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Abstract: Low-level laser therapy (LLLT) has become an important part of the therapeutic process
in various diseases. However, despite the broad use of LLLT in everyday clinical practice, the
full impact of LLLT on cell life processes has not been fully understood. This paper presents
the current state of knowledge concerning the mechanisms of action of LLLT on cells. A better
understanding of the molecular processes occurring within the cell after laser irradiation may result
in introducing numerous novel clinical applications of LLLT and potentially increases the safety
profile of this therapy.

Keywords: low-level laser therapy (LLLT); cell metabolism; cell biology; photobiomodulation; laser
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1. Introduction

Since the laser device was constructed in 1960 by Theodor Maiman, every year, an
increasing number of medical applications appear. Lasers are distinguished from other
light sources by their coherence, polarization, and monochromaticity; therefore, they can
transmit a wide range of energy. The device generates laser irradiation by the external
energy supply using the phenomenon of stimulated emission. There are many ways of clas-
sifying laser devices, including: the spectrum of the emitted radiation, the active medium
(semiconductor, gas, liquid, and solid), the nature of the work (pulsed or continuous), and
the range of power and energy emitted by the device. Recently, growing attention in the
medical field has been focused on low-level energy laser irradiation. Radiation used in this
therapy refers to the use of wavelengths from 500 nm up to 1200 nm and power from 1 mW
to 500 mW, resulting in relatively low specific energy density (0.05 J/cm2–50 J/cm2). In
clinical practice, low-level laser therapy (LLLT) was introduced by E. Master in the second
half of the 1960s [1]. Since that time, this type of radiation has been successfully used in
cardiology, hematology, dermatology, surgery, orthopedics, and other clinical specialties [2].

The effect of laser radiation on cells is referred to as photobiomodulation (PBM). The
basis of this phenomenon is strongly connected with the influence of laser light on cell
organelles as well as the biochemical processes carried out inside them (Figures 1 and 2). It
needs to be emphasized that photobiomodulation (PBM) is a broader concept referring to
different kinds of light sources, not only to coherent laser light (e.g., visible, near-infrared
(NIR), infrared (IR)). The North American Association for Photobiomodulation Therapy
(NAALT)) and the World Association for Laser Therapy (WALT) define [3] PBM as “the
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therapeutic use of light absorbed by endogenous chromophores, triggering non-thermal,
non-cytotoxic, biological reactions through photochemical or photophysical events, leading
to physiological changes”.
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Figure 1. Mechanism of LLLT action on cell activity and potential advantages of laser therapy on
cell biology.

The interpretation of published studies is difficult and can often be confusing. This
fact is inextricably linked with methodological issues. Available studies refer to various
light sources with different radiation parameters, including coherence, wavelength, po-
larization, power, energy density, etc. Additionally, the biological effect of light therapy
is often heterogeneous and strongly depends on the light parameters set and the specific
cell response.

Two main LLLT features seem to have the strongest impact on cell biology. First is
the wavelength. Wavelengths from 600 nm up to 1070 nm have the greatest impact on the
promotion of cell proliferation. This phenomenon is probably related to the absorption or
interference of light beyond this range. Light with shorter wavelengths is strongly absorbed
by hemoglobin, while longer wavelengths are absorbed by water [4]. The second important
factor is energy density. In general, lower energy density (0.05 J/cm2–10 J/cm2) promotes
cell proliferation, while higher energy density (above 50 J/cm2) enhances apoptotic pro-
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cesses. The mutual transition of both phenomena has a continuous nature. This biphasic
response is also known as the “Arndt–Schulz law”.
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Additionally, even other parameters of LLLT seem to have an impact on its therapeutic
effect. Yet, a full discussion regarding this issue is beyond the scope of this manuscript. As
a short example, we can use the laser operating mode. Although continuous-wave (CW)
irradiation has been a gold standard in LLLT, some studies have suggested that pulse wave
(PW) [5] may be superior to CW, particularly in regenerative applications. However, no
strong evidence supports this theory [5], and therefore, future studies focused on this topic
are necessary. Other, more specific effects on cell life processes are discussed in the next
part of the manuscript.

Study Aim

This paper aims to review the impact of LLLT on the basic intracellular process and
discusses the effect of LLLT on individual intracellular information transmission pathways.
To avoid misleading comparisons, the data contained in this manuscript are strictly limited
to those directly related to low-level laser therapy. All studies referring to other light
sources were excluded from this study.

2. ATP Synthesis

Mitochondria are dynamic organelles that play a critical role in energetic metabolism
and intracellular signaling [6]. The process of oxidative phosphorylation leads to the
formation of high-energy ATP (adenosine triphosphate). When energy is consumed in
metabolic processes, it converts to either adenosine diphosphate (ADP) or adenosine
monophosphate (AMP). ATP synthesis in cells occurs primarily in mitochondria, which
transport high-energy electrons from substrates through a series of protein complexes
called the electron transfer chain (ETC). One of the most important proteins in this pathway
is cytochrome c—a hemoprotein that acts as an electron transporter in the respiratory
chain. It is capable of oxidation and reduction reactions; however, it does not directly bind
oxygen [7]. It transfers electrons between Complexes III and IV. In addition, it also plays an
important role in apoptosis [8].
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Low-level laser therapy irradiation of cell cultures has been shown to result in an
immediate and long-lasting increase in ATP production [9] and in the upregulation of mito-
chondrial function with a therapeutic window for wavelengths from 650 nm to 1200 nm [10].
This effect is closely related to the influence of laser irradiation on the aforementioned
mitochondrial cytochrome c oxidase (Cox) [11]. The stimulated ATP synthesis is caused
by the increased activity of Cox. Cox is a phosphorylated enzyme controlled mainly by
allosteric ATP inhibition, depending on the ATP/ADP ratio. However, there is another,
non-“classical” control pathway via increased mitochondrial membrane potential (∆Ψm),
and the production [12] of ROS and LLLT has a major impact on this control pathway [8]. It
is postulated that the increased ATP synthesis after laser irradiation is directly involved in
biological effects, including: improvement in the function and recovery of rat hearts stored
in the cold [13], increase in the resistance of muscles to fatigue during intense physical
exercise [14,15], healing of burn wounds [16], improvement in depressive behaviors [17], im-
provement in tissue regeneration and collagen synthesis [18], anti-inflammatory effects [19],
and many others. It is noteworthy that the biologically beneficial effect of increased ATP
synthesis after LLLT irradiation depends not only on the intracellular ATP amount but is
also associated with increased amounts of extracellular ATP [20]. Evidence suggests that
the effect of increased ATP synthesis is closely related to the irradiation parameters and that
an inappropriate choice of laser light properties may trigger the opposite effect [21]. This
biphasic response follows the “Arndt–Schulz law” and was demonstrated in our previous
study [22].

3. Retrograde Mitochondrial Signaling

Because of the paramount role of the nucleus compared to other organelles, including
mitochondria, the mechanisms of anterograde regulation and communication have been
well studied and described for decades. However, retrograde regulatory mechanisms con-
stitute the subject of more recent, intensive studies. In this reverse information transmission
pathway, changes in the functional state of the organelle affect cell activity via changes
in gene expression. Retrograde regulation affects various cellular activities, including the
processes of growth and development, aging, the maintenance of homeostasis, and the
control of appropriate metabolic processes [23]. Mitochondrial retrograde signaling is
initially defined by the change in mitochondrial membrane potential (∆Ψm), and later,
other changes occur—particularly in other secondary elements of mitochondrial retrograde
signaling (ROS, pH, nitric oxide—NO) [24]. The increase in the mitochondrial membrane
potential (∆Ψm) after LLLT is among the best-demonstrated influences of laser light on cell
function. This effect is also observed due to other mentioned mitochondrial retrograde sig-
naling mechanisms such as ROS, pH, and NO [6]. It has been proven that this mechanism
is responsible for the pro-proliferative effect of LLLT. Low-level laser therapy causes the
phosphorylation of tyrosine kinase receptors (TPKR) due to the abovementioned changes in
retrograde mitochondrial signaling, a stimulatory effect on the MAPK/ERK kinase signal-
ing pathway, the activity of which leads to increased cell proliferation [25]. LLLT stimulates
proliferation not only via this signaling pathway but also by retrograde mitochondrial
signaling. Increased membrane potential is involved in the regulation of melanoma cell
proliferation induced by ∆Ψm/ATP/cAMP/JNK/AP-1 [26]. ROSs are one of the elements
of mitochondrial retrograde signaling that directly affect proliferation. There is no doubt
that the production of ROS is stimulated by LLLT and that they act as important secondary
messengers regulating the activity of various protein kinases. The Src kinases are a known
target of ROS [27] and play a critical role in regulating fundamental cellular processes,
including cell proliferation, migration, and commitment. LLLT has been shown to induce
bio-stimulatory effects by activating the Src tyrosine kinase by increasing the ROS level [28].
The production of ROS triggered by LLLT also leads to an activation of the transcription
factor nuclear factor kappa B (NF-kB) [29], which modulates the expression of target genes
involved in cell growth, survival, and death. An example of a prolonged cell growth
effect could be observed in the chondrocyte population [30], which may be associated with
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accelerated bone healing after LLLT. Changes in cell signaling pathways and their clinical
impact are presented in Figure 3.
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4. Nitric Oxide

Nitric oxide (NO) and its role as a cellular transmitter has been the subject of numerous
studies [31]. It has been shown to promote angiogenesis [32], inextricably linked with tissue
and cell growth. Nitric oxide modulates inflammatory processes and the immune response
of cells. This effect is achieved through multiple mechanisms which affect cell signaling
systems such as cGMP and G-protein, but also the cAMP, JAK/STAT, or MAPK-dependent
signal transduction pathways. NO may also modulate transcription factors’ activity and
the expression of other mediators of inflammation [33,34]. Nitric oxide is known to have a
twofold nature regarding a tumor’s biology and might simultaneously have pro-oncogenic
and anticancer properties. The multidirectional nature of this signal molecule under
different conditions can be associated with the effect of time and concentration which affects
different phenotypes’ expression [35]. There is no doubt that low-energy laser irradiation
increases the production of NO in the in vitro models [36], which is also observed in the
in vivo experimental models [37,38], including in humans [39]. The exact mechanism of this
phenomenon has not been fully understood. However, it is suggested that several different
processes are involved. As previously mentioned, LLLT has a strong activating influence
on the mitochondrial respiration chain, and, through the cytochrome C oxidase, LLLT
increases the production of NO. The molecular basis of this phenomenon is founded on
competition between O2 and NO for the active center in the enzymes of the mitochondrial
respiratory chain [40]. LLLT, by stimulating the activity of the cytochrome C oxidase
complex, increases the release of NO from the active sites of the enzyme. This phenomenon,
occurring after laser irradiation, is referred to as the “NO hypothesis” [41]. This is not the
only pathway by which LLLT increases NO production. Another potential mechanism
is the influence of low-level laser therapy on the induction, expression, and activation of
nitric oxide synthesis. The literature suggests that activation may be contributed by the
kinase pathway PI3K/eNOS [42]. However, it seems that the mechanism responsible for
increased NO synthesis under the influence of LLLT is far more complicated. Clinical
trials carried out in human models showed that intravenous LLLT significantly decreases
the expression of arginase and EGFR. The downregulation of arginase and the increase
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in the metabolism of L-arginine by NOS, which induces NO production, may be one
of the mechanisms of the vasodilatation and acceleration of wound healing that occurs
after laser therapy [43]. On the other hand, Lindgård A. et al. [44] postulate that laser
irradiation resulted in elevated levels of NO but had no effect on the iNOS or eNOS activity.
They indicate that irradiation at 634 nm releases NO, possibly from a preformed store,
and additionally reduces the production of intracellular ROS. Confirmation of this theory
may be the study by Mittermayr R. et al [45]. The authors suggest that laser-irradiation-
induced NO release from NO–Hb complexes may be a novel concept and may explain
the abovementioned [22] reduction in the aggregative potential of human platelets after
blood irradiation.

5. Modulation of Ion Concentrations

Calcium ions are an important link in intracellular signal transductions. They are
involved in many intracellular processes, and changes in their concentration affect the
activity and viability of all cell cultures. LLLT has been shown to increase the permeability
of the cell membrane to calcium, leading to an increase in its intracellular level [46,47].
Another mechanism responsible for the increase in calcium levels after LLLT is related
to the increased release of Ca2+ from intracellular stores [48]. An experimental study by
Lavi et al. [49] suggests that, within the appropriate radiation range, the increase in the
calcium level is directly proportional to the increase in the radiant energy density, measured
in J/cm2, as well as proportional to the increase in reactive oxygen species generation. The
authors also suggest a direct relationship between the intracellular calcium concentration
and the levels of ROS. They assume that the mechanism of calcium channel activation is
directly related to the production of ROS under the influence of visible electromagnetic
radiation. What needs to be emphasized is that laser irradiation increases intracellular
calcium levels not only by a ROS-dependent mechanism. Furthermore, LLLT, via the
increased production of ATP, may activate multiple subtypes of nucleotide (purinergic)
P2 receptors, resulting in the increased level of intracellular calcium levels [50,51]. It
is noteworthy that calcium-related signaling pathways include mitochondrial calcium
signaling, calcium-sensitive adenylyl cyclase, calcium-sensitive enzymes such as protein
kinase C (PKC), calcium-dependent kinase II (CamKII), and extracellular calcium-sensitive
receptor (CaSR). Their enhanced activation leads to various changes in the basic activity
of the cells and can be summarized as increased metabolism and excitability. This effect
affects various cell cultures—myocytes [52], mast cells [53], fibroblasts [54], or reproductive
cells [46]. Low-level laser therapy has an impact on the local concentration of sodium and
potassium ions. Laser irradiation in a dose-dependent manner alters the ATPase activity
of the membrane ion pumps. Depending on the radiation parameters used, an increase
or decrease in the Na(+), K(+) ATPase activity is observed [55]. Even though the exact
mechanism of this phenomenon has not been fully understood, one study suggests that it
may be responsible for the analgesic effect of LLLT [56]. Figure 4 shows the basic changes
in ion concentration triggered by LLLT.
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6. Growth Factor Release

Low-level laser therapy affects the activity of several growth factors. This molecular
effect is widely used in the clinical application of LLLT. Figure 5 shows basic post-LLLT
changes in growth factor activity.

6.1. Transforming Growth Factor-Beta

Transforming growth factor-beta (TGF-β) is not a single-molecule cytokine but rather
a multipotential group of factors consisting of multiple isozymes. Its activation leads to in-
creased activity of a specific TGF-β-related kinase, which activates a signaling cascade that,
in the end, causes changes in regulatory protein levels. TGF-β also affects the transcription
of several target genes that play a role in the differentiation, chemotaxis, proliferation, and
activation of many immune cells [57]. This cytokine plays an important role in collagen
production by inducing the expression of extracellular matrix components and inhibiting
their degradation by inhibiting matrix metalloproteinases (MMPs) [58]. A large body of
data suggests that LLLT accelerates bone healing due to the increased proliferation of
osteoblasts [59,60]. Enhanced regeneration of connective tissue following laser irradiation
is also associated with increased collagen synthesis through activation of the TGF-β/SMAD
pathway [61].
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Additionally, LLLT via the TGF-β signaling pathway can suppress the immune re-
sponse. These properties of laser irradiation have already been utilized as a part of ther-
apy for chronic kidney disease [62], tendon injury [63], hypothyroidism [64], scars, and
keloids [65]. On the other hand, we have recently shown that the intravascular use of LLLT
decreases TGF-β1 and FGF-2 levels in patients undergoing coronary intervention, which
may reduce the neointima formation [66].

6.2. Vascular Endothelial Growth Factor (VEGF)

Vascular endothelial growth factor (VEGF) is a protein that plays a critical role in
angiogenesis. It initiates cell migration along with the initial invasion of endothelial cells
and the formation of the vascular lumen. Additionally, it promotes the junction process be-
tween the new vessel segments and within the existing old ones [67]. VEGF and its activity
are directly involved in the pathogenesis of the recovery process from many diseases, such
as traumatic injuries to the central nervous system, bone and muscle injuries, rheumatoid
arthritis, age-related macular degeneration (AMD), diabetic retinopathy, psoriasis, hair loss,
and the whole spectrum of cardiovascular disease [68,69]. There is convincing data on the
increased local activity of VEGF after LLLT, which translates into the process of healing
and regeneration [70,71]. This effect is probably not permanent and depends on radiation
parameters and exposure [72]. Although the side effects after LLLT are hardly observable,
still, the safety concerns are not unfounded. Increased activity of VEGF plays an important
role in the etiopathogenesis of many tumors, and anti-VEGF therapy is well established
in routine clinical practice in oncology or ophthalmology [73]. Increased proliferative
potential of the various cells after courses of LLLT via the VEGF pathways implies the
necessity of future research, particularly investigating the impact of LLLT on tumor biology.
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6.3. Hepatocyte Growth Factor (HGF)

Hepatocyte growth factor (HGF) is a pleiotropic cytokine consisting of an α-chain and
a β-chain. The biological response is triggered by the Met receptor, which affects signaling
molecules such as PI3K and MAPK proteins [74]. These proteins have a wide range of
activities that affect cell proliferation, mortality, morphogenesis, and the inflammatory
process, and they influence apoptosis [75,76]. Originally, HGF was characterized as a
mitogenic protein associated with hepatocytes, but we now know that its role extends to
many other cells. Its multipotent action leads to many therapeutic applications in various
disease models, such as liver cirrhosis, cholestasis, peptic ulcers, acute kidney injury,
chronic kidney disease, coronary artery disease and myocardial infarction, emphysema,
cerebral ischemia, and skeletal muscle and skin injury [77,78]. LLLT has been shown to
enhance the synthesis of HGF and may thus be a supportive therapeutic strategy for the
listed diseases [79,80].

6.4. Basic Fibroblast Growth Factor (bFGF)

The basic fibroblast growth factor (bFGF) is responsible for cell growth and sur-
vival [81]. It is involved in embryonic development, morphogenesis, tissue repair, tumor
growth, and invasion. It is postulated to play a crucial role in wound healing—it acts as a
chemoattractant for endothelial cells and fibroblasts [82]. This protein is also involved in
granulation tissue formation and re-epithelialization, as well as angiogenesis [83,84]. Due
to the multiple roles of bFGF, it plays an important role in the development of numerous
diseases, including Paget’s disease [85], Alzheimer’s disease [86], malignancies and pre-
cancerous lesions [87], nerve injury [88], and Crohn’s disease [89]. There are many studies
suggesting that fibroblast growth factor synthesis is more intense after irradiation of a
broad spectrum of wavelengths than after low-level laser therapy [90]. On the other hand,
some convincing data suggest an opposite effect [66,91], which most likely depends on
many factors, and more studies are required to clarify this issue. A similar dual-response
effect after irradiation occurs with insulin-like growth factor I [92,93].

7. Activation of Transcription Factors

Laser irradiation also affects cell biology by modulating transcription factors. One
of the best-known transcription factors, whose activity is changed by LLLT is nuclear
factor-kappa B (NFkB). NFkB regulates many cellular functions (migration, proliferation,
inflammatory and stress-induced responses). This protein complex remains in a non-active
state, and under the influence of stimulating factors, it turns into the active state [94].
This change occurs without any additional protein synthesis, allowing classification in the
“rapid-acting” primary transcription factors category. There are many well-known inducers
of NFkB activation, such as tumor necrosis factor-alpha, ROS, bacterial lipopolysaccharides,
interleukins, and low-level laser therapy [29,95]. In the case of LLLT stimulation, we
observe a typical reaction consistent with the Arndt–Schulz law. The appropriate dose of
radiation leads to the activation of the enzyme and increases the proliferative and anti-
inflammatory potential [96,97]. However, exceeding the radiation dose led to increased
oxidative stress and an over-abundant activation of NF-κB [98].

Another transcription factor activity that is modified under the impact of low-energy
laser irradiation is the hypoxia-induced factor (HIF). HIF is a small protein associated
with a cell’s response to hypoxia. In hypoxic conditions, HIF activation led to the upreg-
ulation of several genes, such as glycolysis enzymes, which allow ATP synthesis in an
oxygen-independent manner. Probably, the therapeutic effect of LLLT is partly achieved by
changing the level of HIFs. Furthermore, Gupta et al. [99] suggest that modification of HIF
activity (upregulation) under laser light might be involved in enhancing the healing of burn
wounds. The same effect of increased activity of HIFs was observed by Cury et al. [100].
They prove that LLLT can promote angiogenesis in ischemic skin flaps. What is interesting
is that LLLT does not only increase the activity of HIFs. There is evidence that it can alle-
viate neuropathic pain and promote functional recovery in rats with chronic constriction
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injury by decreasing the activity of HIFs [101]. It is noteworthy that LLLT may also have a
dark side—some data suggest that LLLT can promote aggressive proliferation in cancer
cells by activating the Akt/Hypoxia Inducible Factor-1α pathway [102].

8. Influence on Apoptosis

The mechanism of action of low-level laser therapy is not only related to enhancing
cellular metabolism and proliferation, but after application at higher doses, it also shows
the ability to induce apoptosis. The exact mechanism of this phenomenon has not been fully
understood; however, it might be indirectly related to the production of reactive oxygen
species (ROS). On the other hand, laser irradiation activates the 3β glycogen synthase
kinase (GSK3β), which triggers apoptosis [103]. Interestingly, there is another ROS-related
mechanism promoting apoptosis—by the Akt/GSK3β pathway [104]. It is noteworthy
that LLLT irradiation can induce both proliferation (low energy density—0.8 J/cm2) and
apoptosis (higher energy density—60 J/cm2) by changing the activity of particular kinases,
such as C-kinase [105]. This fact points at the quantitative rather than qualitative nature
of promotion of proliferation/apoptosis process after LLLT irradiation. Probably, the
direct “effector” through which laser-induced apoptosis is induced is the caspase 3 [106],
which is a key mediator of programmed cell death and is involved in the breakdown of
many of its essential proteins [107]. Even though the mechanism of apoptosis induced
by low-level laser therapy is not fully understood, the majority of authors agree that the
differentiating factor between pro-proliferative and apoptotic effects is the energy provided
by the laser. Interestingly, this process is continuous and mutually permeates—the anti-
apoptotic pathways are activated even during irradiation with high energy density. A
good representation of this situation is the impact of laser irradiation on the ROS/Src/Stat3
pathway, the activation of which inhibits apoptosis [103]. It should be emphasized that
in the case of various cell types, the borderline at which there occurs an advantage of
apoptotic processes over the pro-proliferative is variable. The specific cell line type, in
combination with the recently described [108] effective use of fractional descriptions of
energy transfer as a tool dedicated to the modification of cell biological functions, can open
a completely new field of precise LLLT selected for specific medical indications.

9. Conclusions

Low-level laser therapy has nowadays become an important part of the therapeutic
process in everyday clinical practice. Despite numerous studies conducted so far, the
full impact of LLLT on cell life processes has not been fully understood. This paper has
presented the current state of knowledge concerning the mechanisms of action of LLLT
on cells. Even though the available data suggest a good safety profile for low-level laser
therapy, some concerns regarding the impact on the biology of tumors are actually due to
the increased proliferation potential following LLLT. It seems that a complete understanding
of the molecular processes occurring within the cell after laser irradiation may result in
introducing numerous novel clinical applications for LLLT, after appropriately addressing
the safety concerns.
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intravascular low-level laser therapy during coronary intervention on selected growth factors levels. Photomed. Laser Surg. 2014,
32, 582–587. [CrossRef]
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