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Abstract: The hybrid hydrogel materials meet important social challenges, including the photocat-
alytic purification of water and bio-medical applications. Here, we demonstrate two scenarios of
polyacrylamide-TiO2 (PAAm@TiO2) composite hydrogel design using calcium alginate (Alg-Ca) or
Keplerate-type polyoxometalates (POMs) {Mo132} tuning the polymer network structure. Calcium al-
ginate molding allowed us to produce polyacrylamide-based beads with an interpenetrating network
filled with TiO2 nanoparticles Alg-Ca@PAAm@TiO2, demonstrating the photocatalytic activity to-
wards the methyl orange dye bleaching. Contrastingly, in the presence of the POM, the biocompatible
PAAm@TiO2@Mo132 composite hydrogel was produced through the photo-polymerization approach
(under 365 nm UV light) using vitamin B2 as initiator. For both types of the synthesized hydrogels,
the thermodynamic compatibility, swelling and photocatalytic behavior were studied. The influence
of the hydrogel composition on its structure and the mesh size of its network were evaluated using
the Flory–Rehner equation. The proposed synthetic strategies for the composite hydrogel production
can be easily scaled up to the industrial manufacturing of the photocatalytic hydrogel beads suitable
for the water treatment purposes or the biocompatible hydrogel patch for medical application.

Keywords: hydrogel; titanium dioxide; polyoxometalates; alginate; interpenetrating network;
photocatalytic activities; water purification; bioapplication

1. Introduction

The hydrogel structure design is one of the key aspects of modern materials engineer-
ing [1]. In contrast to labor techniques of macromolecules covalent modification, the desired
hydrogel properties can be reached through the different approaches, such as inorganic-
organic composite production and the interpenetrating polymeric network formation [2].
The latter case can also be considered as a composite, but organic-organic, where the differ-
ence between the nature of constituent polymers gives a synergetic effect [3]. For instance,
using the biocompatible non-ionogenic polyacrylamide (PAAm) matrix and polyelectrolyte
alginate (Alg) macromolecules, one can combine mechanical properties of PAAm and Alg
capability to immediate gel formation when contacted with Ca2+ cations (Alg-Ca). Such
an approach opens the way to control both the gel’s shape and the hydrogel penetration
capability [4]. This is why this system was chosen to produce the TiO2-embedded hydrogel
beads for photocatalytic application [5].

The photoactive hydrogel production is a promising solution for the water purification
process that has a crucial impact on human life across the world [6]. In line with the
general green chemistry concept, the widespread toxic organic pollutants can be removed
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by means of cost-effective technologies using the sunlight as renewable and inexpensive
energy sources [7,8] to generate the reactive oxygen species (ROS). Titanium dioxide is a
well-known semiconductor material that has been widely used for ROS production since
1972 due to the work of Fujishima and Honda, which first demonstrated its photocatalytic
activity. Due to the high activity and chemical stability, TiO2 nanoparticles destroy organic
pollutants via the formation of superoxide radicals on the surface [5,9]. However, the
photocatalytic application of TiO2 is limited by the aggregation of nanoparticles in aqueous
suspensions. In addition, the problem for environmental application is the difficulty
of the particle extraction from the aqueous media [10]. The encapsulation of the TiO2
nanoparticles in the hydrogel matrix is a promising approach to overcome these limits [11].
Such hydrogel matrixes demonstrate the effective swelling behavior in aqueous media
followed with the high adsorption capacity of pollutants: organic dyes, pesticides, and
pharmaceuticals. It is especially actual when the natural biodegradable polymers, such as
polysaccharides, are used as sorbents [12,13].

Among many polysaccharides, calcium alginate-based hydrogel is the most widely
used material [12,14]. At the same time, calcium alginate hydrogels have such disadvan-
tageous as low physical and mechanical properties, which, however, can be improved
by combining polysaccharide matrixes with the synthetic polymers [4]. In Reference [15],
interpenetrating hydrogel networks based on the calcium alginate with acrylamide were
reported, which were able to withstand compression deformation of more than 90% with
complete restoration of the original shape. The authors suggest that the resulting improved
mechanical properties of the interpenetrating networks are due to the formation of the
secondary cross-links between the acrylamide’s amino groups and the alginate’s carboxyl
groups, as well as the ability of the ionic cross-links between alginate chains to break during
the deformation and recover after unloading [15].

In contrast to labor-consuming and expensive methods [16] of PAAm-Alg composite
film photo-polymerization, we used alternative approach coming from synthesis of poly-
N-isopropylacrylamide hydrogel beads by using the calcium alginate as a polymerization
mold [17]. We extended this simple hydrogel formation method to production of PAAm-Alg
hydrogel with embedded TiO2 nanoparticles, further denoted as Alg-Ca@PAAm@TiO2.

The second scenario we used for composite hydrogel production is important for
bio-application. To avoid any hazardous species such as ammonium persulfate or TEMED
(N,N,N’,N’-tetramethylethane-1,2-diamine), we used riboflavin (vitamin B2) as photoinitia-
tor of radical polymerization under UV (365 nm) irradiation. The key component in such a
system is Keplerate-type polyoxomolybdate (POM) {Mo132}=(NH4)42[MoVI

72MoV
60O372

(CH3COO)30(H2O)72]·(ca.300H2O)·(ca.10CH3COONH4). This POM is readily dissolved
in water, forming multicharged (maximal charge 42−) macroanions with a diameter of
2.9 nm [18]. Taking into account the large POM’s surface area (26.4 nm2) with many neg-
atively charged centers, the {Mo132} can be considered as the inorganic polyelectrolyte
unit. Being previously associated with cationic drugs, Keplerate {Mo132} can be embedded
into PAAm hydrogel structures to provide prolonged drug release [19,20]. Moreover, if
rhodamine-B is covalently bounded to the polymeric matrix, the pH-depended Keplerate
destruction will lead to arising the quenched fluorescence signal [19,21]. In the presence of
TiO2, the mechanical characteristics of photo-polymerized hydrogel can be improved [22].
Therefore, mutual presence of Keplerate {Mo132} and the TiO2 nanoparticles pave the way
for multifunctional biocompatible hydrogel production with drug release function.

As was shown previously, {Mo132} can trap the free radical [23], leading to a decrease
in the polymerization rate. However, here we demonstrated that 15% PAAm hydrogel
with the embedded TiO2 nanoparticles, cross-linked by N,N-methylenbisacrylamide (BIS-
AAm), can be produced only in the presence of {Mo132} under neutral pH-value. In the
literature, there is the protocol for photo-polymerized 16% PAAm hydrogel production in
the presence of TiO2 nanoparticles in the acidic condition [22]. The found specific behavior
of PAAm@TiO2@Mo132 demonstrates that the use of the Keplerate POM is a powerful
approach for hydrogel structure design on both the nanoscale and the macroscopic levels.
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In brief, the current work shows that the two different strategies of PAAm-based
hydrogel production aimed to control the photocatalytic behavior or bioinspired applica-
tion by means of Alg-PAAm interpenetrating network formation or insertion of {Mo132},
respectively. The produced hydrogels were examined on: photocatalytic degradation of
methyl orange dye; swelling/re-swelling and thermodynamic behavior; and influence
of components ratio on the hydrogel structure. Finally, the two types of hydrogel ma-
terials, Alg-Ca@PAAm@TiO2 photocatalytic beads and biocompatible hydrogel patches
PAAm@TiO2@Mo132, were produced.

2. Results and Discussion
2.1. Swelling Behavior and Thermodynamic Study of the Alg-Ca@PAAm@TiO2 Beads

The scheme of the hydrogel preparation is presented in Figure 1. When PAAm content
is changed from 50 to 95 wt.%, the swelling ratio of the polymeric network (α’) increases
for both blank Alg-Ca@PAAm and composite Alg-Ca@PAAm@TiO2 hydrogels reaching
the maximal value at 90–95 wt.% of PAAm, which is almost twice as high as the swelling
ratio at the PAAm content 50 wt.% (Figure 2).
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Whereas the increasing content of PAAm in the interpenetrating networks Alg-Ca@PAAm
strongly affects the swelling ratio, the addition of the TiO2 nanoparticles has almost no
effect on its value. Implicitly, it points out to the absence of strong interaction between the
polymeric matrix and titanium dioxide. Indeed, the positive enthalpy of PAAm adhesion
to the TiO2 has been shown recently [24]. In order to evaluate the thermodynamics of the
interaction in Alg-Ca@PAAm@TiO2, we examined the enthalpy of alginate adhesion to the
TiO2 nanoparticles.

The enthalpy of an interaction among the polymer and the solid TiO2 nanoparticles
was determined for the model of binary composites in which the TiO2 nanoparticles were
embedded into the polymer matrix comprised of the linear polymeric chains. The cross-linked
polymeric matrix cannot be used in this approach. Consequently, in the microcalorimetry
study, the linear sodium alginate (Alg-Na) was used for the composite preparation.

To evaluate the enthalpy of an interaction among the polymer and solid filler, one
should elaborate an appropriate thermochemical (Hess) cycle, which includes measurable
processes containing the desired process as their combination [25]. In the case of the
interaction enthalpy in the polymer/solid composite (∆Hint), such a thermochemical cycle
consists of the following steps: (1) wetting of the air-dry solid TiO2 particles in liquid
(∆H1); (2) dissolving of the polymer in the same solvent (∆H2); (3) mixing of the solid
suspension and the polymer solution (∆H3); (4) dissolving of the polymer/solid composites
with known TiO2: Polymer ratio in the solvent (∆H4). The resulted value for the interaction
enthalpy is calculated using the following equation:

∆Hint = ω1∆H1 + ω2∆H2 + ∆H3 − ∆H4 (1)

where ω1, ω2 are the weight fractions of the polymer and TiO2 nanoparticles in the com-
posite, respectively. Note that the cycle given by Equation (1) includes the dissolution
of the polymer and polymeric composites and therefore it cannot be elaborated for the
cross-linked polymers because the polymeric composites cannot dissolve but only swell.

As the polymer and the filler are mutually insoluble, upon the composite formation
there is only one source to change the enthalpy, which is the interaction at the phase
boundary. Therefore, the calculated ∆Hint is related to the interaction between the TiO2
nanoparticles and the polymer chains. In Figure 3a, there is the dependence of the ∆H3
values on the TiO2 weight fraction in the polymeric composite. At zero weight concentration
of the TiO2 nanoparticles, the ∆H3 value corresponds to the dissolution enthalpy of the
Alg-Na as an individual polymer (∆H1). The wetting enthalpy of the TiO2 nanoparticles
(∆H2) is given by the value at the right ordinate axis at the TiO2 weight fraction equals to
unity, that is, −5 J·g−1. With increasing TiO2 weight fraction in polymeric composite, the
dissolution enthalpy decreases in modulo. In accordance with Equation (1), the ∆Hint was
calculated at a different TiO2 content, demonstrating the absence of thermodynamic benefit
from alginate adhesion onto TiO2 nanoparticles.

Although the values of the interaction enthalpy given in Figure 3b were obtained for
binary linear polymer/solid composites, we can suppose that the major features of the
interaction between the polymeric chain and the solid surface of the TiO2 nanoparticles
preserve in the hydrogels as well. Because the interaction between the individual PAAm and
the solid surface of the TiO2 is also energetically unfavorable [26], the polymeric sub-chains
of both the PAAm and Alg-Ca networks do not adsorb on the TiO2 nanoparticles’ surface.
As a result, the TiO2 centers remain accessible to participate in the photocatalytic process.
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Figure 3. (a) The dissolution enthalpy of Alg-Na@TiO2 composites and (b) the dependency of the
interfacial enthalpy (∆Hint) on the TiO2 weight fraction in the Alg-Na polymer matrix.

In addition to the examination of swelling behavior tightly related to the thermody-
namics of “TiO2-Polymeric matrix” interaction, one of the major parameters for the actual
application of the Alg-Ca@PAAm@TiO2 beads is their re-swelling because of the logistic
needs to transport the hydrogel in a dried state.

The possibility of the Alg-Ca@PAAm@TiO2 hydrogel beads to restore their shape
after drying was studied. This property is important for the practical application of
photocatalyst hydrogels. In Figure 4, the re-swelling ability of the previously dried Alg-
Ca@PAAm@TiO2 hydrogel is shown depending on the PAAm content in the hydrogel
interpenetrating networks. Re-swelling ability was calculated through the comparison
of the current swelling ratio of the dried hydrogels, with one for the samples swelling
immediately after preparation (see Section 3).
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Figure 4. Re-swelling ability of the dried Alg-Ca@PAAm@TiO2 hydrogel beads with various PAAm
content. The insert presents the re-swelling process ability of the dried Alg-Ca@PAAm@TiO2 hydrogel
beads with 50 wt.% of PAAm.
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In line with the swelling behavior of the Alg-Ca@PAAm@TiO2 hydrogels, the re-
swelling ability increases with increasing of the PAAm content. However, the full recovery
of the swelling ratio value was not observed. For instance, the hydrogel beads sample with
low PAAm content reduced its re-swelling ability almost by 80%. The reduction in the
swelling ratio of dried sample can be associated with the irreversible collapse of the Alg-Ca
matrix, where the polymer chains are attached to each other by multiple hydrogen bonds
in addition to Ca2+ cations [27].

Thus, the covalently (via BIS-AAm) cross-linked PAAm network provides the re-
swelling ability and prevents the UV-degradation of the Alg-Ca@PAAm@TiO2 composite
hydrogel beads. Most likely, the improved physicomechanical properties of the Alg-
Ca@PAAm interpenetrating networks are due to the secondary cross-link formation be-
tween amino groups of the acrylamide units in PAAm and carboxyl groups in Alg [15].
Furthermore, there is a synergetic effect, which stems both from: (i) the steric hindrance of
the alginate chains, tangled with PAAm network, preventing the collapse of Alg-Ca mold;
(ii) the hydrogel bead formation due to the fast gelation rate caused with the diffusion of
Ca2+ cations from the solution into the Alg-PAAm drop.

2.2. The Photocatalytic Properties of the Alg-Ca@PAAm@TiO2 Hydrogel Beads

In the beginning, we study the photostability of Alg-Ca@TiO2 hydrogel beads and
how the PAAm content influences that. In Figure 5, the measurements of UV-degradation
degree after 5 h irradiation are presented.
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Figure 5. UV-degradation degree of the Alg-Ca hydrogel beads with (1) and without (2) embedded
TiO2 nanoparticles after 5 h of the UV irradiation depended on the initial concentration of sodium
alginate. The insert presents the UV-degradation of the Alg-Ca@TiO2 hydrogel beads produced at
0.5 wt.% of Alg-Na in aqueous solution.

The absence of measurable weight loss for blank Alg-Ca hydrogel was found. During
the UV irradiation, the Alg-Ca blank hydrogels (without of the TiO2 particles) did not
degradate, regardless of initial sodium alginate (Alg-Na) concentration. To the contrary,
the Alg-Ca@TiO2 composite hydrogels were partly destroyed (see insert in Figure 5).
Weight loss values are plotted as a function of the of the Alg-Na concentration, which
progressively decreased with the increase in the sodium alginate content. The substantial
weight loss values equal to 32 and 23% were found for hydrogel with 0.5 and 1.5% Alg-
Na concentration, respectively. The higher the Alg-Na concentration, the better the UV-
stability of the hydrogel. However, even moderate decomposition of the Alg-Ca@TiO2
hydrogels under UV irradiation is not appropriate for practical application. Moreover,
the measurements of the photocatalytic activity of such gels are incorrect—there is a high
probability of the individual TiO2 particles present in solution, which significantly distort
the photocatalytic measurements results.
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In contrast, during the 5 h under UV irradiation, the weight loss of Alg-Ca@PAAm@TiO2
hydrogels was not observed (Figure S5, see Supporting Information). Therefore, this
type of hydrogel matrix, which is more promising for the photocatalytic application, was
examined towards the bleaching of methyl orange dye in the aqueous solution under
UV irradiation. Furthermore, the IR spectra of swelled Alg-Ca@PAAm@TiO2 and Alg-
Ca@PAAm hydrogels (with PAAm 90% of content) after one-year storage in distilled water
were measured (Figure S6, see Supporting Information). These spectra demonstrate both
the stability of the hydrogel structure and that the addition of TiO2 does not change the
hydrogel structure significantly, which is in line with the thermodynamic data we obtained.

In order to uncover how the presence of the PAAm in the interpenetrating polymer
networks affect the photocatalytic activity, we measured the residual concentration of the
methyl orange dye in solution exposed with Alg-Ca@PAAm@TiO2 hydrogel beads con-
taining the different PAAm content (Figure 6a). In line with the first-order reaction kinetics
model, the rate constant of methyl orange bleaching can be expressed by this equation [28]:

− ln(C/C0) = kτ (2)

where C0 is the initial dye concentration; C is the residual dye concentration; τ is the
duration of UV irradiation; k is an effective kinetic constant.
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Figure 6. (a) Kinetic plots for the methyl orange dye photocatalytic decomposition by Alg-
Ca@PAAm@TiO2 hydrogel beads with various polyacrylamide content in polymer matrix: 50 wt.%
(1), 70 wt.% (2), 80 wt.% (3) and 90 wt.% (4). Insert: linearization of the plots for the calculation
of the effective reaction constant k according to Equation (2). (b) Dependency of the methyl or-
ange decomposition’s effective kinetic constant on the PAAm content in the Alg-Ca@PAAm@TiO2

hydrogel beads.

As one can see, the most rapid decrease in the dye concentration was observed in
the case of the Alg-Ca@PAAm@TiO2 hydrogel beads with 90 wt.% PAAm. In the case of
the hydrogel sample with 50 wt.% PAAm content, the photo-bleaching degree of the dye
solution was much slower. The linear regressions by the first-order kinetics perfectly fit the
experimental data, and the slope gives the value for the effective kinetic constant. For the
Alg-Ca@PAAm@TiO2 hydrogels with PAAm contents of 50, 70, 80 and 90 wt.%, the found
values of k are: 0.2 × 10−3, 0.7 × 10−3, 1.5 × 10−3 and 2.6 × 10−3 min−1, respectively.

Among all studied Alg-Ca@PAAm@TiO2 hydrogels, the sample with PAAm 90 wt.%
demonstrated the significantly higher swelling ratio (α’ = 20), whereas the others, with 50, 70
and 80 wt.% of PAAm, possessed lower swelling ratio values: 13, 14.5 and 14, respectively
(Figure 2). Consequently, the found differences in the photocatalytic behavior (Figure 6a)
are not only due to the different swelling behavior. However, in general, the increasing of
PAAm content in Alg-Ca@PAAm@TiO2 leads to the exponential-like growth of the effective
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kinetic constant (Figure 6b). For ROS species produced on the TiO2 nanoparticle’s surface,
the diffusion coefficients are 1–3 orders smaller than those for molecules with a similar
size [29]. Therefore, the photocatalytic destruction of methyl orange dye should occur
near the TiO2 surface. This process is mainly controlled by diffusion of the dye molecules
from outer solution into the hydrogel and back removing of the dye’s destruction product.
Actually, the accessibility of photocatalyst surface is also strictly important, and in this
respect, the low affinity of the alginate or PAAm polymeric chains to the TiO2 nanoparticles
is an advantage [24]. Consequently, the effective kinetic constant of methyl orange bleaching
should strongly depend on the Alg-Ca@PAAm@TiO2 hydrogel swelling ratio (Figure 6b).
Interestingly, within the PAAm content range of 50–80 wt.%, the swelling ratio is kept on
the same level of 13–14.5, while the effective kinetic constant grows exponential in this
series. Thus, we can suppose that some intrinsic parameter of such hydrogel has an impact
on the photocatalytic activity. One of the possible parameters governing the accessibility of
photocatalyst surface is the disaggregation of TiO2 nanoparticles providing homogeneous
distribution across the whole hydrogel structure. Indeed, the increasing of PAAm content
leads to more effective disconnection of alginate chains in the Alg-Ca network because
when collapsed the Alg-Ca mold can encapsulate the TiO2 nanoparticles, making them
isolated and non-accessible.

2.3. Swelling Behavior of the PAAm@Mo132@TiO2 Hydrogel

The macroscopic hydrogel behavior is very sensitive to molecular structure. For
instance, the increasing of the PAAm content just by 10 wt.% in Alg-Ca@PAAm@TiO2
hydrogel leads to the effective kinetic constant of photobleaching is two times increased.
Following the conception of the rational design of the hydrogel structure, we studied how
the PAAm:BIS-AAm ratio, duration of an exposition under the UV light and the presence
of the nanoscaled template {Mo132} affect the mesh size of the hydrogel network (Figure 7).
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Figure 7. The scheme of the PAAm@Mo132@TiO2 hydrogel’s synthesis via polymerization with
riboflavin (vitamin B2) as the photoinitiator under the UV light irradiation. The {Mo132} structure is
represented by the coordinative oxygen polyhedra (yellow).

Unless otherwise mentioned, the basic hydrogel composition consisted of the PAAm
(15 wt.%) and the BIS-AAm (0.4 wt.%). In series, we varied: the BIS-AAm concentration (0.4
and 0.8 wt.% for Gel#1 and Gel#2, respectively); the time of the UV irradiation for Gel#2
from 5 to 10 min (the latter is Gel#3); the concentration of the {Mo132} (0.5 and 1.0 g·L−1

for Gel#4 and Gel#5, respectively); the absence and the presence of the TiO2 nanoparticles
(Gel#6 and Gel#7, respectively); and the aging of the TiO2-embedded hydrogel under
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7 h of the UV irradiation (Gel#8). Because the addition of the TiO2 nanoparticles into the
PAAm@Mo132 hydrogel results in the elongation of time under UV irradiation (up to 15 min)
needed to complete the gelation process, we made the reference hydrogel PAAm@Mo132,
which was obtained under the same condition as PAAm@Mo132@TiO2; this is Gel#6. For
this hydrogel series, we measured the equilibrium swelling ratio (Figure 8). As one can see,
despite the double BIS-AAm concentration for Gel#2, the duration of the UV irradiation
affects the swelling ratio more than BIS-AAm content as compared to Gel#1, giving the
swelling ratio of 12.9, 38.3 and 13 for Gel#1, Gel#2 and Gel#3, respectively. In contrast,
the exposition time under UV light was kept on the same level, but the introduction of
{Mo132} resulted in the growth of the swelling ratio from 12.9 (Gel#1) to 34.2 and 44 (for
Gel#4 and Gel#5, respectively). There are two possible reasons: (i) Keplerate {Mo132} works
as optical filter decreasing the UV light flow leading to reduction in the polymerization
rate; (ii) {Mo132} can trap the free radicals produced on B2 or monomer species, leading to a
decrease in the efficiency of the polymerization process. However, the increasing of the
UV irradiation time up to 15 min partially reduces this effect, leading to a decrease in the
swelling ratio to 18.9.
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Figure 8. The swelling ratio for the PAAm (15 wt.%) hydrogels prepared under different conditions
(see text for detail). Briefly, the differences between hydrogels are presented in figure. The purple
frame corresponds to the hydrogel with embedded TiO2 and reference hydrogel. The dark-blue frame
corresponds to the TiO2-embedded hydrogel after 7 h of UV irradiation.

When the TiO2 nanoparticles were added to the PAAm/BIS-AAm/B2 mixture under
neutral pH, we expected the effective polymerization under 365 nm light. Instead, the
hydrogel structure was not formed; only small aggregates appeared. This result is opposite
to the suggested protocol, where the only main difference in PAAm hydrogel preparation
is the acidic pH [22]. It is well known that Brönsted acid/base sites (as well as Lewis
acid centers) on the TiO2 surface significantly affect the ROS generation process [30,31].
Moreover, the hydrogen bond formation led to the preferable ·OH radicals’ generation on
the {001} surfaces of anatase TiO2 [32]. Therefore, the acidic environment can change the
polymerization rate, leading to the hydrogel formation. However, even under neutral pH,
the UV-light-assisted hydrogel formation occurred when {Mo132} was added. The inhibition
of the hydrogel formation in the PAAm/BIS-AAm/B2 mixture with the TiO2 nanoparticles
can be explained through the two hypothesizes. First, due to the fast polymerization near
the TiO2 nanoparticles, the hydrogel network does not have time to form throughout all
the volume. As a result, there is no homogeneous distribution of TiO2 in the volume and
the isolated TiO2-embedded polymeric aggregates appear. Another explanation relates to
the quenching of the radical species generated from riboflavin molecules under the UV
irradiation. This quenching can occur through recombination of riboflavin’s or vinyl’s
radicals with ROS species arising from the TiO2 surface. Therefore, being added, the
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Keplerate {Mo132} works as an optical filter decreasing the UV-light fraction absorbed by
the TiO2, which makes the polymerization more pronounced (vide infra). Interestingly,
the addition of the {Mo132} into the PAAm/BIS-AAm/B2 mixture increases the gelation
time because of either the optical filter effect or free radical scavenging [23]. The gelation
of the PAAm/BIS-AAm/B2 mixture with {Mo132} and TiO2 gives the drastic growth of
the swelling ratio from 18.9 (Gel#6) to 80.7 (Gel#7). During the aging process under UV
irradiation for 7 h, the swelling ratio of the Gel#7 reduced to 12.7 (Gel#8).

In accordance with the measured swelling ratio, we calculated the mesh size of the
produced PAAm hydrogels. Based on the Flory–Rehner theory [33] for polymer networks,
we estimated the number of monomeric residues (NC) in the sub-chains between the
crosslinks of the networks:

NC =
V1

(
0.5α−1 − α−

1
3

)
V2(Ln(1− α−1) + α−1 + χα−2)

(3)

where the V1, V2 are molar volumes of a solvent (water) and a polymer, respectively; α is
the equilibrium swelling ratio; χ is the Flory–Huggins parameter for the polymer-solvent
mixture. We used V1 = 18 cm3·mol−1 (water), V2 = 56.2 cm3·mol−1 (polyacrylamide) and
χ = 0.12 [34]. This equation gives Nc value under the assumption that polymeric sub-chains
of the network are fully stretched. However, in the polyacrylamide gel, the sub-chains are
statistically coiled. The mean square end-to-end distance <R2>, between the ends of these
random Gaussian coils, which corresponds to the distance between adjacent cross-links,
can be calculated according to the equations:

N = 2NC (4)

< R2 >= Na22
1− cosθ

1 + cosθ
× 1− cosϕ

1 + cosϕ
(5)

where N is the number of bonds in the polymeric chain (it is two times larger than the NC
value, as it includes the bonds in monomer units and bonds between them); a is the bond
length; θ is the bond angle; and ϕ the angle of the hindered rotation. We took a = 0.154 nm
for the ordinary C-C bond, θ = 109.5◦ and ϕ = 120◦. The calculated mesh size values
(averaged R) are given in Table 1.

Table 1. The mesh size of the PAAm hydrogels calculated by means of Flory–Rehner theory.

Sample Gel#1 Gel#2 Gel#3 Gel#4 Gel#5 Gel#6 Gel#7 Gel#8

Condition 10 min UV ×2BIS-AAm;
5 min UV

×2BIS-AAm;
10 min UV

{Mo132},
0.5 g·L−1;

10 min UV

{Mo132},
1.0 g·L−1;

10 min UV

{Mo132},
0.5 g·L−1;

15 min UV

{Mo132},
0.5 g·L−1;

TiO2,
1.0 g·L−1;

15 min UV

{Mo132},
0.5 g·L−1;

TiO2,
1.0 g·L−1;

15 min UV + 7 h UV
R, nm 2.5 5.6 2.2 5.0 6.3 3.0 10.7 2.1

The calculated mesh size values illustrate the above-mentioned trends. Addition of
the {Mo132} two times increases the mesh size as compared to blank hydrogel Gel#1, but
elongation of an exposition under the UV light from 10 to 15 min reduces the mesh size
from 5 to 3 nm (Gel#4 and Gel#6, respectively). Despite the UV irradiation for 15 min, the
mesh size enlarged significantly to 10.7 nm (Gel#7). Produced Gel#7 has a homogeneous
distribution of the TiO2 nanoparticles. After aging under the UV light for 7 h, the mesh
size came to value similar to Gel#1. To check whether the presence of the {Mo132}, the
TiO2 and long-time UV irradiation influence on the PAAm network’s molecular structure
or not, we measured the IR spectra (Figure S7, see Supporting Information). It is clear
that IR spectra of the hydrogels Gel#1, Gel#4, Gel#5 and Gel#8 (both irradiated front and
nonirradiated back sides) are identical, practically. Only for Gel#8, the stretching of C-H
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bond near 2925 and 2854 cm−1 (asymmetric and symmetric, respectively) becomes sharper
and more intense.

The role of TiO2 is not so clear. Of course, the TiO2 nanoparticles in mixture can
scatter the UV light during the gelation to obtain the hydrogel with the larger mesh size.
To be scattered, UV light should interact with the TiO2 surface. Therefore, the main
question concerns whether the radical species generated onto the TiO2 surface accelerate
the polymerization or quench it through the recombination. Because the simultaneous
presence of the {Mo132} and the TiO2 leads to increase both the gelation time and the
mesh size decreasing the cross-link frequency, one can assume that the TiO2 downshifts the
polymerization rate in neutral pH condition when adsorbing the UV photons. Thus, serving
as optical filter, the {Mo132} prevents the TiO2 nanoparticles from the UV light absorption.

2.4. Photostability of PAAm@Mo132@TiO2

To deepen understanding the role of the TiO2 nanoparticles and to evaluate the
photostability of the {Mo132}-embedded hydrogel, we studied the aging process during
the long-time UV irradiation. The PAAm@Mo132 and PAAm@Mo132@TiO2 hydrogels were
simultaneously exposed under the UV light (365 nm, 9 W) in two regimes: in the cell,
where gel was located between two quartz windows and in the aqueous solution. In the
former case, the dynamic oxygen exchange between an atmosphere and the hydrogel
was absent and the swelling process was restricted by the size of the cell. In the case
of an aqueous solution, both above-mentioned processes occurred in opposite fashion.
In Figure 9, the comparison of the Gel#6 and Gel#7 after UV irradiation in the cell and
an aqueous solution is presented. As one can see, the UV irradiation of PAAm@Mo132
hydrogel in both regime (7 h in the cell and 1 h in an aqueous solution, Figure 9a,e,f and
Supplementary Figures S8 and S9, see Supporting Information) results in the complete
bleaching of the {Mo132}. This is expected behavior because the Keplerate {Mo132} can
gradually decomposes in an aqueous media due to the oxidation of the MoV-centers
accelerating by even the visible light irradiation [19,35,36].
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Figure 9. (a) The images of the PAAm@Mo132@TiO2 (left) and PAAm@Mo132 (right) hydrogels
after UV irradiation for 7 h in the cell. (b,c) The images of the broken PAAm@Mo132@TiO2

and PAAm@Mo132 hydrogels after UV irradiation for 7 h, respectively. (d) The image of the
PAAm@Mo132@TiO2 hydrogel (after UV irradiation for 9 h) cut in half, the back side is concaved.
(e,f) The images of of the PAAm@Mo132@TiO2 (left) and PAAm@Mo132 (right) hydrogels before (e)
and after (f) UV irradiation for 3 h in the aqueous solution.
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In the case of the PAAm@Mo132@TiO2 hydrogel, the irradiation in the cell or an
aqueous solution gives different results. In the aqueous solution, after an exposition un-
der UV light for 3 h, the irradiated (front) side of the hydrogel became white colored,
demonstrating the homogeneously distributed TiO2 nanoparticles within the gel matrix
(Figures S9 and S10, see Supporting Information). Irrespective of this, the nonirradiated
(back) side remained the brown color, indicating the {Mo132} preservation but with de-
creased concentration (Figure S10, see Supporting Information). Due to the fast decomposi-
tion of the {Mo132} under UV light from the front side, the remained TiO2 nanoparticles
effectively scatter the light protecting the back side from the irradiation and the {Mo132}
from the decomposition, consequently. Despite the ROS generation on the TiO2 nanoparti-
cles under the UV light, these oxygen radicals cannot penetrate into the hydrogel network
to reach the {Mo132} on the back side owing to the short lifetime and the extremely small
diffusion coefficient of the ROS [29]. In contrast, being irradiated by the UV light in the
cell for 7 h, the PAAm@Mo132@TiO2 hydrogel became white on the back side (Figure 9b),
whereas the {Mo132} still existed on the front side, and only a very thin white layer without
{Mo132} appeared on the top of the front side. We repeated this experiment and reduced the
distance between the UV LED and the cell from 25 mm to the minimal value, 15 mm. The
PAAm@Mo132@TiO2 was irradiated for 4.5 h, kept in the dark for 17 h (to the relaxation
of the intrinsic hydrogel structure) and then irradiated again for 4.5 h. After a total of 9 h
of exposition under UV light, the layered structure reproduced, but the top white layer
became more pronounced from the front side. Moreover, due to the long-time irradiation
by UV LED placed in proximity to the cell, the hydrogel’s back side was more cross-linked.
When removed from the cell, the back side of Gel#8 was concaved, as compared to the
front side irradiated with UV light (Figure S11c–f, see Supporting Information). Contrary
to the case of the PAAm@Mo132, the observed PAAm@Mo132@TiO2 hydrogel’s behavior
corresponds to presence of the competitive processes affecting the polymerization under
UV light. In addition to the radicals’ generation from the riboflavin molecules and the TiO2
surface, as well as the {Mo132} oxidative decomposition, one more process can exist, which
is the photoinduced cascade of the electron transfer to the {Mo132}, preventing its structure
from an oxidative decomposition (Figure 10).
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Even if we consider the random reflection of the UV light making possible some small
flare of the hydrogel back side, the photon flux is incomparably bigger on the front side,
where the polymerization degree should be higher. To explain the observed inversion of
the cross-links frequency, we should mention that after the exposition of the liquid mixture
under the UV light for 15 min to obtain the hydrogel, there is an unreacted amount of the
AAm and BIS-AAm molecules. If the cross-links frequency becomes higher on the back
side after 7–9 h of UV irradiation, it means that polymerization rate is faster here. Therefore,
during the UV irradiation, in the hydrogel front part the preservation of {Mo132} decreases
the polymerization rate owing to the optical filter effect of the Keplerate (see absorption
spectrum in Figure 10).

The presence of {Mo132} cannot totally exclude the fact that the TiO2 nanoparticles
adsorb a small fraction of UV light across whole hydrogel. In accordance with the energetic
levels diagram, the conduction band (CB) of the TiO2 lies above the LUMO state of the
{Mo132} on the 0.19 eV [37], making possible the spontaneous electron transfer [38]. In
its turn, the TiO2 needs a sacrificial electron donor, which can be oxidized by the TiO2
ground state (valence band, VB). The unreacted acrylamide molecules are good candidates
for that, but the HOMO state of AAm is 9.8 eV, based on the Ultraviolet Photoelectron
Spectroscopy [39], and the LUMO state is −5.52 eV in accordance with band gap (4.28 eV)
determined by means of Tauc’s plot (Figure S12, see Supporting Information). However,
it is well known that the surface electronic state can be different from the bulk of the
material. Furthermore, the ab initio calculation demonstrates that above the VB level (near
6 eV, e.g.) novel electronic states appear due to adsorption of the molecular species on the
TiO2 surface [40]. Even more, under UV light on the TiO2 surface, the produced super-
oxide radicals O2

•– possess the inversed HOMO-SOMO states with −5.63 eV for HOMO
level. Therefore, the ad-molecules and ad-atoms can serve as the electron donors on the
TiO2 surface.

The intensification of the photoinduced cascade of the electron transfer to the {Mo132}
on the front side (where the photon flux is much higher) can explain the competition
between this process and polymerization hindered by the presence of {Mo132}. Thus, the
TiO2 behaves like a mediator of the electron transfer to {Mo132}. This transfer occurs on the
nanoparticles’ surface, providing the simultaneous presence of the sacrificial donor and
Keplerate at the optimal distance.

3. Materials and Methods
3.1. TiO2 Characterization

As a photocatalyst, we used commercial titanium dioxide P25 grade purchased from
Evonik. The specific surface area of it (45.2 m2/g) was determined via low-temperature
equilibrium sorption of nitrogen (BET equation) using a Micromeritics TriStar 3020 vacuum
sorption unit. Electron microscope photographs of the powder were obtained with a JEOL
JEM 2100 transmission electron microscope (TEM) (Figure S1a, see Supporting Information).
The particle size distribution was determined by the graphical analysis of the micrographs
(Figure S1b, see Supporting Information). The particles were considered spherical in
order to calculate the average particle size. Number average particle diameter (dn) was
39 nm, while weighted average diameter (dw) was 115 nm. The considerable difference
between these two values indicated that the particle size distribution was broad. The phase
composition of titanium dioxide was characterized via X-ray phase analysis on a Bruker D8
Discover diffractometer using CuKα band and a graphite monochromator on a diffracted
beam. Data were processed using the TOPAS 2.1 program with Ritveld’s refinement of
the parameters. The anatase phase, the content of which was 88 wt.%, was found to
predominate (CSR size = 25 nm, lattice parameters: a = 3.786 Å, c = 9.507 Å). The rutile
phase (12 wt.%) was detected in addition to the anatase phase (CSR size = 36 nm, lattice
parameters: a = 4.594 Å, c = 2.959 Å). The effective band gap of titanium dioxide (3.38 eV)
was determined optically [41] from the diffuse reflectance spectrum in 190–1400 nm interval
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obtained using a UV-2600 Shimadzu spectrophotometer with an ISR-2600 Plus integrating
sphere attachment (Figure S1c, see Supporting Information).

3.2. Hydrogel Alg-Ca@PAAm@TiO2 Synthesis and Characterization

The synthesis of Alg-Ca@PAAm@TiO2 composite hydrogels was carried out ac-
cording to the original approach, based on the method proposed by Park and Hoff-
man at work [17]. The hydrogel precursors were: acrylamide (AAm, 99%, AppliChem,
Darmstadt, Germany) as monomer, N,N’-dimethylenebisacrylamide (BIS-AAm, >98%,
Merck, München, Germany) as cross-linker, sodium alginate (Alg-Na, MQ-200 grade,
Merck, München, Germany) as polymerization mold, ammonium persulfate (APS, >98%,
Merck, Germany) as initiator, and N,N,N’,N’-tetramethylethane-1,2-diamine (TEMED,
>99%, Merck, Germany) as catalyst. All the reagents were used as received.

First, the stock aqueous solution (gel precursor) of AAm, BIS-AAm, Alg-Na and
TEMED was prepared. The weighted amount of TiO2 was dispersed in water under ultra-
sound treatment using “Cole Palmer CPX 750” Ultrasonic Homogenizer (at 150 W output
power for 15 min). Then, TiO2 suspension was mixed with stock solution with vigorous
stirring. The final concentration of TiO2 suspension is 1 g·L−1. The content of AAm in
relation to Alg-Na varied from 50 to 95 wt.%. At the same time, the mass fraction of the
{Aam + Alg-Na} mixture in the stock solution remained always the same—10 wt.%. In the
reaction mixture, the final concentration of BIS-AAm and TEMED was 25 and 8.8 mM.

Further, the reaction mixture (gel precursor) was added dropwise through a needle
into an aqueous solution containing 0.05 M of APS and 0.5 M of calcium chloride (Figure S2,
see Supporting Information). As a result, hydrogel spherical beads instantly precipitated,
forming elastic gel, Alg-Ca@PAAm@TiO2. The resulted product was kept in a saline
solution for 24 h to finalize the ion exchange and complete the acrylamide polymerization
process, after the hydrogel was washed in distilled water (in static regime) for two weeks
to achieve equilibrium swelling. Diameter of beads are ca. 3 mm. Synthetic procedure is
presented in Figure 1.

3.3. Swelling Behavior of Alg-Ca@PAAm@TiO2 Beads

Then, the resulting hydrogel beads were washed for two weeks in distilled water with
daily water renewal to remove residual monomers and to achieve an equilibrium swelling
ratio (α), which was determined gravimetrically using the following equation:

α =
mg −m0

m0
(6)

where mg is the mass of a swollen gel and m0 is the mass of a gel dry residue after complete
evaporation of water, which was conducted at 70 ◦C until a constant weight was reached.

In the case of composite gels, the swelling ratio determined according to Equation (6)
gives the water content related to the combined mass of polymer and solid particles (TiO2),
although the latter do not swell. Thus, the swelling ratio of the polymeric network alone
(α’) was used for their characterization. It is related to the overall swelling ratio α according
to the following equation:

α′ = α
m(TiO2) + mnet

mnet
(7)

where m(TiO2) is the mass of titanium dioxide nanoparticles in the reaction mixture and
mnet is the combined mass of monomers and cross-linker in the synthesis.

3.4. Photocatalytic Activity

In the photocatalytic activity experiments, the hydrogel samples were previously kept
for 24 h in the dark in 10 mL of 3 µM aqueous solution of methyl orange until equilibrium
saturation of the hydrogel with the dye was reached. After that, the gel beads were placed
in the cylindrical quartz cuvette arranged in the laboratory setup with UV irradiation
(LED). The sketch of the setup is given in Figure S3 (Supporting Information). The emis-
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sion spectrum of LED has maximum at 365 nm, and the light flux intensity is 16 mW·cm−2,
as measured by thermopile photometer Thorlabs PM16-401. During the UV irradiation,
the bleaching of the dye aqueous solution was observed due to the decomposition of the
dye molecules by gel photocatalyst. At certain time intervals of irradiation, the optical
density of the aqueous solution in cuvette was measured spectrophotometrically in situ
by an optical fiber probe (Thorlabs Transmission Dip Probe TP22) connected to the spec-
trophotometer (Thorlabs CCS 100) at a wavelength of 464 nm. The measurements were
carried out at 25 ◦C under the permanent stirring of the solution with an overhead stirrer.
The spectrophotometer was preliminarily calibrated for the concentration of methyl orange
in an aqueous solution at a wavelength of 464 nm.

3.5. Photostability of the Hydrogel Beads Alg-Ca@PAAm@TiO2

The photostability of the gels under UV irradiation (365 nm, light flux is 16 mW·cm−2)
was determined by the gravimetric method. Since the hydrogel is a two-component system
that consists of the polymer network and the bound water, the weight loss may be due to a
decrease in at least one of them. The change in the mass of dried gels before and after UV
irradiation characterizes the photostability of gel’s polymer matrix:

m0 −m0(UV)

m0
× 100% (8)

where m0 and m0(UV) is the mass of dried gel before and after UV-irradiation, respectively.
UV-irradiation of gel’s samples was carried out during 5 h in thermostatically ventilated
beakers with 10 mL of water.

3.6. Thermodynamic Study of the “Alginate-TiO2” System

The enthalpy of adhesion of the alginate polymer chains to the surface of the TiO2
particles was determined using a thermochemical cycle. Model polymer composites with
the load of solid filler ranging from 0 to 100 wt.% were prepared separately as follows. A
weighed portion of the TiO2 powder was placed in this solution of sodium alginate (Alg-Na)
and mechanically stirred in an agate mortar. The obtained homogeneous mixture was dried
on a Teflon support to a constant weight. A weighed portion of the composite was placed in
a 0.35 mL thin-walled glass ampoule and dried in a vacuum to constant weight; thereafter,
the ampoule was sealed. Then, the ampoule was placed in a calorimetric cell with 5 mL of
water. The thermal effects of dissolution in water of filled polymer composites and the heats
of wetting of the TiO2 particles with water were measured using a Calvet microcalorimeter
of a laboratory design [42] kept at 298 ± 0.1 K. During the calorimetric experiment, the
ampoule was broken inside of the cell and the thermal effect was recorded. The absolute
uncertainty of the calorimetric measurements, according to the electrical calibration data,
was ±0.02 J.

3.7. Hydrogel PAAm@TiO2@Mo132 Synthesis

The {Mo132} crystal were produced via standard protocol [18]. Their structures were
confirmed by FT-IR (Nicolet 6700, Thermo Scientific, Waltham, MA, USA) and Raman
spectroscopy (Alpha 300 AR confocal Raman microscope, 633 nm laser, WiTec GmbH,
St. Johann, Austria) and comparison with the literature [18,43]:

IR (ATR), {Mo132}: ν(OH···H) 3398; ν(NH in NH4
+) 3192; νas(CH) 3042; νs(CH)

2846; ν(C=O) 1710; δ(H2O) 1616; νas(COO- coordinated) 1546; δ(NH4
+) 1411; νs(COO-

coordinated) 1340; 1281, δip(C-CH3, rocking) 1092, 1046, 1023; ν(Mo=O) 964; ν(O-Mo-
O/Mo-O-Mo) 935, 846; ν(Mo-µ2O-Mo/Mo-µ3O-Mo) 779, 704, 665 627; δ(Mo-O-Mo) 558,
508; δ (Mo-Oµ2-Mo/Mo-Oµ3-Mo) 463, 412 cm−1.

Raman, {Mo132}: νs,as(Mo=O) 945m; ν(O-Mo-O)terminal 875s and 842(sh)m; νs(Mo-O-
Mo) 376s; δ(Mo=O) 316m; δ(O-Me-O) 215w; combination bands: 1250w, 710w.

For the hydrogel production, the following protocol was used. The stock solution (1)
was prepared by dissolving acrylamide 0.75 g (Merck) and N,N-methylenebisacrylamide
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0.02 g (Sigma-Aldrich, Burlington, NJ, USA, ≥99%) in 1.730 mL of the riboflavin (vitamin
B2, Sigma-Aldrich, ≥98%) aqueous solution (0.06 g·L−1, freshly prepared) in vial under
gentle heating on the plate (80–100 ◦C set temperature). The vial was closed with a silicon
cap and covered by the aluminum foil to keep the solution in dark. To prepare the stock
solution (2), 0.0025 g of {Mo132} was dissolved in 2 mL of water. After that, 0.5 mL of
riboflavin solution (0.06 g·L−1, freshly prepared) was added. In the case of TiO2-embedded
hydrogel, the TiO2 P25 powder 0.005 g (Evonik) was added along with {Mo132} in 2 mL of
water followed with ultrasonication for 10 min.

Then 1.25 mL of stock solution (1) was kept under 50 ◦C for 10 min (in dark) and
irradiated with 365 nm UV-light (18 W, LED) for 15 s to reach the pre-gelation. Immediately
after that, the 1.25 mL of stock solution (2) was added and mixed with pipette. Further,
mixture was transferred in the cell consisted of polyvinylchloride (PVC) ring (thickness is
3.8 mm, inner hole diameter is 19 mm) placed between two fused quartz windows. Cell
was located in tight contact with two UV-LED sets (9 W per each window) and irradiated
during 10 or 15 min (depended on experiment condition) while cooling with fan.

3.8. Swelling Behavior of PAAm@Mo132 and PAAm@TiO2@Mo132

Swelling behavior was studied the same way as previously described. Briefly, we kept
hydrogel in 250 mL of distilled water for 10 days until reaching the constant weight. After
swelling was completed, the hydrogel was dried in vacuo at 60 ◦C on rotary evaporator.
The swelling ratio (α) and its corrected value (α’) were calculated in accordance with
Equations (6) and (7), respectively.

3.9. Photostability of PAAm@Mo132 and PAAm@TiO2@Mo132

When hydrogel was formed in the cell, the photostability was studied in two variants
(Figure S4, see Supporting Information): (i) the long-time (7–9 h) irradiation in the cell only
from one side with UV (365 nm) LED (9 W per side), distance is 25 mm or 15 mm; (ii) the
obtained hydrogel in PVC-ring was placed in water and irradiated only from one side with
UV (365 nm) LED (9 W) for 3 h.

3.10. UV-Vis Spectroscopy

The UV-Vis spectra of the aqueous solution of the acrylamide and {Mo132} were mea-
sured by the spectrometers PB-2201 (Solar Lab, Minsk, Belarus) and UV-1800 (Shimadzu,
Kyoto, Japan) in the fused quartz cuvette.

4. Conclusions

In this work, the two types of PAAm-based hydrogels were produced. The hydrogel
network structure was designed by means of the organic (alginate) or the inorganic (Kepler-
ate {Mo132}) polyelectrolytes. Using the Alg-Ca and TiO2 nanoparticles, we controlled the
shape and photocatalytic activity of the PAAm-based hydrogel beads, whereas the addition
of {Mo132} allowed us to produce the photopolymerized biocompatible hydrogel.

In accordance with swelling behavior of the Alg-Ca@PAAm@TiO2 hydrogels, we
found that the swelling ratio increases drastically when PAAm content reaches the 90 wt.%.
To evaluate the contribution of the TiO2 nanoparticle into the swelling behavior, the en-
thalpy of dissolution was measured. It clearly showed that both alginate and PAAm macro-
molecules have no thermodynamic benefit to interact with the TiO2 surface, making it ac-
cessible to molecules’ adsorption and ROS generation. The produced Alg-Ca@PAAm@TiO2
hydrogel beads demonstrated the high photocatalytic performance towards the methyl
orange dye bleaching in the aqueous solution. For the Alg-Ca@PAAm@TiO2 hydrogels with
PAAm contents of 50, 70, 80 and 90 wt.%, the found values of the effective kinetic constants
k were: 0.2 × 10−3, 0.7 × 10−3, 1.5 × 10−3 and 2.6 × 10−3 min−1, respectively. In addition,
we studied the photostability and re-swelling behavior of the Alg-Ca@PAAm@TiO2 hy-
drogel beads that is strictly important for actual photocatalytic application. As we found,
the introduction of PAAm at 90 wt.% remains the re-swelling ratio on 60% from the initial
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level, wherein, even at 50 wt.% of PAAm content, the photostability becomes extremely
high: there is no loss of hydrogel mass during 5 h under UV irradiation, whereas for
Alg-Ca@TiO2 hydrogels the weight loss reaches 30%.

The creation of biocompatible hydrogel needs another approach. For this, we used
the photopolymerization of PAAm/BIS-AAm mixture under the presence of {Mo132},
which gave us the way to control the mesh size (2.5 and 5.0 nm without and with the
{Mo132}, respectively) and polymerization rate. Furthermore, the rational hydrogel structure
designed by the {Mo132} made possible the PAAm@Mo132@TiO2 hydrogel production,
while the gelation did not occur in the absence of Keplerate. Varying the BIS-AAm and the
{Mo132} content as well as the irradiation regimes, we found the fast and cheap protocol
for the production of TiO2-embedded biocompatible hydrogel with tunable mesh size.
Investigation of the aging process of PAAm@Mo132@TiO2 hydrogel under long-time UV
irradiation (7–9 h) resulted in the unexpected stabilization of the {Mo132} structure in the
presence of TiO2 nanoparticles conditioned with photoinduced electron transfer, probably.

Thus, the suggested synthetic approaches to the Alg-Ca@PAAm@TiO2 and the
PAAm@Mo132@TiO2 hydrogel production will be useful for smart-material design applied to
photocatalytic water purification or biotechnology (such as wound dressing), respectively.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/inorganics11030092/s1, Figure S1: Characterization of TiO2 nanopar-
ticles; Figure S2: Schematic representation of the Alg-Ca@PAAm@TiO2 hydrogel beads production;
Figure S3: Experimental setup for the measurement of photocatalytic activity of hydrogel photo-
catalysts in methyl orange dye aqueous medium; Figure S4: Experimental setups for hydrogel
irradiation. Each UV-LED module (UV-module) has 3 LED emitting light at 365 nm with 3 W per
each LED giving 9 W in sum; Figure S5: The photostability of the Alg-Ca@PAAm@TiO2 hydrogel
beads with various PAAm contents; Figure S6: The IR spectra of swelled Alg-Ca@PAAm@TiO2
and Alg-Ca@PAAm hydrogels (with PAAm 90% of content) after one-year storage in distilled wa-
ter; Figure S7: The FT-IR spectra of hydrogel measured in the ATR mode. For sample code, see
the manuscript; Figure S8: The images of the PAAm@Mo132@TiO2 (left gel) and PAAm@Mo132
(right gel) hydrogels during the UV irradiation for 7 h in the cell; Figure S9: The images of the
PAAm@Mo132@TiO2 (left gel) and PAAm@Mo132 (right gel) hydrogels during the UV irradiation for
3 h in the aqueous solution; Figure S10: The images of the front (irradiated) and back (nonradiated)
sides of the PAAm@Mo132@TiO2 hydrogel after the UV irradiation for 3 h in the aqueous solution;
Figure S11: The images of the PAAm@Mo132@TiO2 hydrogel after the UV irradiation; Figure S12:
The Tauc’s plot for UV-Vis spectrum of the acrylamide aqueous solution (7.5 g·L−1).
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