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Abstract: We present the fabrication and characterization of elastomeric optical waveguides, to be
used for the manufacture of a conformable, water-resistant, and cost-effective pressure sensor that is
amenable to the development of smart wearable health monitoring devices. To achieve this goal, high-
sensitivity polydimethylsiloxane waveguides with a rectangular cross-section were fabricated. A new
up-doping procedure, to tailor the refractive index of the ensuing waveguides, was experimentally
developed using benzophenone additives. With this method we demonstrated a high refractive index
change (up to +0.05) as a linear function of the benzophenone doping concentration. Propagation
losses of about 0.37 dB/cm in the visible range and a high sensitivity to transverse compression
of 0.10%/dB optical power loss were measured. It was also shown that one can further control
the refractive index of the waveguide core and cladding regions through proper selection of the
polydimethylsiloxane base to curing agent mixing ratio.

Keywords: pressure sensor; waveguide; polydimethylsiloxane; benzophenone; refractive index

1. Introduction

In recent years there has been great interest in developing pressure sensors for biomed-
ical applications, such as continuous health monitoring, preventive medicine, and athletic
monitoring [1–8]. Nowadays, many solutions are based on electronic sensors that are
incorporated into mattresses, clothing, shoes, and helmets, for example [9–15]. However,
many such electronics sensors rely on specialized components and materials, which makes
them expensive and less accessible to the public. Another obstacle is that these sensors
are somewhat fragile, which limits their ability to withstand regular washing cycles and
clinical use. In addition, it remains a challenge to fabricate biomedical sensors that can be
stretched and are flexible enough so as to conform to the human body.

Alternately, optical detection technologies have been explored. Sensors based on
silica glass optical fibers or with plastic optical fibers that can monitor pressure and shear
changes have emerged [16–21]. Starting in the 1980s, elastomer waveguides have been
used for optical sensing applications, such as strain sensing, position sensing, tactile
sensing, acoustic, and gas sensing [22–26]; albeit with limited commercial success. Owing
to new manufacturing techniques developed in the 1990s, such as soft lithography [27]
and the greater availability of high-quality elastomer compounds, the use of elastomeric
waveguides in the development of innovative optical biomedical sensors has experienced a
resurgence of interest [19,28–37].

Optical waveguide sensors manufactured using stretchable polymers offer notable
advantages. Optical waveguides can reliably transmit light in the visible-near-infrared
spectrum over several meters, with low attenuation (<1 dB/m). Optical sensors based
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on such waveguides are largely immune to electromagnetic noise and interference from
other devices, are amenable to multiplexing configurations, and can be coiled or bent to
conform to a desired shape. Moreover, polymers are generally cheap and can be formed
into waveguides in different ways: extrusion, casting, drawing, and 3D printing. It is
also possible to devise soft and stretchable polymeric waveguides that are suitable for
dynamic biomechanical applications, such as those required in smart wearable biomedical
sensors and in athletic monitoring. Polymeric materials offer an innumerable diversity
of chemical compositions, and thermo-mechanical and optical properties. Polydimethyl-
siloxane (PDMS), in particular, can sustain very large and reversible elastic deformations,
while offering good optical transparency, to produce flexible and stretchable optical waveg-
uides [30,37–42]. Moreover, PDMS is hydrophobic and commonly used in medical-grade
devices and instruments, because it is a very chemically, physically, and thermally stable, as
well as biocompatible, material and one that is suitable for biomedical applications [38–41].

In order to create PDMS optical waveguides, it is necessary to have a refractive in-
dex contrast between the core (where light is confined and guided) and the surrounding
cladding region. One approach is to make elastomeric materials photosensitive by modi-
fying their refractive index through the incorporation of a photosensitive dopant in their
polymer matrix, such as benzophenone (BPh) and its derivatives [42]. The latter approach
often requires the use of harsh solvents (e.g., chloroform), in order to ensure the uniform
distribution of dopants within the polymer matrix.

In this paper, we report a new experimental up-doping procedure for the fabrication
of flexible, stretchable, water-resistant, and high sensitivity waveguides that are promising
for biomedical pressure sensing applications. We note that a precision on the order of a
few mmHg is targeted, to perform continuous personal biomedical pressure monitoring
applications [18]. We used BPh (up to 2.5% by weight) for doping PDMS, without using
any solvent during its processing. The control of the BPh concentration allowed tailoring
the refractive index of the ensuing PDMS mixture, and therefore to precisely design optical
PDMS waveguides with a core/clad structure. Our study demonstrates a very high
refractive index change that is on the order of 10 times larger than the previously published
results obtained with a harsh solvent [42]. We also demonstrate the ability to control the
mechanical stiffness of the waveguide’s samples via the mixing ratio of PDMS to curing
agent. Subsequently, flexible core/cladding waveguides with rectangular cross-section
were fabricated through a casting and molding method. The fabrication process is simple,
solvent-free, cost-effective, and results in highly flexible and stretchable optical waveguides.
The transverse compression tests show very sensitive optical waveguides sensors below the
capillary pressure estimated at 32 mmHg [16,18], which indicates the potential to develop
practical optical pressure sensors tailored to biomedical applications.

2. Materials and Methods
2.1. Refractive Index Measurement

Our samples were made with polydimethylsiloxane (PDMS Sylgard 184, Dow Corning)
and a new up-doping approach that incorporated up to 2.5% by weight of BPh (Sigma-
Aldrich, MA, USA) into the PDMS samples. Above 2.5% doping we observed undesirable
BPh crystallization clusters inside the PDMS samples. For the different concentrations of
BPh incorporated into the PDMS (with base to curing agent mix ratios of 10:1 and 20:1),
we measured the refractive indices of pure PDMS and PDMS-benzophenone (PDMS-BPh)
samples using a custom optical refractometry setup [43–45]. The principle consists in
determining the transverse displacement (∆) of a laser beam passing through a quartz
cuvette filled with a given PDMS-BPh sample. The PDMS-BPh’s refractive index (n) was
then related to the measured beam displacement (∆) with the formula:

n = n0 sin θ

√√√√1 +

[
cos θ

sin θ − ∆
d

]2

(1)
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where θ is the angle of incidence of the He-Ne laser beam (632.8 nm wavelength), nair = 1 is
the refractive index of the external environment (air), and d = 1 cm is the internal dimension
of the quartz cuvette. For the measurements of the refractive indices, first we calibrated the
angle of incidence (θ) of the cuvette relative to the incident laser beam, in order to precisely
set the zero reference angle [45]. Then the empty cuvette placed in the cuvette holder was
rotated to a θ = 10◦ angle and the beam was blocked completely with the blade of the
Vernier. While gradually moving the blade until the beam was completely unblocked, we
recorded the optical power as a function of blade distance. Without changing the position
of θ, the cuvette was removed and filled halfway with the prepared liquid PDMS-BPh
sample and placed in a vacuum chamber for one hour, to eliminate all microscopic air
bubbles. After degassing, the cuvette was replaced in the cuvette holder, while taking
care not to change the angular position θ. By repeating the same procedure, we obtained
the value of the transverse beam displacement (∆) with respect to an empty cuvette (in
Equation (1)), which gave the refractive index of (doped) PDMS. The following linear
fitting model between the refractive index variation (∆n) and the BPh doping concentration
is proposed:

∆n = a
CBPh

11
√

R
(2)

where (a = 0.0263) is a best-fit coefficient, CBPh is the BPh fractional weight concentration in
wt.%, and and R denotes the mixing ratio of the PDMS sample. As an example, for a 20:1
mix ratio (of PDMS base to curing agent) we have R = 20 in this model.

For each mixture of different ratios, measurements were made on two samples. A
series of three separate measurements were performed (by resetting the incidence angle
(θ) to zero every time) for each mixture, in order to evaluate the repeatability. The results
indicated that the measured refractive index values had an accuracy of around ±0.002,
defined by the standard deviation based on three separate measurements. For the pure
PDMS, we measured an average refractive index value of n0 = 1.414 for the ratio 10:1
and n0 = 1.408 for the ratio 20:1. Regarding the doped PDMS-BPh samples, the result
demonstrated a linear trend in the refractive index variation, as a function of BPh dopant
concentration for both mixing ratios (Figure 1).
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Figure 1. Variation of the refractive index of PDMS-BPh as a function of the concentration of BPh in
wt.%. Solid lines represent the fitting model of Equation (2).

Using this solvent-free approach to PDMS fabrication, we observed a very high re-
fractive index change that was approximately ten-times greater than for PDMS samples
manufactured with a solvent [42]. In many prior demonstrations, the dissolution of the
dopant in the PDMS base was performed using toxic solvents such as xylene or chloro-
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form [42,46,47]. In this work, instead of using solvents to facilitate the complete dissolution
of the BPh dopant, we slightly heated the mixture (base and BPh) to 40 ◦C under a gentle
magnetic stirrer, before adding the curing agent.

For the remaining discussion, all PDMS samples and waveguides were fabricated
using a 20:1 weight ratio of base PDMS to curing agent, so as to obtain a material that offers
a good balance between waveguide flexibility and material rigidity.

2.2. Waveguide Fabrication

We developed millimeter-sized PDMS waveguides with a rectangular cross-section.
The core of the PDMS waveguide is doped with BPh (ncore = 1.410 for 0.1% by weight of BPh
incorporated to PDMS), while the cladding (nclad = 1.408) is pure PDMS. The waveguides
were fabricated through the casting and molding method. First, the core of the waveguide
was fabricated by dissolving the BPh agent in the PDMS base and then adding the curing
agent. After degassing, the mixture was cast in a metal mold and left to cure at 35 ◦C for six
hours. Subsequently, the waveguide’s core was demolded and then covered with a pure
PDMS cladding on all sides (Figure 2). A layer of 0.5 mm thick pure PDMS was first cast,
in order to serve as the bottom cladding layer. The manufactured core was then placed
inside a mold, so that a void 0.5 mm thick remained on the left and right sides, which were
subsequently filled with pure PDMS. After degassing and leaving to cure again at 35 ◦C
for six hours, we finally obtained the core/cladding waveguide. The dimensions of the
waveguides were chosen so as to approach the manufacturing limits of the casting and
molding setup. The rectangular metal mold used has a fixed side dimension of 2 mm, while
the other side can vary between 2 mm and 5 mm. We arbitrarily chose to set it at 3 mm, in
order to test the mold configuration.
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We report below the spectral response of the waveguide of 20 cm length with a rect-
angular cross-section (2 × 3 mm2) and without any cladding (i.e., “air-clad”), and the
core/cladding waveguide with a rectangular cross-section (3 × 4 mm2). This measure-
ment was performed with a non-polarized white light source (Ocean Optics HL-2000-HP
Tungsten Halogen Light Source) as the input optical source. We then measured the opti-
cal transmission spectrum of the waveguide with a high-resolution spectrometer (Ocean
Optics, UV-VIS-NIR, model HR4000CG). The input and output spectra were recorded
separately. The ensuing normalized transmission spectrum showed that in the red range
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(between 650 nm and 700 nm wavelength), more than 90% of the light was transmitted
(Figure 3c) through the waveguides.
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3. Characterization of Waveguides

To characterize the sensitivity of the PDMS waveguides (cross-section 2 × 3 mm2

air-clad, and cross-section 3 × 4 mm2 core/cladding) to mechanical strain, we measured
the transmitted optical power under different deformation modes, such as compression,
elongation, and bending. For the transverse compression, longitudinal elongation and
bending tests, a non-polarized white light was used as the input source, and a silicon
photodiode (Thorlabs Inc., Newton, NJ, USA, model S130C) was used to measure the total
optical power at the output of the waveguide. The dimensionless mechanical strain owing
to the longitudinal elongation (or transverse compression) of the waveguide is defined as:

ε =
|L′ − L0|

L0
(3)



Photonics 2022, 9, 557 6 of 12

where L0 is the waveguide’s initial length along z (or the initial thickness along x or
y), while L′ is the length after deformation (owing to elongation along z or transverse
compression in the x or y-direction). We performed characterization tests on the two
different waveguides manufactured: the air-clad PDMS waveguide (2 × 3 mm2 rectangular
cross-section), and the core-solid-clad PDMS waveguide (3 × 4 mm2 rectangular cross-
section). For all optical transmission measurements, the error bars shown in the figures are
related to the measurement accuracy of the silicon photodiode (±4%).

3.1. Transverse Compression

For this test, the waveguide was placed on a rigid flat support, and the white light was
coupled to the waveguide in the z-direction. With the help of an impactor with a rectangular
cross-section (4.5 mm × 10 mm), the waveguide was perturbed on the top center of its
cross-section, with the impactor fixed at the end of a digital force gauge (Figure 4).
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The results indicated that there were more compression losses (i.e. transmission
drop) along the thinner x-direction (Figure 5a,c). High sensitivity values to transverse
compression, of 0.10%/dB and 0.06%/dB optical losses, were observed along the x and y
directions, respectively, for the air-clad waveguide (Figure 5b). With the core/cladding
waveguide, the sensitivity values to transverse compression of 0.06%/dB and 0.03%/dB
optical losses were measured along the x and y directions, respectively (Figure 5d). The
latter results indicate that the cladding layer of pure PDMS acted to mitigate the optical
losses of the waveguide and, therefore, somewhat reduce its sensitivity to transverse
compression compared to its air-clad counterpart. In all tested waveguides the observed
high sensitivity allowed measuring the pressure values that are relevant to biomedical
pressure sensing (0 to 400 mmHg), as shown in Figure 6, where the blood capillary pressure
(32 mmHg) is indicated for reference. We note that, throughout the multiple tests performed
on the PDMS-BPh waveguide samples, we observed good repeatability of our optical
measurements, while the physical integrity of the samples was maintained.
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3.2. Longitudinal Elongation

To characterize the waveguide’s response to longitudinal elongation, the waveguide
was first fixed using clamps at its initial rest position and the transmission output was
measured (Figure 7a). The waveguide was then stretched in increments of 2.5 cm (and
the corresponding optical transmission measured) until the breaking point was reached,
as indicated by the red arrows in (Figure 7b). The results indicated that the air-clad
waveguide was stretchable up to 150% elongation, and the one with solid PDMS cladding
was stretchable up to 160% (Figure 6b). This test was performed with the same sample (i.e.
either the air-clad waveguide or the solid-clad PDMS waveguide) for only one cycle per
elongation point. We believe that performing a durability test with 1000 cycles or more
would also be interesting, but defer this type of measurement to a future article that will
discuss the integration of such PDMS waveguides into a fully packaged sensor solution.
We note that the prior reported tests on similar PDMS samples indicated that an elongation
of up to 200% could be achieved without permanent damage to samples for shorter time
durations (approximately 50 s) [37].
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3.3. Bending and Propagation Loss Measurements

The bending loss (γB) in dB/turn units was assessed using a 3D printed cylindrical
pyramid of varying diameters (7 mm, 10 mm, 15 mm, and 20 mm) disposed in stages. The
waveguide under test was subsequently coiled around one of the diameters of the pyramid,
with as many turns as possible (Figure 8), while making sure to not exert a longitudinal
elongation (i.e. stretching) during these tests.
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The waveguide bending loss in dB/turn was evaluated through the following formula:

γB =
10
N

log10

(
Pin
Pout

)
(4)

where N is the number of turns, and Pin and Pout denote the input and output optical
power, respectively. Since our PDMS waveguides are very flexible, they can sustain very
tight bending radii that enable to conform to arbitrary surface body shapes. Both tested
waveguides (Figure 9a) demonstrated relatively small bending losses (<1.2 dB/turn), with
the solid core/cladding waveguide exhibiting slightly higher bending loss values, owing
to its weaker optical mode confinement, due to a lower core-clad refractive index contrast.
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Figure 9. (a) Bending loss in dB/turn as a function of the radius of curvature. (b): PDMS-BPh
waveguides (0.1%BPh/wt., core: 2× 3 mm2) propagation loss measurement with the cutback method.

The propagation loss of the air-clad PDMS waveguide was evaluated via the cutback
technique, whereas the output transmitted optical power was measured through gradually
decreasing lengths of the same waveguide (after cutting one end using a sharp razor
blade). This measurement was repeated at an interval of 2 cm cut lengths of the waveguide
(Figure 9b). The slope of the linear regression indicated a loss of 0.37 dB/cm inside this
flexible PDMS waveguide, which is in close agreement with similar waveguides reported
previously [40]. We expect a comparable result for the solid core-clad PDMS waveguide.

3.4. Waveguide Thermal Stability

We performed an experimental test to evaluate the PDMS waveguide’s optical re-
sponse to changes in temperatures. In this test, the air-clad PDMS waveguide sample was
subjected at 21 ◦C and 38 ◦C and a fixed pressure of 150 mmHg, for 5 repetitions each. The
test results below (Figure 10) show that the average normalized optical transmission for
21 ◦C and 38 ◦C were, respectively, (85.9 ± 0.9)% and (85.4 ± 2)%. Hence, we measured
a very low difference (0.5%) in the average transmission between the two temperatures,
which is below the measurement error. Moreover, we believe that since our sensor uses nor-
malized optical transmission (with respect to the unperturbed case) this approach allows
us to essentially remove any temperature dependence. We believe that, similarly to the
temperature response study above, the PDMS waveguide sensor would show a negligible
optical dependence on changes in humidity, owing to the same normalization procedure.
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4. Conclusions

We demonstrated the fabrication of millimeter-sized flexible and stretchable silicone
PDMS optical waveguides using a solvent-free process. The waveguide core refractive
index was engineered through the incorporation of benzophenone (BPh) dopant and
subsequently demonstrated a high change in refractive index. We also demonstrated how
to precisely control the refractive index of the core/clad waveguides through proper tuning
of the PDMS (to curing agent) mixing ratio and BPh doping concentration, with a predictive
model. We showed that such low–loss (0.37 dB/cm) flexible waveguides can be used for
monitoring an applied pressure in a meaningful range for biomedical applications, thanks
to a high sensitivity on the order of 0.06 to 0.10%/dB optical loss. These results are another
step toward robust, compact, and flexible wearable pressure sensors based on stretchable
polymer optical waveguides.
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