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Abstract: Rechargeable lithium-metal batteries (LMBs), which have high power and energy density,
are very attractive to solve the intermittence problem of the energy supplied either by wind mills or
solar plants or to power electric vehicles. However, two failure modes limit the commercial use of
LMBs, i.e., dendrite growth at the surface of Li metal and side reactions with the electrolyte. Substan-
tial research is being accomplished to mitigate these drawbacks. This article reviews the different
strategies for fabricating safe LMBs, aiming to outperform lithium-ion batteries (LIBs). They include
modification of the electrolyte (salt and solvents) to obtain a highly conductive solid–electrolyte inter-
phase (SEI) layer, protection of the Li anode by in situ and ex situ coatings, use of three-dimensional
porous skeletons, and anchoring Li on 3D current collectors.

Keywords: lithium-metal batteries; lithium-metal anode; solid-state-interface layer; electrolyte;
porous skeletons; 3D current collector

1. Introduction

The need for renewable energy is boosting the research on lithium batteries that have
the power and energy density large enough to solve the intermittence problem of the
energy supplied either by wind mills or solar plants. They are also needed to power electric
vehicles. Actually, the lithium anode is most attractive, with its high theoretical specific
capacity (3860 mAh g−1) and low reduction potential (−3.04 V vs. standard hydrogen
electrode). It is therefore tempting to fabricate a battery with a Li-metal anode, a liquid
electrolyte, and a cathode compatible with Li.

Since this work if focused on the lithium anode, it may be desirable to first comment
on how the cost of the Li will affect the market of lithium batteries in years to come. Since
lithium carbonate is the primary compound used for EV lithium batteries, the lithium
industry identifies lithium production and trade in lithium carbonate equivalent units
(LCE, in which 1 ton of lithium is equivalent to 5.323 ton of lithium carbonate). In 2017, the
total consumption of lithium reached about 210 kton of LCE. By 2025, the McKinsey and
the Swiss Resource Capital AG suggested ample capacity to meet the growth in demand to
over 650 kton LCE (with around 500 kton LCE for battery and 150 kton LCE for others) [1,2].
This huge growth in demand pushes the prices of lithium to new record highs, due to
supply tightness, while demand for electric vehicles continues to grow (see Figure 1). The
average lithium cost during 2017 was USD 19,500 per metric ton of LCE. The current price
is USD 31,000 per ton LCE. Actually, the price of lithium does not have a dramatic impact
on the lithium battery market because lithium contributes only 2% of the overall battery
cost [3], but the supply security has become a top priority for auto manufacturers. However,
the short supply is not specific to lithium, as it affects the whole raw material market, as a
result of the slowing down of international commerce due to the COVID-19 pandemic that
impacted the whole world beginning in 2020. The reason for this price increase is therefore
cyclical, and is not due to the scarcity of lithium on Earth. According to the United States
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Geological Survey (USGS), the total estimated reserves of lithium metal is 47 million tons.
Long term, this outlook for lithium is balanced even for aggressive EVs scenarios, though
it is a supply oligopoly market [3].
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However, two considerations limited the commercial use of lithium-metal anodes.
First, the Li dendrites that form at the surface of the Li-metal (Li0) electrode during cycling
provoke short-circuits and form micron-sized aggregates, which reduce the calendar life.
Second, the lithium metal is very reactive, provoking side-reactions with the electrolyte,
again reducing dramatically the calendar life of the cells. These problems were circum-
vented by replacing Li metal by another material that can absorb and desorb lithium, in
particular graphitic carbon, in which case the active lithium ions travelling between the
electrodes come from the lithium compound chosen as the active element on the cathode
side. Such lithium-ion batteries conquered the market for two decades. Nevertheless, this
solution has two drawbacks. First, the graphite has a much smaller energy density than
Li0. This is an energy penalty. Second, with a graphite anode, a copper current collector
has to be used as it is one of the few metals not forming an alloy with lithium. This is a
weight penalty. That is why extensive research is devoted to overcome the problem of
lithium dendrites and to protect lithium against side reactions with the electrolyte in order
to fabricate lithium batteries, i.e., batteries with lithium-metal anode.

The electrolyte is one of the most critical elements affecting the stability of the lithium
anode. In particular, Li is unstable with respect to the organic solvents. The side reactions
between Li and the components of the electrolyte have two consequences. First, it consumes
the lithium and thus decreases the coulombic efficiency. Second, these reactions produce a
solid–electrolyte interphase (SEI) film that is resistive so that the performance of the battery
is degraded, especially at high current densities. In addition, the SEI may eventually grow,
in which case the calendar life of the battery is shortened. In particular, the carbonate
solvents that made the success of lithium-ion batteries with highly conductive liquid
electrolytes are not compatible with lithium-metal anodes. These carbonates are reduced
during Li deposition, and the resulting SEI is unable to avoid the formation of dendrites.

The first solution was to replace the liquid electrolyte by a solid one. The lithium-metal
polymer cell (LPC) with a LiFePO4 counter electrode provides a combination of power
and energy density high enough for use in electric cars [4] and was commercialized by the
Bolloré group. However, a single polymer cannot simultaneously satisfy the properties of
high ionic conductivity, strong mechanical properties, and thermal stability required for
the electrolyte. That is why solid composite polymer electrolytes in lithium-ion batteries
have received a lot of attention in recent years. They include polymer/inert ceramics,
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polymer/fast-ion conductive, polymer/ionic liquid, polymer/metal–organic frameworks
(MOFs), and polymer/cellulose composite electrolytes, and have been reviewed in [5].
Nevertheless, their ionic conductivity is still several orders of magnitude smaller than
that of the liquid counterpart, and drops dramatically at lower temperatures. Due to this
drawback of the composite polymer electrolytes, intensive research has been made in
parallel with the investigation of solid electrolytes, to make the lithium anode compatible
with a liquid electrolyte. Important improvements have been achieved recently, which are
reviewed here.

2. Liquid Electrolytes

The solid–electrolyte interphase is the film where Li ions get desolvated and reduced
in the anode. Therefore, the diffusion of lithium in the SEI and the morphology of the
deposit of the lithium during this process depend dramatically on the composition and the
morphology of the SEI. This was a motivation to search for different modifications of the
electrolyte (salt and solvents) to obtain a SEI layer that protects the lithium-metal anode
and suppresses the formation of dendrites [6]. This section is devoted to this approach.

2.1. Solvents

Carbonates that are commonly used as solvents in Li-ion batteries cannot be used with
Li-metal unless they are fluorinated because they fail to prevent the formation of dendrites.
That is why ether solvents such as 1,2-dimethoxyethane (DME) and 1,3-dioxolane (DOL),
which have high reduction durability, are preferred with this anode. However, both carbon-
ates and ether solvents can be used when they are fluorinated because the increase in F-rich
species in the SEI improves uniformity [7–9]. The best example is the fluoroethylene carbon-
ate (FEC)-based electrolyte solution (1 mol L−1 LiPF6 in FEC/dimethyl carbonate (DMC)),
with which Li||Li cells cycled at a current density 2 mA cm−2 with an areal capacity of
3.3 mAh cm−2 for more than 1100 cycles (see Figure 2) [10]. Note, this current density is still
too small to meet the requirements for many practical applications (>3 mA cm−2) [11–13]
but is already larger than the value 1 mA cm−2 used in many works to test the properties
of the lithium anode. The Li||NMC(622) full cells with high loading of active cathode
material (same areal capacity of 3.3 mAh cm−2) stably cycled over 90 cycles—still too small
for practical use. Even at small C-rate of 0.5C (1C = 182 mAh g−1), the capacity retention
of Li||NMC is reduced to 68.2% after 120 cycles at 0.5C [14]. Therefore, the ability of the
FEC-based electrolyte to withstand high voltage cathodes is still questionable. The intro-
duction of LiNiO3 also improves the homogeneity of the SEI, and thus the performance
of the cells [15–17]. Zhang et al. used the synergetic effects of FEC and LiNO3 salt to
construct a Li||LiFePO4 cell with high coulombic efficiency (99.96 %) and long lifespan
(1000 cycles) [18]. In addition, this FEC/LiNO3 electrolyte enhanced the performance of
the cell both at low (−10 ◦C) and high (60 ◦C) temperatures (see Figure 3). The addition
of nonpolar alkanes (hexane and cyclohexane) to ether solvents (DOL and DME) doubles
the cycle life with respect to fluorinated ether, and importantly, improves the coulombic
efficiency [19].

The positive effect of these nonactive nonpolar alkanes was attributed to the modi-
fication of the lithium-ion solvation environment and the reduction of the solvation free
energy, which facilitates the smooth deposition of Li ions on the Li anode. On a general
basis, cyclic carbonate solvents like FEC, vinylene carbonate (VC), ethylene carbonate (EC),
or diethyl carbonate (DEC) are solvated more easily in comparison with linear carbonate
solvents [20] because they form the alcohol–lithium and/or ester–lithium-based films [21].
First-principles calculations were performed to investigate the origin of the reduced re-
ductive stability of ion–solvent complexes [22]. The selected ions included Li+ and Na+,
while the selected electrolytes were ether (DOL and DME) and ester (EC, DEC, and FEC)
(see Figure 4). As a result, the ion–ether complexes exhibit a larger binding energy or a
more significant change of C−O bond length compared with ion–ester complexes, resulting
in completely different lowest unoccupied molecular orbital (LUMO) energies that are
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composed of metal atomic orbitals. The Li+ cation prefers to bind with the carbonyl oxygen
(O1) rather than cyclic oxygen (O2 and O3) for ester solvents. The optimized geometri-
cal structures of ion–ester complexes and corresponding visual LUMOs are presented in
Figure 5. This work explains well the differences between ester and ether electrolytes and
how ion–solvent complexes can promote electrolyte decomposition on metal anodes. It
also agrees with the former calculations showing that solvent with Li salts produce gas
more violently than pure solvent on Li/Na metal anodes [20].
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(a,c,d) or 2.5 mAh cm−2 (b). Electrolyte solution: (a,c) 1 mol L−1 LiPF6/FEC/DMC, (b,d) 1 mol L−1

LiPF6/EC/DMC (50 µL), Li foil 250 µm (blue curves), or 50 µm (red curves), 30 ◦C. Insets in panels
(a–c) show voltage profiles measured in different periods of cycling life. Reproduced from [10].

The addition of nonpolar alkanes (hexane and cyclohexane) to ether solvents (DOL and
DME) doubles the cycle life with respect to fluorinated ether, and importantly, improves
the Coulombic efficiency [19]. The positive effect of these nonactive nonpolar alkanes was
attributed to the modification of the lithium-ion solvation environment and the reduction of
the solvation free energy, which facilitates the smooth deposition of Li ions on the Li anode.
On a general basis, cyclic carbonate solvents such as FEC, vinylene carbonate (VC), or EC are
solvated more easily in comparison with linear carbonate solvents [20] because they form
the alcohol–lithium and/or ester–lithium-based films [21]. First-principles calculations
were performed to investigate the origin of the reduced reductive stability of ion–solvent
complexes [22]. The selected ions included Li+ and Na+, while the selected electrolytes were
ether (DOL and DME) and ester (EC, DEC, and FEC). As a result, the ion–ether complexes
exhibit a larger binding energy or a more significant change of C−O bond length compared
with ion–ester complexes, resulting in completely different lowest unoccupied molecular
orbital (LUMO) energies that are composed of metal atomic orbitals. This work explains
well the differences between ester and ether electrolytes and how ion–solvent complexes
can promote electrolyte decomposition on metal anodes. It also agrees with the former
calculations showing that solvents with Li salts produce gas more violently than pure
solvent on Li/Na metal anodes [23].
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at 1C after one cycle at 0.1C. (b) Cycling performance of Li||LiFePO4 pouch cells with a theoretical
capacity of 0.25 Ah at 0.2C after one cycle at 0.05C. 50 µm thick lithium foils were used as anodes.
(c) Voltage–capacity curves of Li||LiFePO4 coin cells. (d) Electrochemical impedance spectroscopy
(EIS) of Li||LiFePO4 coin cells. (e) Rate capacity and CE of Li||LiFePO4 coin cells at −10 ◦C, at 1.0C.
(f) High-temperature performance of Li||LiFePO4 coin cells at 60 ◦C and corresponding CE at 1C.
Reproduced from [18].
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(b) propylene carbonate (PC), (c) diethyl carbonate (DEC), and (d) fluoroethylene carbonate (FEC))
and ethers (e) 1,3-dioxolane (DOL) and (f) 1,2-dimethoxyethane (DME)) molecules. Reproduced
from [22].
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2.2. Salt–Solvent Interactions

Anions also play an active role in solvent oxidation [24,25]. The anion reduction of
the salt is the most important factor in passivating the bare Li anode [26,27]. Lithium
bis(fluorosulfonide)imide (LiFSI) is a most attractive salt as FSI− anion forms a robust
SEI protecting layer on the Li surface [28], in particular in DOL/DME solvents [29–31].
Zhang et al. obtained a synergistic regulation of cations and anions at the SEI by formation
of a quaternized polyethylene terephthalate (q-PET) interlayer with a “lithiophilic” ester
building block and an “anionphilic” quaternary ammonium functional block. The lithio-
philic character comes from the polar ester functional groups in the backbone of the PET,
and the quaternary ammonium functional group tethered on the PET molecular skeleton
can bind and immobilize a certain number of tri(bis(trifluoromethane)sulfonimide) (TFSI−)
anions. The q-PET–modified symmetric cells showed stable cycling over 1000 cycles (up
to 650 h) at 3 mA cm−2 and a CE of 96% for an areal capacity of 1 mAh cm−2 [32]. These
results were obtained with 1 mol L−1 LiTFSI in DOL/DME (1:1 by volume) with 2 wt.%
LiNO3 as the additive (see Figure 6).
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The solvation structure depends on the concentration of Li salts, and highly concen-
trated electrolytes have been demonstrated to achieve a long lifespan and high Coulombic
efficiency in Li metal (or Na metal) batteries [30,33–39]. Higher concentration means
better protection of the lithium anode. The counterpart is a lower ionic conductivity
and increased viscosity and price. Therefore, the concentration of salts is a compromise,
typically 1–2 mol L−1. An exception, however, is again lithium bis(fluorosulfonyl)imide
(LiFSI), since its optimized concentration is as high as 4 mol L−1 because LiFSI is more
soluble than other common Li salts, implying a high ionic conductivity and high transfer-
ence number. At 4.5 mol L−1 LiFSI in acrylonitrile, the ionic conductivity is 10−2 S cm−1

at 30 ◦C [35]. This is the order of magnitude of the commercial 1 mol L−1 electrolytes.
A Li||Li symmetric cell with 4 mol L−1 LiFSI/DME can be cycled at 10 mA cm−2 for more
than 6000 cycles, and a copper//lithium cell can be cycled at 4 mA cm−2 for more than
1000 cycles with an average Coulombic efficiency of 98.4% [30]. This outstanding result
comes from the choice of the couple solvent/salt. DME has the lowest reduction potential
(1.68 V vs. Li+/Li) among various linear ethers, and the larger fraction of uncoordinated
DME molecules due to the high concentration of 4 mol L−1 leads to improved electrolyte
reductive stability.

These results demonstrate the superiority of the LiFSI-DME salt–solvent combination.
The advantage of LiFSI over LiTFSI is due to the fact that LiFSI exhibits a more complete
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decomposition forming LiF as one of the main SEI products, and LiF is a quite efficient
layer to prevent the formation of dendrites [40]. Nevertheless, good results can also be
obtained with LiPF6 salt. Using discharge at high C-rate with LiPF6 salt to generate a
highly concentrated Li+ ion solution layer in the vicinity of Li metal, Zhen et al. obtained
a highly concentrated Li+ ion solution layer in the vicinity of Li metal to form a SEI layer
with enhanced stability [39]. As a result, a Li||LiNi1/3Mn1/3Co1/3O2 (NMC333) cell with
this SEI demonstrated a high Coulombic efficiency (≈99.5%) as well as a capacity retention
>80% after 500 cycles. We previously mentioned the role of LiNiO3 to homogenize the SEI.
This is especially true when the salt is LiFSI because the introduction of NO3

− promotes
the decomposition of FSI− and generates a uniform SEI with an abundance of LiSOx, LiF,
and LiNxOy [41]. In this work, the Li||LiFePO4 batteries at 1C rate with 2 mol L−1 LiFSI
plus 0.2 mol L−1 LiNO3 in DME as the electrolyte delivered a capacity of 150 mAh g−1,
maintained at 110 mAh g−1 after 500 cycles. In addition, the electrochemical stability
window of the electrolyte was widened to 4.3 V, while the decomposition of LiFSI alone
begins at 3.3 V, and the aluminum current collector was well protected.

These enhanced electrochemical properties motivated many works devoted to highly
concentrated electrolytes (HCE) [32], or “super-concentrated electrolytes” [42]. Neverthe-
less, they have limitations, including the poor process capability in present cell manufac-
turing due to the high viscosity [43], the poor wet stability to separators, thick electrodes,
and the poor cell performance under low temperatures because of reduced ionic conductiv-
ity. To avoid such drawbacks, co-solvents can be added [44], such as hydrofluoroethers,
since they do not break the solvation structures, thus maintaining the high anodic stabil-
ity of the electrolytes [45]. The diluent solvent introduced to the HCE to restore the low
viscosity forms a so-called “localized high-concentration electrolyte” (LHCE) [46–49] or
“pseudo-concentrated electrolyte” [50,51]. Inert solvent in LHCE means a solvent that
does not dissociate the salt or coordinate with the salt cations, so that the merits of the
HCEs are retained. In particular, a partially fluorinated ether, bis(2,2,2-trifluoroethyl) ether
(BTFE), as a diluent to the high concentrated LiFSI in dimethyl carbonate (DMC) elec-
trolyte improved the performance of lithium-metal batteries [46]. Piao et al. introduced
the 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoro-propylether (TTE) as the “counter solvent”
into the LiFSI/DMC electrolyte (DMC:TTE, 1:1 by mol) [52]. In this particular case, the
counter solvent increased the binding strength of Li+ ions with anions, which helps LiFSI
in the formation of the inorganic LiF-rich SEI on Li metal. Stable cycling performance of
Li||NCM622 battery with this electrolyte was obtained at a high cut-off voltage of 4.6 V
at both 25 and 60 ◦C. The Li||NMC811 cell with LiFSI-1.2DME-3TTE (molar ratio) was
tested under challenging conditions (e.g., 50 µm Li, 4.2 mAh cm−2 NMC811 and 3 g (Ah)−1

or ~14 µL electrolyte in each coin cell). At C/3 under voltages of up to 4.5 V, the coin cell
delivered a capacity of ~200 mAh g−1 with capacity retention of 80% after 155 cycles (see
Figure 7) [53]. This is a remarkable result, inasmuch as less than 30% of solvent molecules
in the LHCE (1.2 DME versus 3 TTE) are able to transport ions during battery cycling. With
this NMC811 cathode, even better results were obtained by adding FEC in the electrolyte
because the reduction of TTE, regulated by FEC, forms a stable interfacial layer that protects
the reactive Li metal, and FEC renders the structure of the cathode–electrolyte interphase
homogeneous and F-enriched [54].

Dual-salt concentrated electrolytes LiFSI-LiTFSI in ethers are also performant to form
a stable and robust SEI [30,55,56]. Moreover, there are virtually no free DME solvent
molecules near the surface of the anode in the case of such highly concentrated LiFSI-
LiTFSI electrolytes, which pushed the oxidation onset threshold to 5.0 V. A full 4.4 V
NMC622-Li Swagelok cell with such an electrolyte (4.6 mol L−1 LiFSI + 2.3 mol L−1 LiTFSI
in DME) demonstrated a capacity retention >88% after 300 cycles at rate C/3 [56]. The role
of LiTFSI here is to increase the conductivity of the SEI film, which is an important factor to
suppress the formation of dendrites on the Li metal anode. It is also useful to avoid the
polymerization of the electrolyte at high salt concentration.
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(HCE) is LiFSI in 1,2-dimethoxyethane at a molar ratio of 1:1.2. The localized highly concentrated
electrolyte (LHCE) is formed by adding 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE)
as the diluent into the HCE to yield LiFSI-1.2DME-3TTE (in molar ratio). Reproduced from [53].

On the other hand, LiTFSI cannot be used as a single salt because it leads to a corrosion
of the Al current collector at voltage higher than 3.7 V [57–59]. To remedy this problem,
LiTFSI has been associated with lithium bis(oxalato)borate LiBOB [60]. For instance, the
Li||LiNi0.8Co0.15Al0.05O2 (NCA) cells with 0.6 mol L−1 LiTFSI and 0.4 mol L−1 LiBOB
in EC-EMC (4:6 by wt.) delivered a capacity of 131 mAh g−1 and a capacity retention
of 80% after 100 cycles at the charging current density of 1.5 mA cm−2 [61]. Adding
LiPF6 at the additive level to the LiTFSI–LiBOB dual-salt leads to a significant improve-
ment; the cell with a Li metal cell, a 4 V Li cathode, and this electrolyte, at loading of
1.75 mAh cm−2 demonstrated 97.1% capacity retention after 500 cycles at current density
of 1.75 mA cm−2 [62].

Qiu et al. used a concentrated LiTFSI-LiFSI in DOL/DME with 3wt.% LiNO3 ternary
salt electrolyte to obtain a Li||Cu cell, which was stable over 450 cycles with a CE of 99.1%,
proving the synergetic effects of the three salts. The side reactions of sulfones due to the
high oxidation state of sulfur (S6+) and the highly reductive nature of Li did not allow
the same performance with the lithium anode, so far. The best result was obtained with
a non-solvating fluorinated ether, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether
(TTE), because it induced the formation of a stable localized high-concentration electrolyte
(LHCE) [37], and because it resolves the problem of low wettability of sulfone-based
electrolytes. The Li|LHCE|Cu cells at low current density 0.5 mA cm−2 demonstrated a
coulombic efficiency of 98.2% remaining stable for over 150 cycles [47].

2.3. Solvated Ionic Liquid Electrolytes

Solvated ionic liquid electrolytes (SILs) combine the properties of fast Li+ transport
of concentrated electrolytes with the properties of ionic liquids, namely, no volatility and
high thermal stability [63–66]. [glyme-Li]TFSI and [glyme-Li]FSI are the most investigated
SILs. In particular, tetraethylene glycol dimethyl ether (G4) is the preferred solvent, and
a Li anode in a LiFSI-2G4 SIL delivered a capacity 12 mAh cm−2 during 40 cycles with
a very high current density of 6 mA cm−2 at 60 ◦C [65]. Usually, diluents are added to
them to compensate their smaller ionic conductivity and their higher viscosity. Highly
polar solvents such as PC must be avoided, as they destroy the coordinate structure be-
tween Li+ and glyme [67,68]. Less polar solvents such as DOL can be used. In particular,
Li||Cu cells and Li||Li cells with LiFSI-2G4-50 vol% DOL electrolytes demonstrated
stable cycling of lithium electrodeposition/stripping with a highly desirable areal capacity
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(12 mAh cm−2) and exceptional Coulombic efficiency (>99.98%) at high current densities
(>5 mA cm−2) [44].

2.4. SEI-Forming Additives

The modification of liquid electrolytes with additives is a convenient strategy to obtain
a SEI coating that prevents the electrolyte decomposition on Li metal anode. FEC was
added as a film-forming additive to different electrolytes including 1.0 mol L−1 LiTFSI–G4
electrolyte [69], 1 mol L−1 LiPF6-dimethyl carbonate (DMC) [7], and 1 mol L−1 LiPF6-EC)/
DEC [70,71], which demonstrated a good ability to suppress the Li dendrites. Nevertheless,
the SEI with FEC is continuously consumed during cycling [72]. LiNO3 is soluble in ether
electrolytes (up to typically 5 wt.% in DME/DOL). However, ether-based electrolytes can-
not be adopted in high-voltage batteries because of their small electrochemical window.
Therefore, high voltage batteries use carbonate electrolytes, typically EC/DEC. Unfortu-
nately, the solubility of LiNO3 in carbonate electrolytes is small [73]. However, Yan et al.
demonstrated that LiNO3 can be also dissolved in carbon electrolytes by introducing a trace
amount of copper fluoride (CuF2) [74]. Using EC/DEC with 1.0 wt.% LiNO3 dissolved
by this process in the electrolyte, a Li||LiNi0.80Co0.15Al0.05O2 (Li||NCA) cell delivered
a capacity of 186 mAh g−1 with a capacity retention of 53 % after 300 cycles at 0.5C rate
and average Coulombic efficiency above 99.5 %. Recently, Liu et al. proposed a new and
powerful in situ construction of the SEI by spray quenching molten Li in 0.1 mol L−1

LiTFSI, 10 wt% FEC and 5 wt.% LiNO3 [75]. FEC and LiNO3 were in situ converted into
LiF and Li3N nanocrystals, respectively, while the organic solvent was converted into an
organic lithium compound as a stable matrix. With the SEI, the anode had a remarkable
rate capability, with a hysteresis smaller than 450 mV at ultrahigh current density as high
as 10 mA cm−2, and a CE above 97.7% was achieved at 2.0 mA cm−2. Fu et al. took advan-
tage of the high solubility of LiNO3 in sulfones to add LiNO3 into a high concentration
3.25 mol L−1 LiTFSI-sulfolane electrolyte forming 1.3 LiTFSI/LiNO3-SL electrolytes [76].
Sulfolane (SL) or tetramethylene sulfone is a typical cyclic sulfone solvent. After adding
HFE antisolvent, this 1.3 mol L−1 LiTFSI/LiNO3-SL/HFE electrolyte enables the Li anode
to achieve a high CE of 99.0 % and Li||NMC811 cells to provide a capacity retention rate
of 99.5 % at 0.5C for 200 cycles (see Figure 8). This performance partly results from two
beneficial effects of the high concentration, namely, an increase in the stability of SEI on Li
metal anodes, and also the fact that the important increase in the transference number tLi+
of 0.69 was much higher than that of the diluted 1 mol L−1 LiTFSI-SL electrolyte (0.29). The
authors demonstrated that NO3

− is in the Li+ solvation sheath of high concentration elec-
trolytes and is reduced along with LiTFSI salt on the Li surface forming an inorganic-rich
SEI. This work illustrates the interest of LiNO3 additive in a high-voltage electrolyte.

In practice, LiNO3 alone is not effective enough to protect the lithium anode surface
for long-term cycling in a lithium battery [77]. To suppress the formation of dendrites,
LiNO3 can be associated with long-chain polysulfides (LIPs) (Li2Sx with 4 ≤ x ≤ 8) that
are highly soluble in ether-based electrolytes and can diffuse to the lithium-metal an-
ode where they are reduced to short-chain LiPS. With Li2S8 and LiNO3 as additives in
the LiTFSI–DOL/DME ether-based electrolyte, the formation of lithium dendrites was
prevented at a practical current density of 2 mA cm−2 up to a deposited areal capacity of
6 mAh cm−2 with a CE maintained to >99% for over 300 cycles [16]. In this case, the counter-
electrode was stainless steel. For the same reason, a (1 mol L−1 LiTFSI)-(LiNiO3, 5.0 wt.%)-
(0.02 mol L−1 Li2S5) dissolved in DOL/DME in a volumetric ratio of 1:1 was also used with
success with Li||Cu half-cells [78]. For full cells working at higher voltage, however, the
ether electrolyte must be replaced by a carbonate electrolyte. The in situ formed SEI that
includes LiF by decomposition of LiTFSI proved to be efficient to protect the Li0-anode not
only in Li-S cells with ether electrolyte (1 mol L−1 LiTFSI), dissolved in DOL/DME), but
also in Li-Ni0.5Co0.2Mn0.3O2 with carbonate-ester (1 mol L−1 LiPF6, dissolved in EC and
DEC in a volumetric ratio of 1:1) electrolyte [79].
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Figure 8. (a) Initial charge/discharge curves of Li||NMC811 cells in different electrolytes at 0.1C
with sulfolane (SL) solvent. Charge/discharge curves of Li||NMC811 cells during different cycles
using (b) 1 mol L−1 LiTFSI-SL, (c) 3.25 mol L−1 LiTFSI-SL, and (d) 3.25 mol L−1 LiTFSI-0.1 mol L−1

LiNO3 SL electrolytes at 0.5C except for the first cycle at 0.1C. (e) Discharge capacity and CE of
Li||NMC811 cells cycled in different electrolytes between 2.8 to 4.4 V at 0.1C rate for two cycles,
followed by 0.5C (1C = 200 mAh g−1). Reproduced from [76].

Recently, Luo et al. proposed another strategy using additives containing catechol and
acrylic groups to construct a SEI by in situ anionic polymerization, leading to the formation
of isotropic Li nanospheres avoiding the formation of dendrites [80]. With this process, the
anode was able to cycle at current density up to 10 mA cm−2, demonstrating a cycle life over
8500 h operation and high cumulative capacity over 4.25 Ah cm−2. The electrochemical
properties of full cells are reported in Figure 9, when caffeine acid (CA) is selected as the
representative additive. Importantly, the figure illustrates that the performance of this
anode is remarkable not only for Li||LiFePO4 but also for Li||S batteries because the CA
additive facilitates the dissociation of short chain polysulfides Li2S/Li2S2, which reduces
the formation of insoluble Li2S particles.
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Figure 9. Electrochemical performance of Li anodes with and without protection associated to
the caffeine acid (CA). Li||LiFePO4 full-cell performance under high LFP loading of ~18 mg
cm−2, low N/P ratio of ~2 and lean electrolyte content of 6 g Ah−1: (a) GCD profiles at 0.2C and
(b) cyclic performance at 1C. Li–S electrochemical performance of S@CA–LiNO3, S@LiNO3, and
S@CA: (c) GCD profiles and (d) cyclic performance under the discharge current density of 0.1C under
raised sulfur loading of ~10 mg cm−2 and low E/S ratio of 4.5 mL g−1. Li–S full-cell performance:
(e) GCD profiles and (f) cycling performance under low N/P ratio of ~1.5 and lean electrolyte content
of 6 g Ah−1. Reproduced from [80].

2.5. Li Plating Additives

Other additives do not participate directly in the formation of the SEI but aim at
smoothing the Li plating by facilitating the Li diffusion and form a protective film at the
surface of Li. In(TFSI)3, salt as an additive forms the electroless coating of lithium by the
reduction reaction 3Li + In(TFSI)3→3LiTFSI + In, followed by alloying in the indium buffer
layer. This results in fast surface diffusion of lithium ions and high chemical resistance
to liquid electrolytes [81]. Salt additives that liberate cations are able to form conductive
films. Salts containing Al3+ [82], Mg2+, In3+, Ga3+, and Zn2+ [83] at the additive level
(concentration <0.1 mol dm−3) in the electrolyte improve the electrochemical properties
of the Li foils because these ions deposit on the Li electrode surface to form thin layers of
Li alloys that delay the formation of dendrites. For instance, Al3+ was introduced via the
addition of AlI3 [84], or AlCl3 [85], in which case no short circuit was observed at even
cycling for approximately 940 h (~235 cycles) in a symmetric Li||Li cell using 1 mol L−1

LiPF6 (EC/DMC/DEC) when the amount of Li plated in each cycle was 1 mAh cm−2.
Among halogenated lithium salts, in addition to LiF already mentioned, LiBr work very
well [86] because Br alters the morphology of early-stage Li electrodeposits, enabling late-
stage control of growth and high electrode reversibility [87]. One reason for the success
of halogenated salts is that they enhance the Li+ surface diffusivity, which is favorable for
the formation of dendrite-free lithium surface [86]. Alkaline ions such as Na+ [88] and
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K+ [89] but also Cs+ or Rb+ salts [90–92] function differently; ions are reduced before Li
deposition. Consequently, any dendrite that begins to grow attracts these additive ions
due to the higher current density in its vicinity. The accumulation of these ions generates
an electric field that repels the incoming Li+ ions so that Li+ ions are forced to move to
adjacent regions where they are reduced. The net result is a leveling of the surface of the
lithium foil.

2.6. Nanostructured Electrolytes

A nanostructured electrolyte can efficiently suppress Li dendrite growth by fixing the
anions spatially to modify the local distribution of the electrical field [93,94]. Lu et al. immo-
bilized the anions by blending silica nanoparticles densely functionalized with the ionic liq-
uid 1-methy-3-propylimidazolium bis(trifluoromethanesulfone) imide (SiO2-IL-TFSI) with
a conventional propylene carbonate/LiTFSI based liquid electrolyte [95]. Here, the nanopar-
ticles were dispersed, and served as reservoirs and constraints for anions to prevent them
from migrating. As a result, the lifetime of the lithium-metal anode was increased by an or-
der of magnitude. The same strategy was employed with other nanostructured electrolytes
including hairy nanoparticles employed as multifunctional nodes for polymer cross-linking
in gel polymer electrolytes [96], SiO2–SO3BF3Li in tetraglyme [97], SiO2 hollow nanosphere
in solid electrolyte [98], and SiO2@poly(methyl methacrylate) (SiO2@PMMA) core-shell
nanospheres [99]. Gao et al. constructed a SEI layer consisting of a polymeric lithium
salt, lithium fluoride nanoparticles, and GO sheets, which proved efficient to stabilize
the lithium anode in 4-V batteries [100], with a Li/LiNi0.5Co0.2Mn0.3O2 cell exhibiting a
capacity retention of 90.7% for 200 cycles. Table 1 summarizes typical modifications of the
electrolyte (salt and solvents) to obtain a SEI layer that protects the lithium-metal anode
and suppresses the formation of dendrites.

Table 1. Electrochemical properties of SEI layer obtained by typical modifications of the electrolyte
(salt and solvents).

System Remedy Current
Density

Specific
Capacity CE (%) Lifespan Ref.

Li||LiFePO4 Synergy of FEC and LiNO3 0.5 mA cm−2 3.3 mAh cm−2 99.96 1000 [18]
Li||LiFePO4 Function of FSI− anion 3.0 mA cm−2 1.0 mAh cm−2 96 1000 [32]
Li||NMC333 Transient HCE layer C/3, 1C 1.5 mAh cm−2 99.5 500 [39]
Li||NCM622 Use of TTE as counter solvent 2C 140 mAh g−1 99.4 200 [52]

Li||NCM LiTFSI–LiBOB dual salt 1.75 mA cm−2 1.75 mAh cm−2 99 500 [62]
Li||Li Solvated IL electrolyte 5 mA cm−2 12 mAh cm−2 99.98 - [44]

Li||NCA SEI-forming additive 0.5C 186 mAh g−1 99.5 300 [74]
Li||NCM811 HFE antisolvent additive 0.5C 200 mAh g−1 99 200 [76]
Li||LiFePO4 Acrylic-containing additive 1C 200 mAh g−1 99.5 300 [80]
Li||NCM532 Polymer-inorganic SEI 2 mA cm−2 3.4 mAh cm−2 99.1 200 [100]

3. Artificial SEI

Even though the recent in situ modifications of the SEI show remarkable results, they
are difficult to control, so different methods were developed to produce ex situ artificial
SEI to better control its formation [101]. The fabrication of hierarchical structures aiming to
suppress the formation of Li dendrites is the subject of intense research [102], according to
different processes reviewed hereunder.

3.1. Electrochemical Pretreatment

The advantage is that it is now possible to use electrolytes in the pretreatment process
which cannot be used in in situ treatment. Moreover, the concentration of the additives is
flexible, while in a cycling electrolyte it is limited by the requirement of low viscosity and
high ionic conductivity. The selection of the solvent is also less stringent because it is freed
of the requirements of the cathode. FEC contents ≥50 wt.% are prohibited in electrolytes
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using the LiCoO2 cathode because of the formation of a passivation layer at the surface
of the cathode, which reduces the capacity [103]. Ex situ artificial FEC-induced SEI can
be built in such a case, and was also successfully used in Li-O2 batteries [104]. Another
artificial SEI film was created by in situ reaction of a strong Lewis acid AlI3, Li metal, and a
DOL/DME electrolyte [105]. Ex situ electrodeposition of metals, not only Al and In, but
also Sn led to the same high exchange currents and long cycle life [106].

A new strategy lies in the tailoring of the SEI in a diluted solvate ionic liquid to facilitate
a two-dimensional growth mode [44]. Wang et al. demonstrated the process with a diluted
solvate ionic liquid (DSIL) composed of LiFSI-2G4-50 vol.% DOL. CV pre-modulation in
the potential range (−0.3 V, +3.0 V) for a few scans generated a homogenous SEI layer by
preferential electrochemical reduction of the solvation sheath. This led to an unprecedented
stable cycling of lithium electrodeposition/stripping with a highly desirable areal capacity
(12 mAh cm−2) and exceptional Coulombic efficiency (>99.98%) at high current densities
(>5 mA cm−2) [44].

3.2. Chemical and Physical Pre

Electrochemical pretreatment is difficult to control. It is an efficient process; however,
it is also expensive because of the different steps it implies: pretreatment in cells, disas-
sembly of the cells to obtain the protected anode, assembly, and operation in new cells.
Chemical pretreatment is somewhat easier to control and fabricate practical cells either by
gas processing or liquid processing.

3.2.1. Gas Processing

Li has a bcc crystal structure, in which the 110 family planes have the most densely
packed arrangement and are the most stable facets. Therefore, the choice of this facet
maximizes the performance of the anode. The use of F2 gas in the preparation of the Li foil
is thus preferred, as it led to the Li(100) surface, while N2, O2, and CO2 led to Li(110) [107].
When Li is deposited on a Cu substrate, the surface of Cu is oriented with a (100) face,
which is the most appropriate orientation for achieving lattice coincidence with the Li(110)
plane [108]. An exception is the Li-S battery, where the precipitation of Li2S on the Li
metal anode surface adversely impacts the performance. In this case, N2 gas processing is
the most appealing because the N2 gas simultaneously generates the Li(110) surface and,
by reaction with Li at room temperature, produces a Li3N film [109,110], known to be a
remarkable protecting layer that stabilizes the lithium anode [111]. In addition, Li3N is one
of the fastest Li-ion conductors.

3.2.2. Liquid Processing and Physical Pretreatment

Liquid processing and physical pretreatment are two other strategies that have been
used to prepare SEI on the Li anode. In few cases, both organic and inorganic layers have
been deposited on the lithium-metal anode, such as in a natural SEI. In particular, the dual-
protective layer fabricated by Zhao et al. was composed of organic alucone as the outer layer
and inorganic Al2O3 as the inner layer deposited by atomic layer deposition (ALD) and
molecular layer deposition (MLD) techniques [112]. In the ether-based electrolyte, at the
high current density of 5 mA cm−2, capacity 1 mAh cm−2, the corresponding symmetric
cell was stable for 1300 h. When increasing the capacity to 2 mAh cm−2, the cell was
stable for 700 h. Recently, an organic–inorganic hybrid artificial SEI was proposed by
Yuan et al. [113]. First, a zigzag-porous SiO2 layer was organized onto the lithium foil,
which could transfer to a Li4SiO4-based hybrid layer through pre-lithiation. Then, the
SEI in EC/DEC electrolyte infiltrated into the zigzag interstices of Li4SiO4 particles to
form a dense and conformal layer. The cell with this modified Li-anode, LiFePO4 cathode
(areal density 3.12 mg cm−2), and the traditional 1 mol L−1 LiPF6 in EC/DEC electrolyte,
delivered a capacity of 150.8 mAh g−1 at 0.2C and 63.7 mAh g−1 (against 2.4 mAh g−1) at
5C. At 2C, the capacity was 113.2 mAh g−1, maintained at 95.1 mAh g−1 after 300 cycles.
In most cases, however, the artificial SEI is either inorganic or organic.



Inorganics 2022, 10, 5 15 of 51

3.2.3. Inorganic Layers

(a) Phosphate-based surface modification. Li3PO4 coating is an example. It is of interest for
two reasons: first, it is a good ionic conductor. Second, its Young’s modulus of 10–11 Gpa
is sufficiently high to prevent the formation of dendrites. A uniform, 50 nm thick Li3PO4
film was obtained by liquid processing, namely, in situ reaction of polyphosphoric acid
(PPA) with metallic Li. The Li||LiFePO4 cell with the artificial Li3PO4 SEI layer on the
Li foil delivered a stable capacity of 150 mAh g−1 after 200 cycles at a current rate of 0.5C
(see Figure 10) [114].
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Figure 10. Cycling performance of the Li|LiFePO4 battery system using Li metal and polyphosphoric
acid (PPA)-Li anodes. (a) The typical charge/discharge profiles after activation at a current rate of
0.5C. The inset of (b) shows enlarged profiles. (c) Side-view SEM image and (d) top-view SEM image
of the Li metal anode after 200 cycles. (e) Side-view SEM image and (f) top-view SEM image of the
PPA-Li anode after 200 cycles. Reproduced from [114].

Li3PO4 coating has also been obtained by physical pretreatment, namely, deposition as
a thin film on Li metal foils by magnetron sputtering [115]. Another inorganic component,
LiF, was deposited onto the Li metal surface by magnetron-sputtering [116], to obtain a
Li anode that demonstrated stable cycling with CE of 99% for 90 cycles. Zhuang et al.
proposed a strategy that employs both pretreatment and self-healing of the SEI with highly
reduced lithium difluoro (bisoxalato) phosphate (LiDFBP) [117]. The decomposition of
LiDFBP passivated the lithium layer, raising the capacity retention of Li||LiFePO4 cells to
85% at a rate of 1C (1C = 170 mA g−1) after 200 cycles.
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(b) Metal-based surface modification. We have already mentioned the important effect
of the introduction of Al3+ via AlI3 [84] and AlCl3 [85] additive salts to form an in situ
Al-rich SEI or Al2O3 coating layer. Due to their efficiency [118], Al2O3 films have also be
formed ex situ by spin-coating [119], magneton sputtering [117], or ALD [120–123]. The
Li anode protected by a 20 nm-thick Al2O3 film fabricated by magneton sputtering was
tested in an all-solid-state battery Li/PEO-LiTFSI/Li, ensuring a cycle life of 660 h at a
current density of 0.1 mA cm−2 [120]. Note, however, that Al2O3 is insulating so that the
impedance of the film increases with its thickness. To avoid this effect, Alaboina et al.
encapsuled the Li metal with nanolayer of ZrO2 by ALD process, to take advantage of a
larger dielectric constant with respect to Al2O3 and a higher thermal resistivity. At the very
high current rate of 8C (1.25 mA cm−2 current density), the ZrO2 ALD-coated Li anode
and Li4Ti5O12 counter-electrode delivered a capacity of 152 mAh g−1 at 8C (1.25 mA cm−2

current density) (see Figure 11) [124].
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the film. Magnetron-sputtering of LiF proved to be a very efficient process [116]. The au-
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Figure 11. (a) Formation cycle for the bare-Li and Li with ZrO2 ALD coin cells at a 0.1C rate
(0.01 mA cm−2 current density) in the potential window 1.2–2.8 V performed at 23 ◦C temperature.
(b) Electrochemical cycling of the bare-Li and Li with ZrO2 ALD coin cells at different charge–
discharge current rates in the potential window 1.2–2.8 V performed at 45 ◦C high temperature.
(c) Electrochemical rate performance comparison of the bare-Li and Li with ZrO2 ALD coin cells.
(d) Bar graph comparing the 8C (1.25 mA cm−2) rate capacity and recovery of the samples during the
phase I and phase III cycling performed in the potential window 1.2–2.8 V at 45 ◦C high temperature.
The three phases are as follows: phase I = cycling at 1C, 2C, 4C, and 8C and back to 1C in the same
steps for 3 cycles each; phase II = 1C rate for 100 cycles aging; and phase III = cycling at 1C, 2C,
4C, and 8C and back to 1C in same steps for 3 cycles each, where 1C is equivalent to 0.16 mA cm−2

current density. Reproduced from [124].

While Li3N coating was readily obtained by N2 gas processing, it was also formed by
joining Cu3N nanoparticles together with styrene butadiene rubber (SBR). This Cu3N + SBR
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composite was also doctor-bladed on Li foil, which was efficient to protect Li in the EC/DEC
electrolyte [125]. Another Cu-based SEI was formed with CuF2 [126]. In this case, CuF2
reacts with Li to generate LiF while Cu atoms break down the long-range ordered pattern of
the polycrystalline SEI film. The cycle life of Li||LiNi0.5Co0.2Mn0.3O2 (NCM532) cells with
this modified Li surface delivered a capacity of 160 mAh g−1, remaining at 50 mAh g−1 after
500 cycles at 0.5 C (the loading was 12.02 mg cm−2, and the area capacity 1.92 mAh cm−2).

We have also already mentioned the formation of LiF film in an in situ SEI by additives
in the electrolyte (FEC or traces of water). A pre-mechanical treatment ex situ process
also makes possible a LiF coating with better control on the thickness and homogeneity
of the film. Magnetron-sputtering of LiF proved to be a very efficient process [116]. The
authors determined that the optimal thickness of the LiF coating was 150 nm, in which
case the cells with the Li4Ti5O12 counter electrode exhibited a high discharge capacity of
135 mAh g−1 over 500 cycles at a current density of 1C (0.4 mA cm−2). To improve the
mechanical strength of the LiF-enriched SEI, Xiao et al. fabricated a Li-11 wt.% Sr alloy
anode to form a SrF2-rich SEI in fluorinated electrolytes. This modified SEI effectively
promoted the lateral growth of deposited Li metal, which suppressed the formation of
dendrites, and also increased the SEI stability [127]. The Li–Sr||Cu cells in 2 mol L−1

LiFSI-DME demonstrated a CE of 99.42% at 1 mA cm−2 with a capacity of 1 mAh cm−2

and 98.95% at 3 mA cm−2 with a capacity of 2 mAh cm−2, respectively.
(c) Garnet protection. Doped Li7La3Zr2O12 (LLZO) is the subject of many investi-

gations as a possible solid electrolyte for the next generation of all solid-state lithium
batteries [128,129]. It is also proposed as a protecting layer when deposited at the surface
of the lithium-metal anode in cells with liquid electrolytes. Zhao et al. proposed to coat the
commercial polypropylene (PP) separator on the side in contact with lithium with Al-doped
Li6.75La3Zr1.75Ta0.25O12 (LLZTO) [130]. Li||Li symmetric cells using this modified separa-
tor and tested in both carbonate-based EC/DEC electrolytes and ether-based DOL/DME
electrolytes at a current density of 1.0 mA cm−2 rendered a constant and stable voltage
profile (80 mV) for 800 h. Xu et al. designed an advanced dual-phase artificial interface by
integration of a garnet Al-doped Li6.75La3Zr1.75Ta0.25O12-based bottom layer and a lithiated
Nafion top layer [131]. In symmetric Li||Li cells with conventional carbonate electrolyte,
the protective layer increased the transference number tLi+ from 0.33 to 0.82. At a constant
current density of 0.50 mA cm−2 and a total Li plating amount of 0.50 mAh cm−2, the
Li||Cu cells with this protection demonstrated a CE of 97.9% for 220 cycles.

(d) Silicon-based surface modification. A simple silane pretreatment makes possible the
formation of silicon-enriched compounds with high mechanical strength: lithium–silicon
alloys [132], lithium silicate [133], and silicon interlinked organics [134,135]. However, such
films have a low Young’s modulus so that they break easily and cannot survive at high
current densities. To overcome this drawback, Li et al. used dimethylphenylchlorosilane
(PhDMCS), in which one methyl group of chlorotrimethylsilane (TMCS) was replaced
with one phenyl ring (see Figure 12) [136]. The reaction product was a film with much
higher Young’s modulus due to the rigid phenyl ring structures and the strong electrostatic
attraction due to π–π interaction of adjacent phenyl rings.

Tetraethoxylane (TEOS) was also used to treat the Li metal surface by forming a
SiO2 layer. Li||LiFePO4 (LFP) battery with this modified Li surface delivered a capacity
of 103 mAh g−1 after 500 cycles at 0.5C, and maintained a steady Coulombic efficiency
of 98.6% [137]. By reacting over-stoichiometry of Li with SiO, a LixSi–Li2O matrix was
formed, embedding most of the lithium to form a 3D Li metal anode [138]. This as-obtained
nanocomposite electrode exhibited low polarization, stable cycling, and high-power output
(up to 10 mA cm−2) even in carbonate electrolytes.

(e) Carbon-based surface modification. Recently, Shi et al. rolled ultrathin Li foils into a
carbon fiber (CF) host at room temperature [139]. The spontaneous in situ intercalation
reaction between carbon and Li led to the formation of uniform LiC6 interface layers [140].
The Li/CF anode delivered a large specific capacity as high as 1841 mAh g−1 based on
the weight of the whole composite anode measured by stripping metallic Li under a cur-
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rent density of 0.5 mA cm−2 to 0.6 V vs. Li+/Li. The Li/CF||Li/CF symmetrical cell
at 1.0 mA cm−2 with a capacity of 1.0 mAh cm−2 hysteresis of 25 mV over 1000 h. The
Li/CF||LiFePO4 delivered capacities of 151 and 130 mAh g−1 at 0.2C and 1C, respec-
tively. Zhang et al. deposited N-doped amorphous carbon films of nanosized thicknesses
onto the surface of a metallic lithium foil by a magnetron sputtering technique. This
a-CNx/Li anode demonstrated stable voltage vs. time curves at 0.5 mA cm−2 over the
600 h where the tests were performed [141]. Zheng et al. used a flash-evaporation process
to deposit an electrochemically stable monolayer of interconnected amorphous hollow
carbon nanospheres [142]. Owing to this artificial SEI, the Li-metal anode demonstrated
a CE of 99% for more than 150 cycles at 1 mA cm−2. Chevrel phase Mo6S8/carbon com-
posites known for superior ionic conductivity and outstanding stability [143] were also
used as an artificial SEI to stabilize the lithium-metal anode [144]. The full cell in which
these protected anodes were paired with LiNi0.8Mn0.1Co0.1O2 cathodes (3.0 mAh per cell)
maintained highly efficient cycling (99.6% average CE) with capacity retention of 63% after
200 cycles at 1C.
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3.2.4. Organic Layers

A uniform artificial layer of lithium alkoxide (C8H17OH, AX) increased the cycle life of
Li anode from 60 to over 100 cycles. The overpotential of AX-Li||AX-Li cells was reduced
to 0.06 V; it was quite stable over 400 h charge–discharge cycling and lithium capacity of
1 mAh cm−2 [145] but only with a current density of 0.5 mA cm−2 which is much too small
for practical use. Sun et al. improved the stiffness of the polyurea film by introducing
trimethylaluminum (TMA) as an Al-crosslinker into the polymer chains [146]. Owing to
this protection, the symmetric cell cycled at a current of 3 mA cm−2 corresponding to the
practical application requirements of Li metal batteries; the overpotential remained below
100 mV with minimal changes even after 350 h. The full cell with LFP cathode (loading
4.8 mg cm−2) delivered a capacity of 139 mAh g−1 for the 1st cycle and 132 mAh g−1 after
300 cycles at 1C. On a general basis, the understanding of the effect of organic components
in SEI on Li anode protection is limited [147–150], inasmuch as the effect depends on
solvents and salts [151,152]. This is one reason why polymers raise an enormous interest.

3.2.5. Polymer Coating

We recalled in the previous section the efficiency of the silane- and siloxane-based
coatings. Silane can also enter the composition of polymer-based coatings. A series of
silane-modified polymer coatings formed on a cleaned lithium-metal surface terminated
with trimethylsilyl (TMS) and triisopropylsilyl (TIPS) groups were prepared [153]. Tested
as an anode with liquid electrolyte, the best result was obtained with the TMS-coated
sample, with a 20% loss of capacity after 100 cycles, against 60% loss for the uncoated Li
anode. Poly(dimethylsiloxane) (PDMS) is the most used Si-based polymer. For such a use,
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however, the polymer is a poor ionic conductor, so that Zhu et al. used HF etching to create
nanopores as the pathways of Li+ transport [154]. Lithium protected by such a PDMS
film with a thickness of 500 nm and pore sizes of 40–100 nm rendered a stable cycling for
200 cycles with a Coulombic efficiency of 94.5% at 0.5 mA cm−2 in the usual carbonate-
based electrolyte. The cell with this protected Li anode, LiFePO4 cathode, in LiTFSI-
DOL/DME electrolyte maintained a capacity of 140 mAh g−1 during 100 cycles at 0.5C.
Liu et al. used PDMS cross-linked by transient boron-mediated cross-links exhibiting “silly
putty (SP)” properties. The intrinsic viscoelastic properties of PDMS are increased by the
dynamic cross-linking in SP. The cell with the Li anode protected by the SP film and LiFePO4
cathode, in LiTFSI-DOL/DME electrolyte, maintained a high average CE of 99.5% and a
stable average capacity of 142 mAh g−1 for over 50 cycles at 1 mA cm−2 [155]. A copper
current electrode with a polyethylene oxide (PEO) film in an electrolyte comprising LiTFSI-
DOL/DME and 2 wt.% LiNO3 exhibited stable cycling of lithium with a CE close to 100%
over 200 cycles and low voltage hysteresis (~30 mV) at a current density of 0.5 mA cm−2.
The full cell with LiFePO4 demonstrated a capacity retention of 30% in the 200th cycle at a
rate of 0.2C [156]. On one hand, this is actually a step towards the concept of ‘anode-free’
lithium-metal batteries where all the lithium is stored in the cathode after cell assembly.
On another hand, the rate capability is poor, and PEO is not stable at high voltage, so
that its use with a cathode of the 4-V family requires a protection on the cathode side.
Better results were obtained with poly(vinylidene-co-hexafluoropropylene) (PVDF-HFP)
because the high-polarity of PVDF-HFP facilitates counter-ion dissociation to increase
conductivity and tethers an anion to reduce the space-charge region, which hinders the
growth of dendrites. PVDF-HFP have to be reinforced by the insertion of nanoparticles
to increase the Young’s modulus. LiF [157] and AlPO4 [158] nanoparticles were chosen
for this purpose. The best result was obtained with AlPO4, in which case the full cell with
LiFePO4 cathode delivered a capacity of 154.3 mAh g−1 at 1C, with capacity retention of
90% after 400 cycles [158]. Wang et al. improved the mechanical properties of the polymer
coat by introducing amide into the SEI [159]. In this work, the authors illustrated their
concept by utilizing hexamethylene diisocyanate (HDI) and 1-methyl-2-pyrrolidone (NMP)
as an additive combination in 1 mol L−1 LiPF6 in EC/DMC (1/3, w/w) electrolyte, to obtain
an HDI-NMP film. The cell with a LiFePO4 cathode with cathode loading of ~19 mg cm−2

delivered a capacity of 152 mAh g−1 under 1.12 mA cm−2 (i.e., 1C rate for this cathode)
and 99% capacity retention in 400 cycles (see Figure 13) [159].
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hexamethylene diisocyanate (HDI) and 1-methyl-2-pyrrolidone (NMP) are utilized as an additive
combination to study the effects of amide-derived interfacial filming on the lithium metal. Repro-
duced from [159].

An even better result was achieved by Zhou et al. who prepared a temperature-
responsive electrolyte (named PPE) consisting of poly(ethylene glycol) methyl ether methacry-
late (PEGA) and 2,2,3,3,3-pentafluoropropyl acrylate (PFE), which exhibits high ionic
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conductivity of 2.28 × 10−3 S cm−1 at ambient temperature (1.43 × 10−4 S cm−1 at −10
◦C) and good compatibility with lithium metal [160]. Through an anionic polymerization
triggered by Li0, this smart PPE forms a favorable polymer protection layer on a lithium
anode. Here, PEGA with flexible EO segment was used to dissolve lithium salt, and PFE
was applied as a diluent to enhance ionic conductivity. This PPE was stable up to 4.6 V. The
LiFePO4||Li cell using PPE and LiPF6-EC/DMC delivered a capacity of 151 mAh g−1 and
a CE of 99.6% after 500 cycles by the rate of 0.5C at 25 ◦C (see Figure 14).
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Figure 14. (a) Cycling performance of LiFePO4/Li cells using PPE and LiPF6-EC/DMC electrolytes
for 500 cycles at 25 ◦C by the rate of 0.5C, where PPE is a temperature-responsive electrolyte with
two kinds of polymerization behavior for LMBs, consisting of poly(ethylene glycol) methyl ether
methacrylate (PEGA) and 2,2,3,3,3-pentafluoropropyl acrylate (PFE). (b) Typical charge/discharge
curves of LiFePO4/PPE/Li cells under the varied rate from 0.1C to 8C. (c) Cycling performance
of LiFePO4||Li cells with PPE and LiPF6-EC/DMC electrolytes at elevated temperatures by 0.5C.
(d) Cycling performance of LiFePO4||Li cells using PPE and LiPF6-EC/DMC electrolytes at −10 ◦C
by the rate of 0.1C. Reproduced from [160].

While the results reported above concern protection of Li anodes with LiFePO4, which
limits the operational voltage to 3.5 V, attempts have also be made to protect the lithium
anode with a polymer film that is compatible with cathodes of the 4-V family. Liang et al.
dip-coated an ionically conductive and hydrophobic ethylene-vinyl acetate (EVA) copoly-
mer layer on Li metal [161]. The EVA layer was multifunctional: (a) the ester polar groups
in EVA could interact with lithium salts to improve the Li+ conductivity of the protective
layer and (b) the functional groups (−C=O) of EVA ensured a continuous protection for the
underneath Li metal. The Li-EVA||NCM cell with high-area-capacity NCM cathodes (i.e.,
2.5 mAh cm−2) at 0.1C delivered a capacity of 150 mAh g−1 during the first 25 cycles, and
still maintained 121 mAh g−1 after 100 cycles. A polymer blend composed of sulfonated
tetrafluoroethylene (Nafion) and PVDF (Nafion®/PVDF) blend (1:1 by weight) also proved
to be a very efficient coat to protect the lithium foil. PVDF enabled the entrapment of
Nafion molecules within the coating layer, presumably by entanglement between the two
polymers [162]. This composite is particularly suited to protect the lithium anode in Li-S
batteries because it dissolves in DOL/DME electrolyte. In carbonate electrolytes, however,
as a positively charged polymer, Nafion, can also be used alone to coat lithium metal to
prevent the growth of dendrites. With Li protected by lamination of micron-thick Nafion
soaked with soaking 1 mol L−1 LiPF6 EC/DEC (1/1) liquid electrolyte, the cell with LiCoO2
cathode delivered the same initial capacity as the cell with bare Li up to 2C rate, due to the
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high ionic conductivity of LIPON. At 0.2C, the capacity was 135 mAh g−1, with 82.6% capac-
ity retention after 360 cycles, while in absence of the protective layer on the lithium anode,
the cell failed after 220 cycles. A 150 nm thick poly(vinylene carbonate-co-acrylonitrile)
(P(VC-co-AN)) layer synthesized via solution radical polymerization with dimethylsulfox-
ide (DMSO) solvent was spread by spin-coating on the Li metal layer [163]. Owing to this
coating, the capacity retention of LiCoO2||Li cells after 100 cycles at a C/2 rate was raised
from 76% to 91%, with a capacity of 125 mAh g−1 after the 100 cycles.

More recently, a 20 nm-thick Li polyacrylic acid (LiPAA) polymer was deposited on the
Li surface. The LiPAA-Li anode can realize stable Li plating/stripping for 700 h at current
density of 0.5 mA cm−2 and 250 h at current density of 1 mA cm−2 in a symmetrical cell
system. When associated to a LiNi1/3Co1/3Mn1/3O2 cathode, the stability was maintained
during only 40 cycles. A much better compatibility with a 4V cathode was obtained by
Gao et al. with a new skin-grafting strategy by coating the Li metal surface with poly
((N-2,2-dimethyl-1,3-dioxolane-4-methyl)-5-norbornene-exo-2,3-dicarboximide) [164]. This
polymer layer incorporates ether-based polymeric components into the SEI and accom-
modates Li deposition/dissolution under the skin without the formation of dendrites.
The full cell with this protected Li metal anode and LiNi0.5Co02Mn0.3O2 cathode in a
carbonate-based electrolyte and at a capacity of 1 mAh cm−2 and a current density of
0.3 mA cm−2 showed a 90.0% capacity retention after 400 cycles. Table 2 lists the elec-
trochemical characteristics of ex situ artificial SEI chemically and physically pretreated.

Table 2. Electrochemical characteristics of ex situ artificial SEI chemically and physically pretreated.

System Remedy Current
Density

Specific
Capacity CE (%) Lifespan Ref.

Li||Cu SEI tailoring in diluted SIL 5 mA cm−2 12 mAh cm−2 99.98 100 [44]
Li||LiFePO4 Zigzag-porous SiO2 layer 2C 95.1 mAh g−1 >99.0 300 [113]
Li||LiFePO4 Li3PO4 coating 0.5C 150 mAh g−1 - 200 [114]
Li||Li4Ti5O12 Nanolayer deposited by ALD 8C 152 mAh g−1 - 100 [124]
Li||NCM532 Cu-based SEI with CuF2 0.5C 50 mAh g−1 96.3 500 [126]

Li||Cu Garnet protection 0.5 mA cm−2 0.5 mAh cm−2 97.9 220 [131]
Li||LiFePO4 Tetraethoxylane treated Li 0.5C 103 mAh g−1 98.6 500 [137]

Li||S Si-based surface modification 6.69 mA cm−2 600 mAh g−1 - 100 [138]
Li||NCM811 Mo6S8/carbon composite 1C CR of 63% 99.6 200 [144]
Li||LiFePO4 Polymeric protective film 1C 132.7 mAh g−1 ~100 300 [146]
Li||LiFePO4 Poly(dimethylsiloxane) film 1 mA cm−2 142 mAh g−1 99.5 50 [155]
Li||LiFePO4 PPE anionic polymerization 0.5C 151 mAh g−1 99.6 500 [160]

Li||NCM Ester polar groups interaction 2.5 mA cm−2 121 mAh g−1 - 100 [161]

Other polymers are chosen for their softness, which facilitates the homogenous coating
without pinholes, and the alleviation to the change in volume of the lithium anode during
cycling. Cordier et al. used carboxylic-acid ends to attach three types of functional groups,
namely, amidoethyl imidazolidone, di(amido ethyl) urea, and diamido tetraethyl triurea,
which are able to form multiple hydrogen bonds [165]. The variety of molecular architecture
renders crystallization difficult, leading to the formation of a supramolecular rubber.

Zheng et al. used this soft polymer to coat the lithium anode [166]. With this protection,
the surface of the lithium-metal anode remained flat at a high current density of 5 mA cm−2,
and a Coulombic efficiency of ~97% was maintained for more than 180 cycles at a current
density of 1 mA cm−2. This polymer thus belongs to the family of self-healing polymers,
i.e., stretchy polymers that spontaneously heal tiny cracks that develop during battery
operation [167].

3.3. Anchoring Li on 3D Current Collectors

Many works are devoted to the fabrication of skeletons of the lithium-metal anode.
They have been reviewed recently [168]. 3D current collectors are also chosen to be porous
for the same reason, and their main interest with respect to the usual 2D current collectors
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comes from the larger amount of active lithium that they can cycle, which increases the
energy density of the cells. Different chemistries have been considered: carbon skeletons,
metallic skeletons, alloy skeletons, polymer skeletons, and novel-type skeletons. Moreover,
3D skeletons are open structures that can alleviate more easily the change in volume during
cycling. Another characteristic of the skeleton is porosity. The pores drastically reduce
the local flux of Li+ moving toward the anode and play an important role in achieving the
nondendritic Li growth [169]. All the Li metal anodes constructed with these skeletons
were tested in commonly used carbonate-based or DOL/DME liquid electrolytes. Li can
be introduced by electrodeposition. In a different process, molten Li is infiltrated in the
skeleton to build the anode. This is an additional step in the formation of the anode. The
advantage, however, is that the molten Li avoids the impure species that appear in the
electrodeposited Li [170,171].

3.3.1. Lithiophilic Matrix

The leveling of the lithium can be monitored by deposition of the lithium on a lithio-
philic matrix. Oxidized polyacylonitrile [172], poly(acrylonitrile) (PAN) fibers [173] glass
fiber (GF) cloth with functional groups (Si-O, O-H, and O-B) was also used to guide the
Li deposition [174]; fibrous metal felt [175] belongs to this family. ZnO can also be used
to fabricate a lithiophilic matrix. Liu et al. used the reaction of molten Li with ZnO on
the surface of polyimide matrix. Then, the uniformly dispersed zinc originated from ZnO
reduction serves as seeds to guide Li deposition [176]. In a similar approach, Zhang et al.
infused molten Li into a highly porous conductive carbonized wood, forming a lithiophilic
matrix. As a result, this anode demonstrated a smaller overpotential (90 mV at 3 mA cm−2)
and better performance (150 h at 3 mAh cm−2) [177]. Graphene possesses lithiophilic sites
for Li deposition owing to N-containing functional groups, such as pyridinic and pyrrolic
nitrogen [178], or simply N-doping [179]. Materials that are not lithiophilic can also be
used as skeletons, but after functionalization, as shown hereunder.

3.3.2. Carbon Skeleton

Nano-carbon skeleton has been proposed under the form of graphene matrix [180–185],
carbon nanotubes (CNTs) [183–189], graphene–CNT hybrid [190], carbon nanofibers [191–193],
spherical carbon granules [194], hollow carbon fibers [195], hollow carbon
nanospheres [142,196,197], or porous carbon film [198]. Zhang et al. Infused molten
lithium into a carbonized wood (C-wood) as a 3D, highly porous (73% porosity) conductive
framework. In symmetric cells, the as-prepared Li/C-wood electrode presented a lower
overpotential (90 mV at 3 mA cm−2), more-stable stripping/plating profiles, and better
cycling performance (~150 h at 3 mA cm−2) compared with bare Li anode [177]. Yue et al.
used 3D carbon skeleton derived from soybean oil [199]. Lang et al. obtained a surface
graphited carbon scaffold by heating a common carbon matrix at 1200 ◦C [200].

The lithium-phobic nature of carbon makes its use difficult without functionalization.
On the other hand, good results were obtained with Li metal anodes employing carbon
doped with heteroatoms. In particular, large-cavity N-doped hollow carbon nanospheres
(NHCNSs) as the host showed remarkable performance, owing to the lithiophilicity induced
by N-doping. With high areal capacity (10 mAh cm−2), high CE (up to 99.25% over
500 cycles) and complete suppression of dendrite growth were demonstrated [196]. When
paired with a LiFePO4 (LFP) cathode, the full cell demonstrated a remarkable rate capability
(104 mAh g−1 at 10 C) and cycling stability (91.4% capacity retention for 200 cycles), as can
be seen in Figure 15.

Wu et al. fabricated a N-doped carbon nanofiber-based 3D structured skeleton (doping
level 9.5 at.%) [201]. After deposition of 1.0 mAh cm−2 of Li metal, this anode in a half
cell maintained a CE of 97% for 120 cycles when the areal capacity was 2 mAh cm−2 at
current density 2 mA cm−2. Metal atoms, such as Ni, Pt, and Cu can also be used as
dopants [202]. Oxygen-doping is very good to insure lithiophilicity [203]. The ketonic
(C=O) group on CNT surface acts as an efficient lithiophilic site to guide Li-metal nucleation
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and growth. This was demonstrated by Liu et al., theoretically from DFT calculations, and
experimentally, using a 3D porous oxygen-rich carbon nanotube (O-CNT) network [204].
The stripping/plating overpotential for the O-CNT@Li anode was ~68 mV at 4 mA cm−2,
and remained constant within 200 cycles. Nevertheless, oxygen-doping decreases the
conductivity and thus increases the overpotential. To address this dilemma, Liang et al.
combined two carbon materials: acetylene black (AB) and N-doped carbon nanospheres
(NCS) [205]. AB is lithiophobic but a good conductor, while the opposite is true for NCS.
Then Liang et al. used these complementary features to fabricate an AB+NCS framework
deposited on a copper foil.
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Figure 15. Electrochemical performances of the full cells (LiFePO4 as the cathode). (a) The
charge/discharge profiles cycled at a current density of 0.2C. (b) Rate capability cycled at a current
density range between 0.2 and 10C. (c) Long-term cycling performance cycled at a current density
of 0.2C. Li@Cu anode corresponds to Li deposited on a copper current collector, Li@NHCNS is a Li
metal anode employing N-doped hollow carbon nanospheres (NHCNSs) as the host. Reproduced
from [196].

Moreover, dopamine was used as the precursor for NCS, and the O-H and N-H rich
dopamine makes the resulting carbon heavily doped, which helps in the inhibition of the
Li dendrites. When Li metal was plated and stripped on this skeleton, this anode exhibited
a CE of 98.4% over 150 cycles (50 h) at 3 mA cm−2, with a capacity of 0.5 mAh cm−2, and
the same CE over 800 cycles (1600 h) at a capacity of 1 mAh cm−2. N-doped graphitic
carbon foam (NGCF) was obtained by simple carbonization of melamine [206]. Used as the
skeleton for the lithium-metal anode, the NGCF exhibits fairly high and stable Coulombic
efficiency of ≈99.6% for 300 cycles at a high current density of 2 mA cm−2 with the areal
capacity of 2 mAh cm−2.

Doping with nanoparticles acting as nucleating sites for Li is an efficient way used
in numerous works to functionalize any form of carbon and optimize the lithium anode.
For example, Jin et al. introduced MgO nanoparticles in a balsa-wood-derived porous car-
bon matrix. The modified Li anode was able to work under an ultrahigh current density of
15 mA cm−2 with a Coulombic efficiency of ~96% over 100 cycles with a Li striping/plating
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capacity of 3.5 mAh cm−2 [207]. Sun et al. fabricated 3D porous N-doped carbon nanoflake
structures decorated with in situ formed Ag nanoparticles (Ag-NCNS). The symmetric
Ag-NCNS/Li electrode exhibited stable cycling performance for more than 2000 h, and
demonstrated a CE of 98% for 200 cycles at 0.5 mA cm−2 with a cycling capacity of
1.0 mAh cm−2 [208].

In few cases, the carbon skeleton was functionalized by coating. In particular, coat-
ing carbon nanofiber (NF) with SnO2 was efficient to modify the poor wetting behavior.
Here, the kinetic barrier to adhesion of molten Li metal on the CF framework was elim-
inated by the mixed reaction with SnO2. The full cell with LiFePO4 cathode exhibited
a capacity of 100.9 mAh g−1 at 2C, with 90% capacity retention after 500 cycles at 2C in
traditional carbonate electrolyte [209]. Results are reported separately for different types of
carbon hereunder.

3.3.3. Graphene Skeleton

Less expensive, reduced graphene oxide can be used. Lin et al. adopted a reduced
graphene oxide/Li (rGO/Li) composite anode that they obtained by infusing molten Li
into an rGO film with uniform nanoscale gaps [210]. The molten Li reacted with rGO,
which changed the gaps among graphene layers, and enriched the porosity of the rGO
skeleton. The cell with this anode and LiCoO2 cathode delivered ~110 mAh g−1 at 4 C and
~70 mAh g−1 at 10C. Hollow graphene foam was obtained by using a nickel (Ni) foam
as the sacrifice template and analyst [211]. In a full cell with a LiFePO4 cathode, the CE
was 99.5% over 200 cycles at 1C. Kang et al. used nitrogen-doped few-layer graphene
(N-FLG) sheets on Cu substrates to create island structures on the Cu electrode, prepared
via spin-coating using slurries that included a polymer binder. Flat voltage profiles of the
symmetric cells were demonstrated over 100 cycles at a current density of 2 mA cm−2 [184].
In case the matrix was graphene carbon fibers (GCF), the GCF@Li symmetric cell exhibits
stable voltage profiles over 300 h at a current density of 2 mA cm−2 [193]. A graphene-
based anode ensured stable Li deposition even after 2000 cycles at current density of
10 mA cm−2 [179]. Graphitized spherical C granules on 3D carbon layers [194] were
also very efficient to obtain a uniform Li plating by electrodeposition. In this last work,
a Coulombic efficiency >95%, stable plating/stripping process for 500 cycles (500 h at
1.0 mA cm−2), and lifespan of 1000 cycles against LiFePO4 cathode were demonstrated.

Silver and metal oxides are often chosen as lithiophilic materials added to
graphene [212–215]. With a skeleton consisting of wrinkled graphene cage (WGC) loaded
with lithiophilic gold (Au), the Li was distributed uniformly without formation of den-
drites upon cycling, even at high Li metal deposition of 7 mAh cm−2 (see Figure 16) [216].
Pu et al. designed a sandwich composite anode consisting of Au nanoparticles that pillared
rGO. This anode delivered a CE of 98% for at least 200 cycles for 1600 h at 0.5 mA cm−2,
2 mAh cm−2 [217]. Zhai et al. proposed a M-doping (M = Ni, Pt, Cu) supported on a
nitrogen-doped graphene [202]. At the current density of 4.0 mA cm−2, the CE remained
stable at 97.0% for 100 cycles.

Many works are devoted to the construction of graphene on a metal matrix such as
Cu and Ni foam to obtain a robust and performant 3D structured lithium anode [218–221].
However, the Cu and Ni foams are a penalty for the energy density. That is why ef-
forts are made to fabricate freestanding electrodes with graphene skeleton electrode
materials [185,222–224] to obtain electrodes with similar results.

A remarkable result was obtained with porous carbon nanofiber (CNF)-stabilized
graphene aerogel film (see Figure 17) [225]. This electrode kept high CE of nearly 99% for
more than 700 h (70 cycles) at current density of 2 mA cm−2 for an ultrahigh limited capacity
of 10 mAh cm−2. The symmetric cell with stripping-plating capacity of 1 mAh cm−2 ran
for more than 1000 h (500 cycles) at current density of 1 mA cm−2. The same performance
was obtained with a reduced graphene oxide (P-Li-rGO) composite film [226].
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3.3.4. Carbon Fiber-Based Skeleton

Upon lithiation, the interfacial reaction between Li and the CNF leads to the formation
of a lithiophilic LiC6 layer on the skeleton [139]. Go et al. introduced nanocrevasses in the
CF skeleton to facilitate the penetration of molten [227]. A 3D CNF framework deposited
on a Cu foil exhibited a CE of 99.9% for more than 300 cycles, at large current densities
of 1 and 2 mA cm−2, and with a Li loading of 1 mAh cm−2 [191]. Song et al. prepared
a 3D SiO2/CNF composite skeleton on which edge-rich graphene (ERG) was vertically
grown. The full cell with this 3D skeleton anode and LiFePO4 cathode delivered a specific
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discharge capacity of 117 mAh g−1 with a CE of 97.7% at the first cycle, and retains a
specific discharge capacity of 106.9 mAh g−1 (91.2% of the first cycle) with a CE of 99.7%
after 1000 cycles at 1C [228].
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The carbon fibers, like any carbon skeleton, were functionalized with lithiophilic mate-
rials. Xiong et al. fabricated 3D SnO2-coated carbon textiles woven by carbon fibers [229].
After Li infiltration, the corresponding symmetric cell was cycled stably at a current den-
sity of 3 mA cm−2 with a stripping/plating capacity of 1 mAh cm−2 over 500 cycles,
with an overpotential of ca. 38 mV. AlF3 particles directly into 3D CNFs using the elec-
trospinning method [230]. This electrode achieved stable cycling over 450 cycles under
1 mA cm−2. Functionalization with lithiophilic ZnO was also very efficient [231–233].
The Li||LiFePO4 cell with this 3D CNF with ZnO and N-containing functional groups
interphase demonstrated a capacity retention rate of 99.6% over 200 cycles at 1C [232].
A similar performance was obtained with a ZnO layer on the carbon fibers for encapsula-
tion of molten Li metal [233]. Among lithiophilic metals, Ag was used under the form of
a deposit [234] or nanoparticles on the carbon cloth [235]. Au was also deposited on the
backside of the CNF skeleton [236]. The CE of this electrode reached 99.0% at 1 mA cm−2

for 2 mAh cm−2 and maintained 99.2% even after 400 cycles.
Xiang et al. fabricated a lotus-root-like hollow CNF matrix coated by a lithiated Nafion

layer as artificial SEI, with interior to exterior radius ratio enabling Li preferentially to
deposit on the inner surface of the CNF [237]. With a current density of 1 mA cm−2 for a
total capacity of 2 mAh cm−2, the symmetric cell was stable during more than 900 cycles
(~3800 h) at 1 mA cm−2 with the overpotential of the LCNF@Nafion anode maintained at
~15 mV throughout. The initial CE was 94.9% and 90% at 0.4 and 8 mA cm−2, respectively,
but remained stable at a CE > 98% for the following cycles up to 80 cycles.
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Liu et al. developed a self-smoothing Li metal quasi host composed of amine function-
alized mesoporous carbon in 3D structure. The full cell with this anode and a 5V cathode
with cathode loading ≥4 mAh cm−2, negative to positive electrode capacity ratio ≤2, and
electrolyte weight to cathode capacity ratio ≤3 g (Ah)−1. This full cell demonstrated an
energy density of 350–380 Wh kg−1 and was stable over 200 cycles [238]. A 3D TiC/C
core/shell nanowire skeleton grown on a Ti6Al4V foil used as an anode after filling with
molten Li demonstrated a CE of 98.5% for 100 cycles at areal capacity of 1 mAh cm−2 and a
current density of 1 mA cm−2 [239]. Owing to the presence of Ti6Al4V, a Li–Al alloy was
formed, which enhanced the adsorption behavior.

3.3.5. Carbon Nanotube Skeleton

The processing of the carbon nanotubes (CNTs) is more scalable than that of graphite.
CNT paper was demonstrated as a freestanding framework to accommodate Li metal
with a Li mass fraction of 80.7 wt.%. This Li/CNT electrode retained areal and gravi-
metric capacities of 10 mAh cm−2 and 2830 mAh g−1 (vs. the mass of electrode), respec-
tively, with 90.9% Li utilization for 1000 cycles at a current density of 10 mA cm−2 [240].
A low-cost micro-hollow CNT was used as the skeleton of an anode that demonstrated a
CE at 99.5% for more than 100 cycles for an areal capacity of 6 mAh cm−2 [241]. Neverthe-
less, CNT was rarely used alone. Micrometer-long carbon nanotube bundles connected
by covalent carbon–carbon bonds to an ultrathin graphite foam were infiltrated with
sulfur to form a cathode and Li to form an anode for a Li-S battery that delivered a ca-
pacity of 1090 mAh g−1 in the 1st cycle and 818 mAh g−1 in the 400th cycle at 0.5 C [186].
A polymer nanofiber film coated with a layer of amorphous carbon (a-C). After lithia-
tion by electrodeposition, this anode demonstrated a CE of 99.5% at a current density of
0.25 mA cm−2 with an extended cycle life of over 180 cycles, and ~99.2% at 0.5 mA cm−2 for
125 cycles [242]. Zuo et al. trapped lithium into hollow silica microspheres with a carbon
nanotube core. After plating 2 mAh cm−2 of Li, this anode maintained a CE of 99% over
200 cycles at current density of 0.2 mA cm−2 [243].

Different processes can be used to functionalize CNTs. Guo et al. used a pre-formed
SEI layer wrapping tubular carbon array [244]. Guo et al. used a pre-formed SEI layer
wrapping tubular carbon array. Liu et al. obtained an Li anode by melting Li metal into 3D
interconnected CNT (diameter of around 10 µm) on a porous carbon cloth (CC) [245]. The
anode constructed with massive ratio of Li in the CC/CNT@Li composite of 54 wt.% stably
cycled 500 h at current density up to 5 mA g−1.

Ye et al. fabricated an anode by electrodeposition of metallic Li into 3D cross-stacked
aligned carbon nanotubes [246]. This anode was successfully used in a full Li-O2 cell
with an ether-based electrolyte (see Figure 18). Another example of the control of surface
chemistries of the CNT to optimize its affinity with Li is the creation of nanotrenches on the
surface of CNT sponges and harvesting of CNT skeletons by a one-step mechanochemical
method [247]. The Li-S cell with this anode and areal sulfur loading of 10 mg cm−2 dis-
played a large areal capacity of 12.1 mAh cm−2 at the beginning and a stable cycling for
longer than 250 cycles at a high current density of 4.8 mA cm−2. As an anode, a scaffold
made of covalently connected graphite microtubes deposited with Li metal demonstrated a
high areal capacity of 10 mAh cm−2 at a charge/discharge current density of 10 mA cm−2

with Li utilization of 91% yielding a reversible gravimetric capacity of 913 mAh g−1,
Coulombic efficiencies of 97%, and long lifespan of up to 3000 h for a Li loading of
11 mAh cm−2 [248].

3.3.6. Hierarchical Carbon Skeletons

Hierarchical skeletons were fabricated as a strategy to simultaneously fulfill the
best conditions on porosity, conductivity, and mechanical strength. Wang et al. used
asphalt to produce a porous carbon with a high surface area of more than 300 m2 g−1,
which was mixed with highly conductive graphene to obtain a carbon skeleton coated
onto the Cu foil. Lithium was electrodeposited to build the anode [249]. With a Li
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loading of 0.50 mg cm−2, a CE of 99.0% was obtained for 505 cycles at 2.5 mA cm−2.
Guo et al. reported a Li-carbon nanotube-acetylene black (Li-CNT-AB) composite mi-
crosphere as an anode [250] (see Figure 19). Here, the lithiophilic AB particles frame-
work utilized the pore space of the sphere. This anode exhibited a specific capacity of
2800 mAh g−1 and a life span of ~700 cycles when it was cycled with a LiFePO4 cath-
ode at 0.5C (1.25 mA cm−2), corresponding to a CE of 98.7%. Xu et al. evenly coated a
g-C3N4 layer on a commercial carbon cloth (CC) [251]. Li could uniformly deposit into
the interlayer between the g-C3N4 layer and CC fibers. This electrode with 10 mAh cm−2

of metallic Li deposited was stable for over 1500 h operation in Li||Li symmetric bat-
teries at 2 mA cm−2. This is another example of the efficiency of the g-C3N4 layers that
can form transient Li-N bonds to stabilize the lithium-ion flux [252]. Zeolitic imidazo-
late frameworks can be transformed to unique microporous carbons with well-confined
metal clusters [253–255]. Such metal–organic frameworks (MOFs) with zinc species (ZIF-8,
2-methylimidazolate as organic ligand) are now considered as promising for use with 3D
lithium-metal anodes [256,257]. Such an anode demonstrated a CE of 99% for 200 cycles
and lifespan >1000 h with a low overpotential (12 mV) at 2 mA cm−2 for a capacity of
1 mAh cm−2 [258].
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Figure 19. Fabrication and characterization of the carbon nanotube (CNT)-acetylene black (AB) and
Li-CNT-AB composites. (a) Schematic of synthetic procedures of the Li-CNT-AB. SEM images of the
(b,c) CNT-AB and (d,e) Li-CNT-AB particles. (f) XRD patterns of the CNT, AB, Li-CNT, Li-AB, and
Li-CNT-AB composites. (g) Galvanostatic discharge curves of the Li-CNT (black line), Li-AB (blue
line), and Li-CNT-AB (red line) electrodes. (h) The voltage profiles of Li nucleation at 0.5 mA cm−2 on
the CNT, AB, and CNT-AB electrodes. Comparison of the voltage profiles in the (i) 1st and (j) 100th
stripping/plating cycle of the Li-CNT||Li (black line), Li-AB||Li (blue line) and Li-CNT-AB||Li
(red line) cells in a carbonate-based electrolyte at 0.5 mA cm−2. Reproduced from [250].

3.4. Conductive Frameworks

Conductive skeletons regulate the Li spatial flux. Cu and Ni foils are mostly used,
although Ti skeletons show promise, because Ti has a better electrochemical stability and
lower density than Cu. This is of particular interest in Li-S batteries, because Cu suffers
corrosion in polysulfides containing electrolytes [259]. Both Cu and Ni are hydrophobic. To
overcome this problem, these frameworks can pre-seed a dense Li seed layer on the surface
of the current collector [260], or decorate these conductive frameworks with lithophilic
materials [261]. Another strategy is to choose different conductive frameworks. These
different approaches are the subject of this section.

3.4.1. Cu Skeleton

3D structured metallic skeletons own abundant Li storage volume and provide a robust
conductive network [262–264]. Adair et al. demonstrated that the growth of Cu nanowires
on 3D Cu foam enable lithiophilic behavior and infusion of molten Li because nanoscale
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Cu reacts with molten Li to form a Cu–Li alloy phase on the surface of the electrode [265].
The corresponding symmetric cell at current density of 10 mA cm−2 with an areal capacity
of 1 mAh cm−2 was stable along 200 cycles. This result shows that the use of alloy-type
materials and coating processes to obtain a “lithiophilic” surface Si [177,265–267] can be
avoided, which simplifies fabrication and reduces cost.

Different processes convert the commercial Cu foil into 3D porous structures, including
the hydrogen bubble dynamic template [268,269], growing porous network on Cu foil [270],
alloying-dealloying [271], electrochemical etching [272], (electro)chemical de-alloying [273],
and laser microprocessing [274]. To further increase the effective surface area for the lithium
deposition, the copper skeleton can be etched to form pores with an optimized size [275].
Yun et al. used chemical de-alloying from a commercial Cu–Zn alloy tape [273]. The voids
derived from zinc dissolution insured uniform deposition of 1 mAh cm−2 of Li. Then,
the cell with this anode and LiFePO4 cathode delivered a capacity of 136 mAh g−1 after
300 cycles with a CE of 99.7% at 0.5C. Lu et al. reported an anode with 7.5 mAh cm−2 of
lithium plated into a porous 3D Cu nanowire (CuNW) network. This anode showed
a CE of 98.6% during 200 cycles at the current density of 1 mA cm−2, and 97.1% at
5 mAh cm−2 [276]. Porous 3D pie-like structure of copper nanowires (Cu-NWs) wrapped
by graphene demonstrated a CE of Li deposition at 97% over 200 cycles at 1 mAh cm−2,
owing to the graphene protecting layer [277].

Zhou et al. used a nitrogen-doped carbon/ZnO lithiophilic sites at the surface of Cu
foam as a skeleton. For an areal capacity of 1 mAh cm−2, the full cell with this anode and
LiFePO4 cathode demonstrated a lifespan of 150 cycles at a high rate of 5C anode [278].
Huang et al. used a uniform upper ZnO nanoparticles coating of a brass mesh to achieve
a long-term cycling stability of 500 cycles at 2.0 mA cm−2 for a total of 1 mAh cm−2

Li [279]. Impressive results were obtained with Li metal thermally infused to aluminum-
zinc oxides (AZO)-coated Cu foams. The full cell with this modified anode and LiFePO4
cathode showed a superior rate ability (~100 mAh g−1 at 20C, stable over 500 cycles) [280]
(see Figure 20). A LiF@Li matrix fabricated through the infusion of molten Li into a 3D
CuO@Cu matrix followed by NH4F coating achieved high areal capacity (5 mAh cm−2)
with excellent stability for 350 h at a current density of 5 mA cm−2 [281]. The full cell
with this anode and LiCoO2 cathode delivered a capacity of 130 mAh g−1 at 2C, with
capacity retention of 82.4% after 1000 cycles at 2C. 3D Cu foam was also modified by
coating with Li2O [282] or by the growth of Cu2S nanowires inside the Cu framework [283].
The best results, however, were obtained using carbon materials, in particular graphene,
as lithiophilic surface modification. The yolk-shell structure consisting of a graphene core
and a N-doped porous carbon shell still retained a CE of 99.2% after 1000 h of Li plat-
ing/stripping at 1 mA cm−2 even at an ultrahigh Li areal capacity of 50 mAh cm−2 [284].
Zhu et al. used a graphene network nested inside the micropores of a Cu foam, in which
molten Li was infused to form a 3D Li anode showing stable cycling for more than 1300 h
at a current density of 1 mA cm−2, and high CE of 98% over 200 cycles at 1 mA cm−2 [285].
Br-doped graphene-like film was integrated with the 3D Cu foam as an anode demon-
strated a CE of 98.8% after over 300 cycles at 2 mA cm−2 with a deposition capacity of
2 mAh cm−2 [286].

3.4.2. Ni Skeleton

As an alternative to Cu, porous 3D Ni substrate can effectively suppress the formation
of “dead” Li [287]. The anode obtained after formation of a Li2O layer at the surface of
the Ni skeleton demonstrated stable cycling cycled at a current density of 3 mA cm−2 and
capacity of 1 mAh cm−2 for up to 100 cycles [288]. When assembling the a Li2O-coated Ni
foam as an anode with LiFePO4 cathode, the full cell stably ran for over 300 cycles with
minimal capacity degradation and an average Columbic efficiency of 99.9% at 1C [289]. The
full cell with a nanoporous AuLi3 nanosheet-modified Ni foam as an anode and LiFePO4
cathode demonstrated a capacity retention of 83.8% with a Coulombic efficiency of 99.8%
at 5C after 1000 cycles (see Figure 21) [290].
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aluminum-zinc oxides (AZO)-coated Cu foams (Li@AZO-Cu foam): (a) cyclic voltammetry (CV) at
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As in the case of the Cu foams, Ni was associated with carbon to homogenize the
Li nucleation. A graphene/Ni foam composite as an anode showed a CE of 99.9%
maintained for 1000 cycles with a current density of 2 mA cm−2 and areal density of
2 mAh cm−2 [291]. Song et al. constructed a Li anode using a ladderlike carbon nanoarray
membrane grown on a 3D Ni foam [292]. This anode exhibited a CE of 99% for 200 cycles
and an ultralong lifespan >1000 h with a low overpotential of 12 mV at 2 mA cm−2 for
1 mAh cm−2. Lu et al. coated Ni foam with graphitic carbon nitride to have a 3D current
collector (g-C3N4@Ni) [293]. The Li anode with this skeleton demonstrated 98% retention
after 300 cycles, a lifespan of 900 h at 1.0 mA cm−2 for a Li deposition of 9.0 mAh cm−2.

3.4.3. Li–Si Alloy Skeletons

It is difficult to use pristine Si as an anode because of the huge change of volume during
lithiation/delithiation. A successful strategy, however, was to use the lithiophilic Si to form
a Li–Si composite. Best results are obtained when LixSi is encapsulated by large graphene
sheets because graphene insures a good electrical conductivity and is much lighter than Cu,
so that the volumetric capacity of the LixSi||graphene foil reaches 1800–2000 mAh cm−3,
which is close to that of Li metal. Such an anode demonstrated stable cycling (400 cycles
with 98% capacity retention) at areal capacity of ~2.4 mAh cm−2 in half cells, and delivered
an energy density of ~500 Wh kg−1 in Li-S cell [294]. A porous LixSi–Li2O matrix, followed
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by the intake of molten Li to the pores, was used as an anode in a Li-S full cell that delivered
a capacity of ~600 mAh g−1 and demonstrated stable cycling at various current densities
up to 10 mA cm−2 for at least 100 cycles (mass loading of S fixed at 2 mg cm−2) [138].
Note, however, that it is difficult to construct an equilibrium interplay between the SEI and
LixSi due to the intrinsic instability of some SEI components (e.g., Li2O and carbonates),
a problem that can be corrected by the addition of fluoroethylene carbonate [295].
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current densities of 1 (a) and 2 (b) mA cm−2 with a capacity of 2 mAh cm−2. Voltage profiles for Li
plating/stripping cycling on the nanoporous AuLi3 (NPAuLi3) nanosheet-modified Ni foam (NF)
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of 1 mA cm−2 with a capacity of 2 mAh cm−2. Voltage–time profiles for Li plating/stripping cycling
at current densities of 1 (e) and 2 (f) mA cm−2 with a capacity of 2 mAh cm−2 in the symmetric
Li||Li cells with Li foil as the counter electrodes, NPAuLi3@NF, NF with pre-deposited 3 mAh cm−2

Li, and Li foil as the working electrodes, respectively. Reproduced from [290].

3.4.4. Other Li–Metal Alloying

Li7B6 was used as a conductive framework, since the lithium prefers to attach on this
material rather on the protuberances [296,297]. With the entrapment of free lithium in a
3D fibrous Li7B6 framework as an anode, a Li-S cell demonstrated a capacity retention
of 2000 cycles at 1C (1C = 1675 mAh g−1) with a CE of 91–92%. A full cell comprising
an anode with Li embedded in Li7B6 and LiFePO4 cathode retained 95% capacity after



Inorganics 2022, 10, 5 33 of 51

300 cycles at 0.5C [298]. A Li-S cell with an Al–Li alloy anode delivered an average capacity
of 480 mAh g−1 with a CE close to 100% over 200 cycles at 200 mA g−1 (see Figure 22) [299].
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by Al2O3 plus a layer of super-lithiophilic Li-Al oxide operated under a current density of 
8 mA cm−2 over 480 cycles [301]. As an alternative to Li–Al alloying, Li–Mg alloying is also 
successful to fabricate skeletons for 3D Li metal anodes [302,303]. 
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Figure 22. 1.5 V Li-ion sulfur battery with Al–Li alloy anode and sulfurized polyacrylonitrile (SPAN)
cathode: (a) cyclic voltammograms of the Al–Li alloy/SPAN cell at a scan rate of 0.1 mV s−1;
(b) galvanostatic charge–discharge curves of the Al–Li alloy/SPAN cell at different cycles at a current
density of 200 mA g−1; (c) cycling stability and Coulombic efficiency of the full cell at 200 mA g−1;
and (d) the trend of the discharge/charge voltages and the voltage efficiency of the full cell during
200 cycles. The specific capacity was based on the mass of SPAN on the cathode. Reproduced
from [299].

An Al4Li9-LiF skeleton embedded with Li was capable of working properly under an
ultrahigh current density of 20 mA cm−2 in symmetric cells [300]. A 3D anode strengthened
by Al2O3 plus a layer of super-lithiophilic Li-Al oxide operated under a current density of
8 mA cm−2 over 480 cycles [301]. As an alternative to Li–Al alloying, Li–Mg alloying is
also successful to fabricate skeletons for 3D Li metal anodes [302,303].

3.4.5. Insulating Skeletons

The difficulty with conductive skeletons is the tendency of the lithium to stay on the
conductive surface instead of a complete insertion inside the skeletons. In addition, Li
metal is chemically reactive with nearly all conductive materials, which induces a galvanic
corrosion effect. The opposite choice of an insulating skeleton, such as polymers, solves
this problem. The surfaces of the insulating skeleton are usually decorated with polar
functional groups, such as amine groups, which can homogenize Li+ ions flux in the pores
so as to inhibit the formation of Li dendrite during charging [174,304].

3D polymer skeletons were extensively studied, such as (PAN)-based insulating mi-
crofibers [305] and poly-melamine-formaldehyde [306]. A porous PVDF-HFP membrane
on Cu was used to fabricate a 3D lithium-metal electrode that was stable for 1200 cycles
at 3 mA cm−2 and 1 mAh cm−2 [307]. A full cell with LiFePO4 cathode and melamine
sponge in combination with Ag nanowires as an anode delivered 138.2 mAh g−1 at 1C after
400 cycles [308] (see Figure 23).
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in both carbonate and ether electrolytes [176]. Porous cellulose nanofibers were used by 
Cao et al. to fabricate a lithium-metal battery through a 3D printing technique [310]. The 
full cell built with this 3D-printed Li anode and a LiFePO4 cathode exhibited a high capac-
ity of 80 mAh g−1 at a charge/discharge rate of 10C with capacity retention of 85% after 
3000 cycles. Porous aluminum silicate (ASO) fibers were directly placed on Li metal as the 
ASO/Li anode. In symmetric cells at 1 mAh cm−2 [311], the symmetric cell showed an over-
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Figure 23. (a) Cycling performance of full cells with LiFePO4 (LFP) cathode and three different
anodes: Cu–Li composite (LFP/Cu–Li), Li foil (LFP/Li foil), and Li deposit on a flexible 3D current
collector of melamine sponge@silver nanowires (MS@AgNWs) which is fabricated by loading AgNWs
on the MS skeletons (LFP/MS@AgNWs-Li) at 1C, and (b) the corresponding voltage profiles of the
three full cells at the first cycle. The inset is the magnified voltage profiles. (c) Rate performance of
LFP||Cu–Li, LFP||Li foil, LFP/MS@AgNWs-Li full cells at different current rates. Reproduced
from [308].

Zou et al. cladded a polyimide (PI) coating onto the Cu grid with hollow compart-
ments [309]. With such a configuration, the electric field exhibits a lateral pattern inside
the current collector, which guides the Li dendrites to laterally grow within the interior Cu
scaffold, inside the hollow compartments. This anode demonstrated a stable cycling for
over 150 cycles at 0.5 mA cm−2. By infusing molten lithium into an electrospun polyimide
framework coated with lithiophilic ZnO, Liu et al. obtained a 3D anode with flat voltage
profiles and stable cycling of more than 100 cycles at current density of 5 mA cm−2 in both
carbonate and ether electrolytes [176]. Porous cellulose nanofibers were used by Cao et al.
to fabricate a lithium-metal battery through a 3D printing technique [310]. The full cell
built with this 3D-printed Li anode and a LiFePO4 cathode exhibited a high capacity of
80 mAh g−1 at a charge/discharge rate of 10C with capacity retention of 85% after
3000 cycles. Porous aluminum silicate (ASO) fibers were directly placed on Li metal as the
ASO/Li anode. In symmetric cells at 1 mAh cm−2 [311], the symmetric cell showed an
overpotential of ~30 mV over a lifespan of 3800 h at 1 mA cm−2, and ~80 mV for more than
5500 cycles at 3 mA cm−2.

3.4.6. Gradient Skeletons

A synergetic effect combining the positive effects of conducting and insulating scaffolds
can be obtained by the fabrication of gradient framework which can guide a “bottom-up”
Li deposition and “top-down” Li dissolution within this structure. These scaffolds are
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named gradient skeletons. For instance, Li et al. introduced a thickness-dependent gradient
structure of conductive Nickel nanolayer on a dielectric porous scaffold (i.e., melamine
sponge that is lithiophilic owing to its highly polar amine group). The thickness of the
conductive Ni coating layer attenuated upward, and at the top part remained the bare
insulating melamine. The electrically conductive part at the bottom served as active sites
for Li metal nucleation and the gradient structure guided the Li metal to grow upward.
After deposition of 3 mAh cm−2 of Li, this electrode exhibited stable cycling for 500 cycles
with stable CE of 98.4% at a current density of 0.5 mA cm−2 [312]. Zhang et al. chose a
phosphidation gradient to balance the lithiophilicity with conductivity of a lightweight 3D
Cu nanowire current collector. The full cell with this anode with 3 mAh cm−2 plated Li
and LiFePO4 cathode (mass loading: 3 mg cm−2) showed a CE of 98.8% over 300 cycles at
0.5C [313].

The best result, however, was obtained by Zheng et al. with a 3D porous lithiophilic–
lithiophobic–lithiophilic dual-gradient Cu–Au–ZnO–PAN–ZnO (from bottom to top) cur-
rent collector. At the bottom we recognize the lithiophilic components Au and ZnO insuring
homogeneous nucleation. The ZnO–PAN–ZnO provides plenty of space to accommodate
deposited Li. ZnO at the top acts as an artificial SEI. The full cell with this Li metal anode
and LiFePO4 cathode cycled at 5C delivered a capacity of 116.5 mAh g−1, with capacity
retention of 97.3% after 1000 cycles [314]. A bottom lithiophilic ZnO and top lithiophobic
carbon nanotube sublayer, anchoring the whole layer onto the lithium foil, was used as
an anode in a Li–S cell. With sulfur loading of 2.5 mg cm−2 ensuring an areal capacity of
3 mAh cm−2, this cell delivered a capacity of 1.73 mAh cm−2 after 200 cycles at 0.5C [315].
A skeleton made of a 3D conductive carbon nanofiber framework with gradient-distributed
ZnO particles as nucleation seed was used as an anode. The full cell with LiFePO4 cathode
delivered a capacity of 115 mAh g−1 with capacity retention of 95.7% after 300 cycles at
1C [316].

Cheng et al. developed a 3D lithiophobic phase (Cu) and lithiophilic phase (Zn or
Sn) composition strategy to compose the 3D gradient skeleton for the Li anode [317].
The full cell with this anode and LiFePO4 cathode showed 80% capacity retention over
1600 cycles at 5C. Pu et al. prepared a highly porous, bare nickel scaffold (BNS) via
templated electrodeposition and etching. The top region of the BNS scaffold was electrically
passivated by coating with Al2O3, while the bottom part was activated by a lithiophilic
Au layer to guide Li plating. With a capacity of 3.5 mAh cm−2 and a current density of
2 mA cm−2, the symmetric cell showed stable cycling with overpotential of 70 mV for more
than 500 cycles (1750 h) [318].

3.4.7. Mxene-Based Skeletons

Mxenes are a class of 2D materials composed of transition metal carbides, nitrides,
or carbonitrides. They combine metallic conductivity of transition metal carbides, fast
Li-ion transport ability, and abundant Li nucleation sites. In particular, delaminated Ti3C2
paper demonstrates a reversible capacity of 410 mAhg−1 at 1C and 110 mAh g−1 at 36C
rate [319]. Mxene-based skeletons are of particular interest for the fabrication of Li anodes
with high-rate capability. A Ti3C2-lamellar structured flexible Li film as an anode exhibited
an overpotential of 53 mV at 3.0 mA cm−2 [320].

A 3D porous Ti3C2 Mxene/rGO aerogel was used as scaffolds for high-rate Li metal
anode, which showed a CE of 97.8 % at 3 mAh cm−2. Even under high current density of
10 mA cm−2, the anode retained smooth cycling plateaus with overpotential limited to
42 mV (see Figure 24) [321]. A full cell with this aerogel pre-plated with 5 mAh cm−2 Li as
the anode, and LiFePO4 as the cathode, delivered a capacity of 149 mAh g−1 at 0.5C and
63 mAh g−1 at 10C. A lithium anode with lamellar-ranged Ti3C2 MXene nanosheets and
vertically aligned Li7B6 nanofibers showed a low overpotential of 24 mV at 1.0 mA cm−2,
stable over 1000 h [322]. Note Mxene has a poor wettability, due to its closely stacked
structure, but amorphous liquid metal nucleation seeds are stable against MXene and can
induce isotropic nucleation and uniform growth of Li [323].
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Figure 24. Electrochemical performance of Ti3C2/rGO aerogel scaffolds for Li metal anodes
(1 mol L−1 LiTFSI in DOL/DME with 1 % LiNO3 electrolyte). (a) Coulombic efficiency of the rGO
and M/G−x (x = 30, 50, 70, 90 wt.% of Ti3C2) scaffolds under deposition capacity of 1 mAh cm−2 at
current density of 1 mA cm−2. (b) Coulombic efficiency of the rGO and M/G-70 aerogel scaffolds
cycled at different current densities and capacities. (c) Voltage profiles of the symmetric cells with
rGO and M/G-70 aerogel scaffolds at current density of 10 mA cm−2 under deposition capacity of
1 mAh cm−2. (d) Rate and cycling performance of the full cells with Li@rGO aerogel and Li@M/G-70
aerogel as anodes and LiFePO4 as cathodes. Reproduced from [321].

Table 3 summarizes the electrochemical characteristics of cells with Li anode anchored
on a 3D current collector.

Table 3. Electrochemical characteristics of cells with Li anode anchored on 3D current collector.

System Remedy Current Density Specific Capacity CE (%) Lifespan Ref.

Li||Cu Lithiophilic sites in graphene 1 mA cm−2 1.0 mAh cm−2 98 200 [178]
Li||Cu N-doped carbon nanospheres 1 mA cm−2 1.0 mAh cm−2 99.25 500 [196]

Li||NGCF N-doped graphitic carbon 3 mA cm−2 10 mAh cm−2 99.6 300 [206]
Ag-NCNS/Li Doping with nanoparticles 0.5 mA cm−2 1.0 mAh cm−2 98 200 [208]
Li||LiFePO4 Graphene skeleton 0.2C 138 mAh g−1 99.5 200 [211]

Li-WGC||LiFePO4 Wrinkled graphene cage 0.5C 100 mAh g−1 99.9 375 [216]
Li-Gr||Li-Gr CNF-stabilized Gr aerogel film 2 mA cm−2 10 mAh cm−2 >99.0 70 [225]
Li||LiFePO4 3D SiO2/CNF composite skeleton 1C 117 mAh g−1 99.7 1000 [228]

Li||Li CNF coated by Li-Nafion layer 1 mA cm−2 2.0 mAh cm−2 94.9 900 [237]
Li||Cu Flexible semi-tubular carbon film 0.25 mA cm−2 1.0 mAh cm−2 99.5 180 [242]
Li||Li 3D interconnected CNTs on CC 1 mA cm−2 1.0 mAh cm−2 99 500 [245]
Li||Li Covalently connected graphite 10 mA cm−2 10 mAh cm−2 ~97.0 100 [246]

Li||LiFePO4 Li–CNT–AB composite skeleton 1.25 mA cm−2 130 mAh g−1 98.7 700 [250]
Li||Li MOF with Zn particles 2 mA cm−2 1.0 mAh cm−2 99 200 [258]

Li||LiFePO4 Cu–Zn alloy skeleton 0.5C 136 mAh g−1 98.6 200 [273]
Li||Li Br-doped Gr film on Cu foam 2 mA cm−2 2.0 mAh cm−2 98.8 300 [286]

Li||LiFePO4 AuLi3 sheet-modified Ni foam 5C 1.0 mAh cm−2 99.8 1000 [290]
Li||Li Porous LixSi–Li2O matrix 1 mA cm−2 1.0 mAh cm−2 - 100 [138]

Li||LiFePO4 Entrapment in Li7B6 framework 0.5C 140 mAh g−1 - 200 [298]
Li/CuNW||LFP Cu NW phosphidation gradient 0.5C 140 mAh g−1 98.8 300 [313]

Li||Li Ti3C2/rGO aerogel scaffolds 10 mA cm−2 1.0 mAh cm−2 ~90.0 150 [321]
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4. Concluding Remarks

The intense research these recent years was rewarded by an important progress in
the performance of lithium-metal anodes. Dendrites can be effectively suppressed even
at a very high current density of 10 mAh cm−2. At smaller current densities, CE of 99.9%
can be obtained over 1000 cycles at lower current density. Further improvement of the
performance of lithium-metal anodes will be determined by the construction of a stable SEI.
This requires the study of the role of the numerous parameters that affect the properties of
the SEI and thus control the electrochemical properties: the composition and the thickness
of the inorganic and organic layers. DFT calculations have allowed the determination of
energy barriers to Li+ migration in different components of the SEI, such as Li2CO3 and
Li2O [324], and was also used to determinate the structurally most favorable directions for
Li+ diffusion [325]. Nudged-elastic band (NEB) calculations [326] were used to determine
the energy barriers of dominant defects in LiF [327]. The Li+ migration within the inner
SEI layer including Li2CO3, Li2O, and LiF is a rate-limiting step [328]. The evolution in
thickness and in composition of the SEI with cycling deserves further investigation.

Different strategies have been employed to stabilize the Li metal anode. Each of them
has its advantage and drawback [329]. Additives in the electrolyte are easy to use, and
are able to form a highly conductive SEI. However, such an in situ SEI lacks mechanical
strength and thus postpones the formation of Li dendrites rather than suppresses them.
Superconcentrated electrolytes lead to high CE and good cycling stability but they are
expensive and the higher viscosity limits the ionic conductivity, implying a lower rate
capability. Nanostructured electrolytes are efficient to suppress the dendrites, and keep a
good ionic conductivity, but their fabrication process is complicated. Structured anodes so
far have low CE.

3D matrices are the best to fabricate lithium anodes with the highest energy density.
The process is well suited to reduce the amount of lithium on the lithium side, while only
1/3 of the lithium in the currently used Li-anodes participate to the electrochemical process.
Note, however, that such anodes where Li is deposited on or inside the current collector,
or with protective layers on the current collector, can be paired only with cathodes with
preloaded Li ions. Otherwise, a pre-deposition process is needed, implying a sacrificial cell,
which is not practical.

In situ and ex situ coatings are used to protect the lithium from side reactions with the
electrolyte and stabilize the SEI. As a general trend, however, physical pretreatment has an
advantage to obtain coats thin and dense with high Young’s modulus. On the other hand,
electrochemical pretreatment has the advantage to obtain a protective layer with high ionic
conductivity and simplicity. Chemical pretreatment is a compromise.

The practical application of LMBs will be justified only if they outperform the commer-
cial LIBs. Therefore, a first requirement for LMB is an areal capacity >3 mAh cm−2 [330],
while most of the tests for lithium anodes in the laboratories are performed at capacities
of 1 mAh cm−2. Since the rate capabilities and cycle life are decreasing with the plat-
ing/stripping capacity, testing the LMB with this areal capacity is a pre-request to check
whether the rate capability and the cycle ability are at the level needed for applications.
Another crucial parameter is the amount of Li stored in the anode which must be limited; in
practice, this requires a ratio (N/P) <3 [331,332]. The third parameter is the electrolyte to Li
mass ratio, which also affects the energy density [331]. An energy density >350 Wh kg−1 re-
quires an electrolyte amount per cell capacity <3 mg (mAh)−1 [333]. It is then recommended
that these three parameters be reported in the next works on LMBs [334].

The morphology of the anode also matters. The use of 3D porous skeletons have led
to improvements in the electrochemical performance of lithium-metal batteries. The 3D
conductive matrix reduces the local current density of the anode, which is favorable to the
suppression of the dendrites. However, to obtain a relatively even Li surface, the skeleton
must usually be coated with a lithiophilic material which increases the complexity of the
fabrication and, subsequently, the porosity of the skeleton is another parameter that must



Inorganics 2022, 10, 5 38 of 51

be controlled. Nevertheless, in the case where a lithium-containing cathode material is
used, this morphology is the most promising.

The progress in lithium-metal electrode is constant and commercial viability is grad-
ually taking shape. We hope that research in the near future will take into account the
constraints we have outlined in this section to respect the conditions in terms of areal
capacity, N:P ratio, quantity of electrolytes, and tests with small internal pressure to make
tests informative in terms of viability of the Li-metal anode.

Author Contributions: Writing—original draft preparation, A.M.; writing—review and editing,
C.M.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

2D Two dimensional
3D Three dimensional
AB Acetylene black
ALD Atomic layer deposition
ASO Aluminum silicate
BNS Bare nickel scaffold
BTFE Bis(2,2,2-trifluoroethyl) ether
CA Caffeine acid
CC Carbon cloth
CE Coulombic efficiency
CF Carbon fiber
CNTS Carbon nanotubes
CuN Cu nanowire
DEC Diethyl carbonate
DFT Density functional theory
DMC Dimethyl carbonate
DME 1,2-dimethoxyethane
DOL 1,3-dioxolane
DSIL Diluted solvate ionic liquid
EC Ethylene carbonate
ERG Edge-rich graphene
EVA Ethylene-vinyl acetate
FEC Fluoroethylene carbonate
G4 Tetraethylene glycol dimethyl ether
GCD Galvanostatic charge discharge
GCF Graphene carbon fibers
GF Glass fiber
HCE Highly concentrated electrolytes
HDI Hexamethylene diisocyanate
HFP Hexafluoropropylene
LCE Lithium carbonate equivalent metric ton
LFP LiFePO4
LIB Lithium-ion battery
LiDFBP Lithium difluoro (bisoxalato) phosphate
LiFSI Lithium bis(fluorosulfonyl)imide
LIPs Long-chain polysulfides
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LLZO Li7La3Zr2O12
LLZTO Li6.75La3Zr1.75Ta0.25O12
LMB Lithium-metal battery
LMPC Lithium-metal polymer cell
LUMO Lowest unoccupied molecular orbital
MLD Molecular layer deposition
MOFs Metal–organic frameworks
MS Melamine sponge
NCA Nickel-cobalt-aluminium cathode
NCS Carbon nanosphere
NF Ni foam
NGCF Graphitic carbon foam
NHCNSs N-doped hollow carbon nanospheres
NMC Nickel-manganese-cobalt cathode
NMP Methyl-pyrrolidone
NWs Manowires
q-PET Quaternized polyethylene terephthalate
PAN Polyaniline
PDMS Poly(dimethylsiloxane)
PEO Polyethylene oxide
PEGA Poly(ethylene glycol) methyl ether methacrylate
PFE Pentafluoropropyl acrylate
PhDMCS Dimethylphenylchlorosilane
PI Polyimide
PMMA Poly(methyl methacrylate)
PP Polypropylene
PPA Polyphosphoric acid
PPE Temperature-responsive electrolyte
PVDF Poly(vinylidene fluoride)
rGO Reduced graphene oxide
SBR Styrene butadiene rubber
SEI Solid–electrolyte interphase
SIL Solvated ionic liquid electrolytes
SL Sulfolane
TEOS Tetraethoxylane
TFSI Tri[bis(trifluoromethane)sulfonimide]
TIPS Triisopropylsilyl
TMCS Chlorotrimethylsilane
TMS Trimethylsilyl
VC Vinylene carbonate
WGC Wrinkled graphene cage
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