted that through introducing such a
feedback scheme into ICLs, high-quality mid-infrared sources can also be obtained. As a
result, we will pay attention to this issue in our further research.

5. Conclusions

In summary, the nonlinear dynamics of an interband cascade laser (ICL) under
variable-aperture optical feedback are experimentally investigated, where the variable-
aperture optical feedback is implemented by a gold mirror combining with a ring-actuated
iris diaphragm (RAID). Via the time series, power spectra, phase portraits, and largest
Lyapunov exponent (LLE), the dynamical states of the ICL under variable-aperture optical
feedback can be determined, and various dynamical states, including period one state
(P1), period two state (P2), multi-period state (MP), quasi-period state (QP), low-frequency
fluctuation (LFF), chaotic state (C), and hyperchaos, have been observed. Through mapping
the dynamical states in a parameter space of the bias current (I) of ICL and the diameter
(DR) of RAID, different evolution routes of dynamical state are revealed. Due to the unique
virtue of relatively easy implementation, we hope that this work can offer an effective way
to control ICL operating at an expected dynamical state for some special scenarios.
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