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Abstract: Iodine-dense polyiodide phases are interesting materials for a number of potential uses,
including batteries and solid-state conductors. The incorporation of transition metal cations is
considered a promising way to enhance the stability, tune the properties, and influence the architecture
of polyiodides. However, several interesting metals, including Cu(II), may suffer redox processes,
which generally make them not compatible with the I2/I− redox couple. Herein L, a simple derivative
of cyclen, is proposed as a Cu(II) ligand capable of protecting the +2 oxidation state of the metal even
in the presence of polyiodides. With a step by step approach, we report the crystal structure of free
L; then we present spectrophotometric verification of Cu(II) complex stability, stoichiometry, and
formation kinetic in DMF solution, together with Cu(II) binding mode elucidation via XRD analysis
of [Cu(L)Cl]ClO4·CH3CN crystals; afterwards, the stability of the CuL complex in the presence of I−

is demonstrated in DMF solution, where the formation of a Cu:L:I− ternary complex, rather than
reduction to Cu(I), is observed; lastly, polyiodide crystals are prepared, affording the [Cu(L)I]2I3I5

crystal structure. This layered structure is highly peculiar due to its chiral arrangement, opening
further perspective for the crystal engineering of polyiodide phases.

Keywords: polyiodides; iodine; tetraaza macrocycles; Cu(II) complexes; ternary complexes

1. Introduction

Polyiodide chemistry is a long-lasting research area. In terms of scientific interest, it
has been tied throughout history with inorganic, theoretical, and supramolecular research,
while it is well known that iodine and polyiodides were used in applications soon after
iodine discovery (iodimetry, iodometry, Lugol solution, etc.) [1,2].

Contemporary application-oriented research on polyiodides focuses on batteries, [3,4]
solar cells [5,6], solid state conductors [7,8], and even high-energy, iodine-dispersing
agents [9].

Our contribution to the field has been mostly directed towards the supramolecular
chemistry of polyiodides, aimed at obtaining ordered solids with high iodide density
organized in extended networks. We demonstrated that, with suitable organic ligands, it is
possible to obtain crystal phase architectures featuring alternating planes of ligands and
polyiodides [10], high density polyiodide-based clathrates self-assembled around suitable
ligands [11,12], and even complex architectures such as solid-state pseudopolyrotaxanes
with a [3]-catenane axle [13]. The involvement of metal centers in polyiodide stabilization
could also be of high interest, both to exploit metal cations as structural elements and to,
potentially, improve their thermal stability and tune the electronic properties of the mate-
rial. Accordingly, we recently proposed Cu(II) complexes of tetraazacyclophanes [14,15],
showing how the choice of substituents on the macrocycle could shift packing forces from
an H-bond-based arrangement, featuring charge-dense, noninteracting polyiodides, to an
I· · · I dominated crystal featuring polyiodide chains periodically decorated with Cu(II)
complexes.
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It is well known that Cu(II) is prone to reduction to Cu(I) in the presence of I− and that
metal ion redox potentials can be tuned by complexation. In the case of the abovementioned
pyridinophanes, no formation of CuI has been detected. In view of further developments,
we decided to check whether simpler, i.e., alkyl, tetraazamacrocycles could also be used to
stabilize Cu(II) in the presence of polyiodides. In this study a simple derivative of cyclen has
been employed (Scheme 1). The ligand bears two tosylated ethylenamino arms, which were
added in view of the ability of tosyl to stabilize polyiodides [16] and other polyhalides [17].
The possibility to employ simpler, readily available (potentially commercial) ligands to
prepare metal-coordinated polyiodides could hasten the development of this chemistry.
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Scheme 1. Synthesis of L from parent ligand 1.

2. Results and Discussion
2.1. Crystal Structure of L

The free ligand adopts a centrosymmetric conformation featuring the two tosyl rings
on opposite sides with respect to the macrocycle plane (Figure 1a). Common amide
NH–sulfone O=S intermolecular H bonding, a usual feature for sulfonamides (moreover
observed in other studies dealing with polyiodide stabilization using similar moieties) [16]
are entirely absent here. The reason, and the main driving force for the observed ligand
folding, lies in strong N1-N3 intramolecular hydrogen bonding (N1· · ·N3 3.062(3) Å). The
main intermolecular interaction is a mutual CHortho· · ·O=S-CHortho· · ·O=S involving O2
and C6 with their symmetry-related neighbors (O2· · ·C6 3.281(3) Å) (Figure 1c). Further
CH· · ·O contacts, namely C1· · ·O2 (3.544(5) Å) are also present. Tosyl groups also engage
in π-π stacking interactions, being perfectly parallel with their neighbors (as required by
crystal symmetry) with a C6 (tosyl)-C6 (tosyl) interplanar distance of 3.440 Å (Figure 1b).
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Figure 1. Overview of main interactions as found in L crystal structure; (a) intermolecular hydrogen
bond; (b) π-π stacking and methyl-sulfone contacts; (c) double S=O2· · ·H-C6 contact. All distances
in Å.

2.2. Cu(II) Complexes: Solution and Solid State

The parent ligand 1 is water soluble and forms strong complexes of 1:1 stoichiom-
etry with Cu(II). The addition of Cu(II) to 1 to afford [Cu(1)]2+ happens in water with
log β = 17.89(3) (T = 298 K, I = 0.5 M KNO3) [18]. Accordingly, strong complexes of 1:1
stoichiometry are also expected for L.

However, due to the presence of the tosyl groups, L is only sparingly soluble in water,
with the exception of very acidic pH regions (<2.5) and cannot be studied potentiometrically.
Although it is expected that Cu(II) binding can be followed by its visible d-d transition,
the addition of Cu(II) to acidic ligand solution produces little to no color change, implying
excessive proton competition at this pH and/or kinetic sluggishness.

Spectrophotometric studies were therefore performed in DMF, an aprotic solvent
which allows L to easily dissolve in adequate quantities (mM concentration range).

By adding Cu(II) to a DMF solution of L, the appearance of a blue/cyan complex
is observed immediately. However, as kinetic issues are commonplace with cyclen and
its derivatives, a kinetic experiment aimed at establishing a reliable equilibrium time for
complex formations under experimental conditions, was performed.

Indeed, despite the complexation kinetic being much faster in DMF (Figure 2), spectral
changes over time are observed. Namely, for a 1:1 L:Cu(II) 1.8 mM DMF solution, 1 h is
found as an acceptable timeframe to properly achieve equilibrium.



Inorganics 2022, 10, 12 4 of 15
Inorganics 2021, 9, x FOR PEER REVIEW 4 of 15 
 

 

 

Figure 2. Top: temporal evolution of the absorption spectra of a DMF solution of L ([L] = 1.8 mM) 

after addition of 1 eq of Cu(II). Cu(II) only 1.8 mM in DMF. Bottom: evolution of the 688 nm spectral 

maximum over time showing that invariant spectrum is achieved within 1 h. 

According to these findings, in order to check the complex stoichiometry, 11 solu-

tions spanning 0–1.8 eqs of added Cu(II) to a DMF solution of the ligand ([L] = 1.8 mM) 

were prepared and left to equilibrate overnight. 

Results are shown in Figure 3. 

Figure 2. Top: temporal evolution of the absorption spectra of a DMF solution of L ([L] = 1.8 mM)
after addition of 1 eq of Cu(II). Cu(II) only 1.8 mM in DMF. Bottom: evolution of the 688 nm spectral
maximum over time showing that invariant spectrum is achieved within 1 h.

According to these findings, in order to check the complex stoichiometry, 11 solutions
spanning 0–1.8 eqs of added Cu(II) to a DMF solution of the ligand ([L] = 1.8 mM) were
prepared and left to equilibrate overnight.

Results are shown in Figure 3.
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Figure 3. Left: titration of L ([L] = 1.8 mM) with Cu(II) equivalents. Right: behaviors of the absorption
maximum. Complex band raises steadily until 1 eq of Cu(II) is added, then spectral changes are
associated with free Cu(II) in solution (green-dashed spectrum: Cu(II) 1.8 mM in DMF).

While the ligand does not exhibit any band in the VIS region, the appearance of a VIS
band is observed upon the addition of Cu(II) with a maximum at 688 nm. The band is
relatively broad, although cyclen and its derivatives are known for cis/trans bis(solvent)
equilibria among possible octahedral complexes. The band raises steadily until exactly
one equivalent of Cu(II) has been added. Afterwards, further addition of Cu(II) affects the
spectrum only slightly and the band profile is observed to contain the free Cu(II) component.
This establishes that a strong (i.e., quantitatively formed under experimental conditions)
complexe of 1:1 stoichiometry is unambiguously formed.

The Cu:L complex has been isolated in the solid state from acetonitrile solvent (which
better allows for a slow solvent evaporation technique in comparison to DMF), crystallizing
as [Cu(L)Cl]ClO4·CH3CN.

Cu(II) is found in a square pyramidal environment constituted by the 4 N donors
of the macrocycle, defining the basal plane, and the chloride anion in the apical position
(Figure 4 top). Despite the coordination environment not at all being distorted towards the
trigonal bipyramid geometry (τ = 1), all the Cu· · ·N distances are found to be different
(in the 2.041(4)–2.081(4) Å range, Table 1). Asymmetry of all chelate rings was previously
reported also for the parent ligand 1 in its Cu(II) and Ni(II) complexes [18].

Stacking interactions among tosyl moieties are absent in this crystal structure, which
seems to be governed by H-bonding/CH· · · anion contacts. For instance, sulfonamide
N6H and the C23Hortho form short contacts with coordinated Cl2 (3.319(4) and 3.604(5)
Å, respectively), Figure 5 bottom. Cl2 is involved in a third stabilizing contact with HC15
(3.486(6) Å, Figure S1). The second sulfonamide group is engaged in H-bonding to the
ClO4

− counterion (N1· · ·O13 2.976(6) Å), which is found in a pocket, defined by the backs
of the macrocycles, where it establishes multiple CH· · ·O contacts (Figure S1).
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Figure 4. Views of the [Cu(L)Cl]ClO4·CH3CN crystal structure. Top: asymmetric unit content and
Cu(II) coordination environment. Bottom: head to tail dipolar interactions linking adjacent complexes
through Cu-coordinated Cl− and sulfonamide H-bond donors.

Table 1. Bond distances and angles defining the Cu(II) coordination environment in the crystal
structure of [Cu(L)Cl]ClO4·CH3CN.

Bond Distances (Å) Bond Angles (◦)

Cu1-N2 2.071(4) Cl2 -Cu1 -N4 105.3(1)

Cu1-N3 2.047(4) Cl2 -Cu1 -N2 106.7(1)

Cu1-N4 2.081(4) Cl2 -Cu1 -N5 103.6(1)

Cu1-N5 2.041(4) Cl2 -Cu1 -N3 106.5(1)

Cu1-Cl2 2.372(1) N4 -Cu1 -N2 148.0(2)

N4 -Cu1 -N5 86.1(2)

N4 -Cu1 -N3 86.1(2)

N2 -Cu1 -N5 86.2(2)

N2 -Cu1 -N3 85.2(2)

N5 -Cu1 -N3 149.8(2)
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2.3. Solution Stability of [Cu(L)]2+ Complex in the Presence of Iodide

Iodide is known to react with Cu(II) according to the redox equilibrium:

2Cu2+ + 4I− → 2CuI + I2,

which generally happens with the involvement of an I-CuII-I intermediate.
When active, this process is easily detected as discoloration of Cu(II) solutions is

observed, often accompanied (in most solvents) by CuI precipitation.
Stability of the [Cu(L)]2+ complex in the presence of I− was checked in the DMF

solution by adding equivalents of I− to the preformed 1:1 Cu:L complex. L and Cu
concentrations were: [L] = 1.8 mM, [Cu] = 1.44 mM. The complex stability was assessed in
a 0.8:1 M:L ratio, and not 1:1, to ensure no potentially interfering free Cu(II) exists in the
medium (complexation appears quantitative, as detailed above).

Instead of discoloration, a diagnostic of Cu(I) formation, the intensity of the absorption
band was observed to increase and its maximum to shift towards higher wavelengths (from
688 to 730 nm), with the tail of the UV band (λ < 550 nm) also deeply affected, as shown
in Figure 5. The emergence of an isobestic point and characteristic sigmoidal profiles of
spectral changes upon addition of I− equivalents (Figure 5 inset) demonstrate that an
equilibrium is at work. The observed reaction is [Cu(L)]2+ + I− = [Cu(L)I]+, where the
entering iodide is supposed to occupy the axial position on Cu(II) as observed for Cl−

in the solid state. An apparent binding constant (I varies during the titration) for this
reaction could be calculated by fitting experimental data with the Hypspec [19] software. A
logKeff = 4.03(1) was determined.
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Figure 5. Spectral variation caused by addition of I− equivalents to a 1.44 mM solution of [Cu(L)]2+.
Inset: sigmoidal profiles of spectral changes upon I− addition at selected wavelengths (730 nm,
orange, and 420 nm, green).

Data indicates not only that [Cu(L)]2+ is redox stable in the presence of I−, but also
that it readily binds to I−, giving a [Cu(L)I]+ tecton of appreciable stability. This is in line
with what was observed before with pyridine-bearing azacyclophanes [14,15] and, hence,
allows for the usage of [Cu(L)I]+ as a reliable building block for more complex polyiodides.
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2.4. Crystal Structure of [Cu(L)I]2I3I5

The crystal structure is constituted by two nonequivalent [Cu(L)I]+ complexes with
I3
− and I5

− counterions: Figure 6 displays a view of the asymmetric unit content.
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Figure 6. Asymmetric unit of the crystal structure of [Cu(L)I]2I3I5. Symmetry-related atoms completing
dangling H-bonds (black) are also shown, hinting at the resulting network of H-bonded sulfonamides.

Both Cu(II) centers are found in coordination environments almost completely de-
scribed as square pyramids (Cu1 τ = 0.03, Cu2 τ = 0.02), each defined by the 4 N donors of
a macrocycle plus an apical iodide ligand. The coordination environment closely resembles
the one found in the [Cu(L)Cl]ClO4·CH3CN crystal structure (cf. Table 2 for relevant bond
lengths). This is indeed the [Cu(L)I]+ synthon anticipated by solution studies.

Table 2. Bond distances and angles defining the Cu(II) coordination environment in the crystal
structure of [Cu(L)I]2I3I5.

Bond Distances (Å) Bond Angles (◦)

Cu1-N2 2.08(1) I1-Cu1-N2 107.7(3) I2-Cu2-N8 107.3(3)

Cu1-N3 2.06(1) I1-Cu1-N3 108.4(3) I2-Cu2-N9 103.7(4)

Cu1-N4 2.13(1) I1-Cu1-N4 106.4(3) I2-Cu2-N10 106.9(3)

Cu1-N5 2.07(1) I1-Cu1-N5 103.6(4) I2-Cu2-N11 109.3(4)

Cu1-I1 2.670(2) N2-Cu1-N3 86.3(5) N8-Cu2-N9 85.8(5)

Cu2-N8 2.13(1) N2-Cu1-N4 145.9(5) N8-Cu2-N10 145.8(5)

Cu2-N9 2.05(1) N2-Cu1-N5 84.6(5) N8-Cu2-N11 85.5(5)

Cu2-N10 2.12(1) N3-Cu1-N4 84.8(4) N9-Cu2-N10 85.1(5)

Cu2-N11 2.08(1) N3-Cu1-N5 147.9(5) N9-Cu2-N11 147.0(5)

Cu2-I2 2.662(2) N4-Cu1-N5 85.6(5) N10-Cu2-N11 84.4(5)
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Interestingly, despite this compound crystallizing in a chiral space group, the two
nonequivalent complexes appear to be enantiomorphic, their overlaid conformations re-
lated by a pseudo mirror plane (Figure 7a). They repeat perpendicularly to the c-axis,
defining the planar array shown in Figure 7b, the strongest contacts being NH· · ·O=S
and CH· · ·O=S hydrogen bonds (N7· · ·O3 2.94(2), O7· · ·N1 3.01(2) Å, C19· · ·O8 3.52(2)
Å, respectively), and CH· · ·π contacts (C46· · ·C2-C7 ring centroid 3.41 Å). Interplanar
NH· · ·O=S H-bonds (N6· · ·O5 2.94(2) Å and N12· · ·O2 2.93(2) Å, Figure 7c,d) then join
couples of planar arrays which face their macrocyclic polar sides.
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Figure 7. (a) Enantiomorphic nonequivalent complexes in the crystal structure of [Cu(L)I]2I3I5:
conformations are related by a pseudo mirror plane. (b) In-plane H-bonding among [Cu(L)I]+

complexes developing normal to c-direction. (c) Top view and (d) lateral view of the couple of
planes formed by [Cu(L)I]+ complexes developing parallel to the c-direction; red-circled, out-of-plane
H-bonding.
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The H-bond network generated by sulfonamide groups interacting among themselves
(Figure 6) and saturating NH and S=O groups fosters polyiodide development between
layers of complexes’ planar arrays (Figure 8). A similar arrangement in the segregated
layers was previously observed with flat s-tetrazine ligands [10].
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Figure 8. Left: alternated planes of polyiodides and H-bonded [Cu(L)I]+ complexes developing
perpendicular to the c-axis direction. Right: breakdown of polyiodide motif viewed along the
c-direction.

Despite the interesting, layered arrangement, iodine density of the solid is not remark-
ably high (IN = 0.211); this is partly due to the large size of the ligand and to the extent of
I· · · I interactions.

The coordinated iodide, previously found to be a key element involved in Cu(II)
complexes into polyiodide superstructures (rings, chains, etc.) [14,15], was not involved
in superior polyiodides or I· · · I contacts. In this sense, it seems that the incorporation
of aromatic sulfonamides, previously exploited as their S=O· · ·HN H-bonding, offers
the opportunity to panel polyiodides [16], and in this case, reduced the possibility of the
coordinated iodide to participate in supramolecular architectures. In fact, such H-bonds
generate a network leaving no space around the coordinated I− for its further development
in superior polyiodides (Figure S2).

While I3
− units are not in contact with other polyiodides (shortest I· · · I contact 4.171(2)

Å), I5
− anions are all mutually interacting through the I6· · · I9′ short contact (3.691(2) Å)

linking the terminal I2 units of one pentaiodide with the central one, formally charge
bearing, of its neighbor. Such interactions can be considered sigma-hole/halogen bond
type contacts and cause little distortion of I5

− anions (Figure 9).
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Accordingly, while the global polyiodide arrangement of the polyiodide network is
layered, in the present case intralayer I-I interactions amount to a single I· · · I contact per
pentaiodide, reducing the possibility of tighter packing and overall iodine density.

Perhaps one of the most interesting features of the [Cu(L)I]2I3I5 is the fact that it
crystallizes in the P212121 chiral space group. A 2005 survey found that the P212121 space
group is among the most common space groups for chiral molecules (representing ≈ 34%
of all chiral organic molecules with chiral centers); conversely, crystallization of molecules
not bearing a chiral center in the P212121 space group is much rarer (7.8% of achiral
molecules) [20]. It has been documented, therein, that rigid molecules (defined as units
with less than three consecutive rotatable acyclic single bonds) are more likely to crystallize
in chiral space groups. While [Cu(L)I]+ possesses a flexible portion (the ethylenimine
bridge, three consecutive rotatable bonds) it is mainly composed of three conformationally
rigid domains (the macrocycle plus the two tosyl rings), rotation of sulfonamide N-S bond
also being notoriously hindered [21]. The loss of the mirror plane/inversion center (as in
the crystal structure of free L) due to Cu(II) coordination might also play a role in space
group choice. Although it could not be anticipated and happened serendipitously, the idea
of conferring chirality to the polyiodide-dense network in view of the peculiar properties
exhibited by these phases could be worthy of further, and this time intended, exploration.

3. Materials and Methods
3.1. Synthesis of L

L is a common intermediate for further decoration of the parent amine 1 [22,23]. It was
synthesized as summarized in Scheme 1 starting from commercial materials and following
literature procedures. Prior to recrystallization, a minor impurity was found. Since it
crystallized independently as long thin colorless needles, it was possible to elucidate its
nature by XRD (1,4-ditosylpiperazine), although we only managed to get preliminary
data due to poor crystal quality (cf. dedicated section of Supporting Materials Figure S3).
Afterwards, recrystallization of the synthetic batch from acetone:ethanol 1:4 was performed,
affording high purity L in 69.7% yield.

1H-NMR (CDCl3): δ = 1.99 (s, 6H), 2.37 (s, 6H), 2.44–2.92 (m, 24H), 7.26 (d, 4H),
7.77 (d, 4H). Anal. calcd. (%) for C28H46N6O4S2: C, 56.54; H, 7.79; N, 14.13; Found:
C, 56.62; H 7.73; N, 14.09.
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3.2. UV-Vis and NMR Spectroscopy

UV-Vis spectra were run in HPLC grade DMF dried on molecular sieves. The follow-
ing experiments were conducted: (1) check of Cu(II) binding kinetic to L (1:1 M:L ratio,
[L] = 1.8 mM); (2) check of Cu:L complex stoichiometry (Cu(II) equivalents, as CuSO4 DMF
stock solution, added to L, [L] = 1.8 mM); (3) addition of KI equivalents (as KI DMF stock
solution) to preformed CuL complex.

All spectra were recorded on a Jasco V670 spectrophotometer (Jasco Europe, Lecco,
Italy) at 298 K.

Determination of (apparent) logK constants from spectroscopic data has been per-
formed with the Hypspec software (Hyperquad suite) [19].

1H NMR spectra were recorded at 25 ◦C on a Bruker AV400 spectrometer (Bruker
Italia Srl, Milano, Italy).

3.3. Crystals Preparation

Crystals of L are easily prepared by acetone:ethanol crystallization as specified in the
synthesis of L section.

Crystals of [Cu(L)Cl]ClO4.CH3CN were prepared by adding NaClO4 to an acetonitrile
solution of CuCl2 and L in 1:1 ratio. Upon solvent evaporation, deep blue crystals were
obtained. Anal. calcd. (%) for C30H49N7O8S2CuCl2: C, 43.19; H, 5.92; N, 11.75; Found:
C, 43.04; H, 5.88; N, 11.69.

Crystals of [Cu(L)I]2I3I5 were prepared by diffusion, inside an H-shaped tube, of
a 1:1 CuCl2:L solution towards an I−/I2 1:2 mixture, using water as the solvent. Dark
brown crystals were obtained upon diffusion over several weeks. Anal. calcd. (%) for
C28H46N6O4S2CuI5: C, 26.01; H, 3.59; N, 6.50; Found: C, 25.95; H, 3.62; N, 6.56.

3.4. XRD Data Collection and Structure Refinement

Data collections were performed in cryogenic conditions (T = 100(2) K). Absorption
correction was performed by SADABS-2016/2 [24]. The structures were solved by direct
methods (SHELXLS) [25]. Anisotropic treatment for all non-H atoms. The coordinates and
thermal factor for amidic hydrogens were freely refined. The refinements were performed
by means of full-matrix least-squares using SHELXL Version 2014/7 [26].

3.4.1. Crystal Data for L

C28H46N6O4S2 (M = 594.83 g/mol): triclinic, space group P-1 (no. 2), a = 8.845(1)Å,
b = 9.096(1) Å, c = 10.816(2) Å, α = 74.748(5)◦, β = 81.762(5)◦, γ = 62.824(4)◦, V = 746.6(2) Å3,
Z = 1, µ(CuKα) = 1.975 mm−1, Dcalc = 1.323 g/cm3, 13,945 reflections were measured
(4.238◦ ≤ Θ ≤ 68.365◦) and 2636 were unique (Rint = 0.0656), which were used in all
calculations. The final R1 was 0.0712 (I > 2σ(I)), and wR2 was 0.2091 (all data).

3.4.2. Crystal Data for [Cu(L)Cl]ClO4·CH3CN

C30H49Cl2CuN7O8S2 (M = 834.32 g/mol): triclinic, space group P-1 (no. 2), a = 7.7917(3) Å,
b = 13.0527(5) Å, c = 18.4422(7) Å,α = 87.278(2)◦, β = 79.279(2)◦, γ = 86.248(2)◦, V = 1837.7(1) Å3,
Z = 2, µ(CuKα) = 3.729 mm−1, Dcalc = 1.508 g/cm3, 45,151 reflections were measured
(2.440◦ ≤ Θ ≤ 68.903◦) and 6772 were unique (Rint = 0.0735), which were used in all
calculations. The final R1 was 0.0711 (I > 2σ(I)), and wR2 was 0.1753 (all data).

3.4.3. Crystal Data for [Cu(L)I]2I3I5

C56H92Cu2I10N12O8S4 (M = 2585.73 g/mol): monoclinic, space group P212121 (no. 19),
a = 15.4001(3) Å, b = 17.9214(3) Å, c = 29.2725(6) Å, V = 8079.0(3) Å3, Z = 4, µ(MoKα) = 4.505 mm−1,
Dcalc = 2.126 g/cm3, 85,553 reflections were measured (2.231◦ ≤ Θ ≤ 30.538◦) and 24,493
were unique (Rint = 0.0376), which were used in all calculations. Refined as an inversion
twin with equal component. The final R1 was 0.0700 (I > 2σ(I)), and wR2 was 0.1932
(all data).
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3.4.4. Data Presentation

CCDC Mercury [27] and UCFS Chimera [28] software used for data presentation.
CCDC 2127462, 2127456–2127457 contains the supplementary crystallographic data

for this paper. These data can be obtained free of charge via http://www.ccdc.cam.ac.
uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK;
Fax: +44 1223 336033; E-mail: deposit@ccdc.cam.ac.uk).

4. Conclusions

The new ligand L, intended for the stabilization of Cu(II)-polyiodides has been success-
fully prepared. The Cu(II) coordinating ability, complexation kinetics, complex stoichiome-
try, and ligand-binding mode have been substantiated by solution and solid-state studies.
The ligand is effective in protecting the Cu(II) oxidation state even in the presence of I−

in DMF solution; the formation of a 1:1:1 Cu:L:I-ternary complex has been documented
with a [Cu(L)]2+ + I− = [Cu(L)I]+ apparent logK of 4.0. The polyiodide crystallization
attempt afforded the interesting [Cu(L)I]2I3I5 crystalline phase, which is notably organized
in alternating [Cu(L)I]+ and polyiodide layers. Direct involvement of the Cu(II)-bound
iodide anion in polyiodide growth was not observed. This is in contrast with previous
reports and brought about by the steric hindrance of tosyl groups and the existence of
prevailing H-bonding directionality brought about by sulfonamide groups. Notably, the
achiral constituents of the [Cu(L)I]2I3I5 crystal structures organized themselves in a chiral
manner. A 2005 survey found that the P212121 space group is among the most common
space groups for chiral molecules (representing ≈ 34% of all chiral organic molecules with
chiral centers); conversely, the crystallization of molecules not bearing a chiral center in the
P212121 space group is much rarer (7.8% of achiral molecules) [20]. It has been documented,
therein, that rigid molecules (defined as units with less than three consecutive rotatable
acyclic single bonds) are more likely to crystallize in chiral space groups. While [Cu(L)I]+

possesses a flexible portion (the ethylenimine bridge, three consecutive rotatable bonds) it
is mainly composed of three conformationally rigid domains (the macrocycle plus the two
tosyl rings), and the rotation of sulfonamide N-S bond also being notoriously hindered [21].
The loss of the mirror plane/inversion center (as in the crystal structure of free L) due to
Cu(II) coordination might also play a role in space group choice. Although it happened
serendipitously, the idea of conferring chirality to the polyiodide-dense network could
be worthy of further, and this time intended, exploration. Polyiodides’ crystals explicitly
engineered towards chirality will be subject to further studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics10010012/s1, Figure S1: pocket hosting the ClO4

−

anion in the (CuLCl)ClO4.CH3CN crystal structure; Figure S2: views representing steric hindrance
generated by tosyl groups around Cu-bound iodide; Figure S3: cell content of crystallized impurity
identified as 1,4-ditosylpiperazine; CIF and the checkCIF output files.
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