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Abstract: The C-H bond activation and functionalization is a powerful tool that provides efficient
access to various organic molecules. The cobalt-catalyzed oxidative C-H bond activation and func-
tionalization has earned enormous interest over the past two decades. Since then, a wide diversity
of synthetic protocols have been published for C-C, C-Het, and C-Hal bond formation reactions.
To gain some insights into the reaction mechanism, the authors performed a series of experiments
and collected evidence. Several groups have successfully isolated reactive Co(III) intermediates
to elucidate the reaction mechanism. In this review, we will summarize information concerning
the isolated and synthesized Co(III) intermediates in cobalt-catalyzed, bidentate chelation assisted
C-H bond functionalization and their reactivity based on the current knowledge about the general
reaction mechanism.
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1. Introduction

The directed C-H bond functionalization methodology using transition metal catalysis
has proven itself as a valuable organic synthesis tool [1–8]. Nowadays, using the directed
C-H bond functionalization methodology, a diverse range of selective transformations
can be achieved, including C-C, as well as C-O, C-N, C-Hal, C-S, etc. bond formation,
allowing to obtain more complicated products from simple starting materials in step- and
atom-economic fashion [1–8]. C-H bond functionalization using first-row transition metal
catalysts recently has emerged not only as an attractive alternative to noble metals, but
also as an opportunity to expand the scope of C-H bond functionalization methodology
due to their unique reactivity [9]. Among other 3d elements, cobalt is considered to be
a sustainable catalyst due to its price, biorelevance, earth abundance and lower toxicity.
Since 2010, great progress in the development of novel methods using cobalt catalysis had
been achieved [10–20]. In general, C-H bond functionalization using cobalt catalysis can
be divided in two categories: low valent and high valent, depending on the catalyst used
for cobaltation [21]. However, high valent cobalt catalysis can be divided in two main
directions, reactions using Cp*Co(III) complexes as catalysts and reactions using simple
Co(II) and Co(III) salts in combination with bidentate chelation assistance [18]. Herein,
we will focus on last direction, which after pioneering work by Daugulis in 2014 [22] was
proven to be efficient for wide range of C-H functionalizations [10–22].

2. General Mechanism for Cobalt-Catalyzed, Bidentate Chelation Assisted C-H Bond
Functionalization

Over the last two decades, gathered mechanistic experiments and collected evidence
provided a general idea of the operative mechanism in cobalt-catalyzed, bidentate chelation
assisted C-H bond functionalization. According to the literature, it is believed that for
the major part of the found transformations, the Co(II)-Co(III)-Co(I) catalytic cycle is
operative [18,23]. The general mechanism is shown in Scheme 1, which consists of four
elementary steps:
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• ligand exchange (substrate coordination)/oxidation;
• C-H bond activation;
• C-H bond functionalization;
• catalyst re-oxidation to return active species in catalytic cycle [23].
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To the date, several intermediate Co(III) complexes have been isolated. In this review,
these species will be discussed in such order as they participate in the catalytic cycle.

3. Ligand Exchange, Oxidation

The first step of the catalytic cycle is ligand exchange/substrate coordination and
oxidation of Co(II) species to Co(III) species. According to the literature data, two operative
pathways are plausible for this step. First, the catalytic cycle could be initiated with
substrate coordination to Co(II) salt to form a Co(II)-substrate complex, which is further
oxidized to a Co(III) complex that undergoes the C-H activation step. In the second
operative pathway, the Co(II) catalyst might be first oxidized to Co(III) salt. Next, substrate
coordination takes place. In the literature, there is support for both of these pathways. Most
likely, the operative pathway depends on the reaction conditions and/or substrate used for
the transformation [23].

In 2016, Maiti and Volla reported a novel cobalt-catalyzed methodology for the inter-
molecular heterocyclization of benzamides 1 (Scheme 2) [24]. In their work, the following
conditions were used: allene as the C-H bond functionalization reagent, Co(acac)2 as the
catalyst, Mn(OAc)3·2H2O/air as reaction oxidant, and sodium pivalate in TFE. Using the
developed methodology, authors were able to provide a broad substrate scope with respect
to both allenes and benzamides, delivering 41 different products with yields up to 90%. The
authors conducted series of mechanistic experiments to study the reaction mechanism in
detail. The authors concluded that electrophilic cobaltation is unlikely based on competitive
experiments between methoxy- and fluoro-substituted benzamides. Experiments with deu-
terium labeled substrates indicated that C-H bond activation might not be the rate-limiting
step. Additionally, authors were able to isolate cobalt(III)-benzamide intermediate 3, whose
structure was confirmed with XRD analysis. Along with complex 3, authors detected the
formation of C-H activated Co(III)-intermediate by HRMS, although they were not able to
isolate corresponding complex. Based on the mechanistic experiments as well as isolated
complex 3, the authors proposed the plausible reaction mechanism, which is consistent
with the general Co(II)-Co(III)-Co(I) catalytic cycle.
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Scheme 2. Cobalt-catalyzed benzamide 1 cyclization with allenes [24].

In 2017, the Carretero group reported an efficient protocol for the cobalt-catalyzed,
picolinamide-directed C-H bond functionalization/annulation of benzylamine derivatives
4 with various alkynes (Scheme 3) [25]. The reaction proceeds in the presence of Co(OAc)2
catalyst, O2 oxidant, and NaOAc additive in EtOH at 100 ◦C temperature. The authors were
able to ensure good functional group tolerance under the reaction conditions as well as a
variety of terminal and internal alkynes delivered the desired products 5 predominantly
with good and excellent yields. According to the mechanistic hypothesis, the authors
propose that this reaction proceeds through the octahedral cobalt intermediate 6, which
was successfully isolated. The structure of Co(III) complex 6 was proven by ESI-HRMS
and NMR analysis, although no crystals for X-ray diffraction analysis were obtained. In
the stoichiometric experiment, Co(III)-species 6 reacted with 4-octyne to afford product
5 in 89% yield. Moreover, Co(III) complex 6 was found to be catalytically competent in
the reaction of 4 with alkyne, delivering product 5 in 89% yield. In comparison, under
the standard reaction conditions using Co(OAc)2 salt, the same product 5 was obtained in
85% yield. These results indicated that complex 6 could be the active catalyst precursor
for the transformation. Additionally, the authors performed ESI-HRMS experiments of
the reaction mixture to shed some more light on the reaction mechanism, and deciphered
different cobalt complexes being present in the reaction mixture, although none of them
was isolated and characterized.
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Two years later, in 2019, Lahiri, Zanoni and Maiti reported a cobalt-catalyzed C-H
bond allylation reaction using arylanilines 7 as substrates and unbiased terminal olefins
(Scheme 4) [26]. The most common problem in these reactions is products’ styrenyl/allylic
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regioselectivity of the double bond, which arises from the metal center’s ability to unse-
lectively perform β-hydride elimination. In this context, authors successfully overcame
the challenge and were able to deliver 36 different aryl(allyl)anilines 8 with yields up to
96% in a highly selective fashion. In addition, the authors demonstrated that picolinamide
directing group (PA) can be easily removed upon slight heating in basic conditions. To
gain insight into the reaction mechanism, among kinetic and labeling studies, authors were
able to isolate five-membered Co(III) intermediate 9, whose structure was confirmed using
XRD and ESI-MS analyses. The isolated Co(III) complex 9 was found to be catalytically
competent, delivering product 8 in 67% yield, suggesting the involvement of a catalytically
active high-valent Co(III) species.
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In 2020, Wang and colleagues demonstrated a novel cobalt-catalyzed C-H/C-H bond
cross-coupling reaction between benzoxazole and aryl aniline 7 (Scheme 5) [27]. The use
of Co(OAc)2 catalyst, Ag2CO3 oxidant, and Ole-ONa base in fluorobenzene was found to
represent the optimal conditions for the successful reaction. The main advantage of the
developed transformation was the straightforward access to biphenyls 10 in good yields (up
to 73%), which possess antifungal activities and COX-2 inhibition potency. To investigate
the reaction mechanism, the authors performed series of control experiments, including
H/D exchange and KIE experiments, which led to conclusion that the C-H activation step
is irreversible, but not the rate-determining step. Additionally, two Co(III) intermediates
11 and 12 were obtained by the reaction of aniline 7 with a stoichiometric amount of
Co(OAc)2, oxidant and base. Both Co(III) complexes 11 and 12 were characterized using
NMR spectroscopy and high-resolution mass spectrometry. According to the suggested
reaction mechanism, Co(III) complex 12 could be obtained from Co(III) complex 11 via a
C-H activation step, which most likely occurs via a base-promoted concerted metalation-
deprotonation mechanism. Notably, cobaltacycles 11 and 12 provided the desired product
8 in 41% and 78% yield, respectively, whereas using Co(OAc)2 as the catalyst, the product
yield was 71%, which confirmed the hypothesis that both isolated Co(III) complexes are
most likely intermediates of the developed reaction.
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Scheme 5. Cobalt-catalyzed synthesis of arylanilines 10 [27].

Recently, in 2022, the Shi group reported an elegant enantioselective C-H bond func-
tionalization methodology exploiting diarylphosphinamides 13 (Scheme 6) [28]. In their
study, employing Co(OAc)2·4H2O catalyst and Salox ligand 15, azaphosphinines 14 were
obtained with yields up to 99% with fascinating product enantioselectivities (up to >99% ee).
The authors demonstrated great substrate/alkyne scope, delivering 45 different enantiop-
ure products with excellent yields. Great emphasis was put on the understanding of the
reaction mechanism and isolation of potential intermediates of the catalytic cycle.
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First, to test the proof of concept, authors synthesized chiral octahedral Co(III)-Salox
complexes 16, which were hypothesized to act as the reaction catalysts. Accordingly,
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Co(acac)2 in combination with Mn(OAc)2·4 H2O in the presence of chiral ligand 15 gave
Co(III)-Salox complex diastereomers 16a and 16b (16a:16b = 15:1) in high yield.

With both Co(III) complex isomers 16a and 16b in hand, the authors proved their
hypothesis and demonstrated that both complexes 16 are suitable chiral catalysts for enan-
tioselective desymmetrizing C-H annulation of diarylphosphinamides 13 with alkynes
thereby demonstrating the structure of the active cobalt catalyst which participates in devel-
oped reaction. Next, the reaction of diarylphosphinamide 13 with ligand 15 and Co(acac)2
under oxidative conditions resulted in the simultaneous formation of Co(III) complexes 16a
and 17 with 45% and 14% yield, respectively. Additionally, both 16a and its diastereomer
16b in the reaction with diarylphosphinamide 13 in the presence Mn(OAc)2·4H2O gave
Co(III) complex 17 (Scheme 7) [28]. The authors speculated that Mn(OAc)2·4H2O likely
promotes the formation of 17 by facilitating ligand exchange, as without Mn(OAc)2·4H2O,
complex 17 was not observed. In contrast, ligand exchange between the pre-formed rac-18
and ligand 15 provided complex 16a, not 17. Finally, complex 17 in reaction with pheny-
lacetylene gave product 14 in 71% yield, suggesting that all of the obtained cobalt complexes
16–18 might be the reaction intermediates.
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4. C-H Bond Activation

The key elementary step of C-H bond functionalization is the C-H bond activation.
For high-valent cobalt catalysis, several C-H bond activation mechanisms leading to the
formation of Co(III)-aryl complex are considered to be operative:

• electrophilic aromatic substitution;
• base-assisted intramolecular electrophilic substitution;
• concerted metalation–deprotonation;
• single-electron transfer [23,29].

In the literature, there are several examples of isolated relatively stable Co(III)-aryl
complexes obtained via direct C-H bond activation. Such complexes are proven to be
invaluable assets for the mechanistic studies.

In early 2014, the Daugulis group developed benzamide 1a C(sp2)-H bond alkenylation
with alkynes, using 8-aminoquinoline (Q) as a directing group (Scheme 8) [22]. The reaction
conditions were mild and provided products 19 in good to excellent yields, tolerating a wide
range of alkynes and substituents at benzene ring moiety. The authors hypothesized that
due to the aminoquinoline stabilization of metals in high oxidation state, cobalt complex
20 could be the reaction intermediate. In addition, they successfully synthesized complex
20, the structure of which was confirmed by NMR analysis, providing strong evidence for
C(sp2)-H bond activation of phenyl moiety and Co(III) species.
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Maiti and co-workers in 2016 disclosed a novel methodology for benzamide 1b C(sp2)-
H bond allylation (Scheme 9) [30]. The optimization studies showed that the combination
of Co(OAc)2·4H2O catalyst, Ag2SO4 oxidant, and 8-aminoquinoline directing group was
the most suitable for the developed transformation. Both electron-donating and electron-
withdrawing amides were successfully applied and yielded allylamides 21 with moderate
to very good yields. In order to thoroughly outline all the aspects of this reaction, a
series of control experiments were performed, including kinetic and labeling studies along
with radical quenching experiments. Moreover, the authors succeeded in isolation of
C-H activated Co(III)-aryl intermediate 22, and proved its catalytic competency towards
developed reaction. Employment of complex 22 as the catalyst yielded allylamide 21 in
59% yield. Additionally, they identified and characterized cobalt(III) complex 23 by HRMS,
which underwent C-H bond activation/ligand exchange steps and formed Co(III)-aryl
complex 22 after the addition of a stoichiometric amount of NaOPiv to the reaction mixture.
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In 2016, Ribas and co-workers described the synthesis and characterization of benchtop-
stable organometallic aryl-Co(III) complexes obtained through C-H bond activation, using
a 12-membered macrocyclic substrate 24a (Scheme 10) [31]. Cobalt (II) coordination com-
pounds 27 were prepared by the reaction of Co(OAc)2 with macrocycles 24 (R = H or Me) at
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room temperature in TFE solution, and their structures were initially confirmed by HRMS
and XRD analysis. Careful analysis of solid-state molecular structure indicated that Co(II)
complexes 27 possess two acetates coordinated in a bidentate fashion. Notably, tridentate
macrocycles 24 act as bidentate ligands, coordinated only through the pyridine and one
amine. Upon increasing the temperature, the desired C-H activated cobalt(III) complexes
28 were obtained. Due to the stability of obtained Co(III)-aryl complexes 28, they were
successfully characterized by NMR and HRMS, providing spectra consistent with a Co(III)
low spin diamagnetic metal center. Additionally, the authors explored the reactivity of
isolated Co(III)-aryl compounds 28 in stoichiometric reactions with terminal and internal
alkynes. Employing internal alkynes, the expected six-membered 1,2-dihydroisoquinolines
26 could be obtained in yields up to 72%, whereas terminal alkynes led to the formation of
dihydroisoindoline 25 (5-membered ring) as a thermodynamically more stable product. It
was observed that decreasing the reaction temperature or changing the electronic effects in
alkynes, e.g., using phenylacetylene instead of 4-nitrophenylacetylene, led to the formation
of a kinetic product (six-membered ring). In addition, using isolated Co(III) intermediates
28, annulation reactions were also studied in a catalytic fashion. As a result, the desired
products were obtained in very good yields, indicating that Co(III)-aryl complexes 28 are
the reaction intermediates.

Inorganics 2023, 11, x FOR PEER REVIEW 8 of 24 
 

 

In 2016, Ribas and co-workers described the synthesis and characterization of 

benchtop-stable organometallic aryl-Co(III) complexes obtained through C-H bond ac-

tivation, using a 12-membered macrocyclic substrate 24a (Scheme 10) [31]. Cobalt (II) 

coordination compounds 27 were prepared by the reaction of Co(OAc)2 with macrocycles 

24 (R = H or Me) at room temperature in TFE solution, and their structures were initially 

confirmed by HRMS and XRD analysis. Careful analysis of solid-state molecular struc-

ture indicated that Co(II) complexes 27 possess two acetates coordinated in a bidentate 

fashion. Notably, tridentate macrocycles 24 act as bidentate ligands, coordinated only 

through the pyridine and one amine. Upon increasing the temperature, the desired C-H 

activated cobalt(III) complexes 28 were obtained. Due to the stability of obtained 

Co(III)-aryl complexes 28, they were successfully characterized by NMR and HRMS, 

providing spectra consistent with a Co(III) low spin diamagnetic metal center. Addition-

ally, the authors explored the reactivity of isolated Co(III)-aryl compounds 28 in stoi-

chiometric reactions with terminal and internal alkynes. Employing internal alkynes, the 

expected six-membered 1,2-dihydroisoquinolines 26 could be obtained in yields up to 

72%, whereas terminal alkynes led to the formation of dihydroisoindoline 25 

(5-membered ring) as a thermodynamically more stable product. It was observed that 

decreasing the reaction temperature or changing the electronic effects in alkynes, e.g., 

using phenylacetylene instead of 4-nitrophenylacetylene, led to the formation of a kinetic 

product (six-membered ring). In addition, using isolated Co(III) intermediates 28, annu-

lation reactions were also studied in a catalytic fashion. As a result, the desired products 

were obtained in very good yields, indicating that Co(III)-aryl complexes 28 are the reac-

tion intermediates. 

 

Scheme 10. Cobalt-catalyzed alkyne annulation and synthesis of Co(III)-aryl complexes 28 [31]. 

One year later, in 2017, Ribas group explored the formation of Aryl-Co(III) masked 

carbenes in cobalt-catalyzed C-H bond functionalization with diazo esters as a continua-

tion of their previous work (Scheme 11) [32]. Optimization studies revealed that the de-

veloped protocol requires Co(OAc)2 catalyst and H2O as an additive to afford the desired 

isoquinoline 29 via annulation reaction with ethyl diazoacetate (EDA). The authors uti-

lized previously isolated cobalt complex 28a as the substrate and performed detailed 

mechanistic investigation under anhydrous reaction conditions. When 28a reacted with 

ethyl diazoacetate, a single peak was observed by HRMS analysis. Authors proposed the 

formation of a putative aryl-Co(III)-carbene intermediate. Although attempts to unravel 
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One year later, in 2017, Ribas group explored the formation of Aryl-Co(III) masked
carbenes in cobalt-catalyzed C-H bond functionalization with diazo esters as a contin-
uation of their previous work (Scheme 11) [32]. Optimization studies revealed that the
developed protocol requires Co(OAc)2 catalyst and H2O as an additive to afford the de-
sired isoquinoline 29 via annulation reaction with ethyl diazoacetate (EDA). The authors
utilized previously isolated cobalt complex 28a as the substrate and performed detailed
mechanistic investigation under anhydrous reaction conditions. When 28a reacted with
ethyl diazoacetate, a single peak was observed by HRMS analysis. Authors proposed the
formation of a putative aryl-Co(III)-carbene intermediate. Although attempts to unravel its
nature by crystallographic analysis were unsuccessful, suitable crystals for XRD analysis
were obtained by replacement of acetate anion in 28a with p-substituted benzoates. This
anion exchange facilitated a rapid color switch from red to orange in the reaction with EDA,
and recrystallization from CHCl3/pentane afforded orange crystals of Co(III) complex 30.
Similar to a previous report [31], isolated cobalt intermediates 28a and 30 were used as cat-
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alysts, providing the desired product 29 with yields 67–87%, indicating that organometallic
complexes 28a and 30 are catalytically active species. Ribas and co-workers are continuing
the investigation of Co(III)-aryl complex 28 reactivity towards other transformations [33].
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In the same year, Song and co-workers reported a selective and facile access to triary-
lamines 31 via cobalt-catalyzed oxidative C-H/N-H cross-coupling reaction (Scheme 12) [34].
During optimization of reaction conditions, authors were able to push the selectivity
towards the desired product 31 over the dimerization side reaction of benzamides 1.
The best results were achieved, using optimized catalytic system, which consisted of
Co(OAc)2·4H2O catalyst, ferrocene cooxidant and CsOAc in HFIP at 100 ◦C temperature
under aerobic conditions. Furthermore, Co(III) complex 32 was obtained from the reaction
of benzamide 1c with stoichiometric amount of Co(OAc)2·4H2O at room temperature under
air. Pleasingly, its structure was confirmed by XRD analysis. The authors demonstrated
that cobaltacycle 32 under basic or acidic conditions delivered the triarylamine product 31a
only in 9% yield. Although other mechanistic experiments suggest a Co(II)-Co(III)-Co(I)
catalytic cycle, based on the low yield of product 31a formation from Co(III) complex 32,
the involvement of Co(IV) catalytic species cannot be excluded.
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In 2018, Zhang and co-workers reported a facile and powerful protocol for the cobalt-
catalyzed C-H bond acyloxylation of benzamides 1 (Scheme 13) [35]. In the developed
methodology anhydrous Co(OAc)2 in combination with Ag2SO4 and Na2CO3 in DCE
was found to be the catalytic system of choice. The optimized reaction conditions were
compatible with a diverse substrate scope, delivering a broad variety of o-substituted
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benzamides 33 (44 products) with yields up to 99%. Additionally, radical-trapping and
deuterium-labeling experiments were performed to understand the reaction mechanism in
detail. Besides, authors synthesized Co(III)-aryl complex 22 based on a procedure previ-
ously described by Maiti and co-workers in 2016 [30], starting from methylbenzamide 1b,
and confirmed its structure by single-crystal X-ray diffraction analysis. Authors suggested
that Co(III) complex 22 could be the key intermediate in this reaction as it catalyzed the
model reaction, delivering product 33a in 52% yield.
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In the same year, the Zhang group reported a novel strategy for the synthesis of
difunctional biaryls 34 from readily available benzamides 1 and oximes (Scheme 14) [36].
In contrast to the majority of cobalt-catalyzed benzamide 1 C-H bond functionalization
reactions, the reported protocol is very mild as this transformation takes place at 65 ◦C
temperature under air. The reported methodology demonstrates broad substrate scope
as well as remarkable chemoselectivity towards cross-coupling. To gain insight into the
reaction mechanism, the authors performed an intermolecular competition experiment
of electronically differentiated benzamides as well as KIE experiments. In addition, both,
C-H activated Co(III)-aryl complex 35 and oxime-coordinated Co(III)-aryl complex 36
were successfully detected by HRMS. Mechanistic studies along with detected Co(III)
intermediates helped authors to propose the reaction mechanism, which is in accordance
with the general Co(II)-Co(III)-Co(I) mechanism.



Inorganics 2023, 11, 194 11 of 23Inorganics 2023, 11, x FOR PEER REVIEW 11 of 24 
 

 

 

Scheme 14. Cobalt-catalyzed synthesis of biaryls 34 via C-H bond activation [36]. 

In 2018, the Sundararaju group developed a novel pathway for isonitrile inser-

tion/acyl group migration between N-H and C-H bonds of benzamides 1b through in-

tramolecular trans-amidation catalyzed by Co(acac)2 (Scheme 15) [37]. The authors 

demonstrated broad substrate scope yielding a wide variety of iminoisoindolinone de-

rivatives 37 (42 products, yields up to 94%). Besides, significant mechanistic studies were 

performed, including KIE, H/D exchange, and radical trapping experiments. Moreover, 

the stoichiometric reaction of benzamide 1b with Co(acac)2 yielded C-H activated 

Co(III)-aryl complex 22, which was previously described by Maiti [30], as well as later by 

the Zhang group [35]. The reaction of Co(III)-aryl complex 22 with tert-butyl isocyanide 

at room temperature in 10 min yielded Co(III) intermediate 39, which was isolated and its 

structure was confirmed by HRMS and XRD analysis. Both intermediates 22 and 39 were 

used as catalysts for the transformation of benzamide 1b to iminoisoindolinone deriva-

tive 37 under standard reaction conditions and were found to be active in catalysis. 

 

Scheme 15. Cobalt-catalyzed C-H bond functionalization of benzamide 1b [37,38]. 

Scheme 14. Cobalt-catalyzed synthesis of biaryls 34 via C-H bond activation [36].

In 2018, the Sundararaju group developed a novel pathway for isonitrile insertion/acyl
group migration between N-H and C-H bonds of benzamides 1b through intramolecular
trans-amidation catalyzed by Co(acac)2 (Scheme 15) [37]. The authors demonstrated broad
substrate scope yielding a wide variety of iminoisoindolinone derivatives 37 (42 products,
yields up to 94%). Besides, significant mechanistic studies were performed, including KIE,
H/D exchange, and radical trapping experiments. Moreover, the stoichiometric reaction of
benzamide 1b with Co(acac)2 yielded C-H activated Co(III)-aryl complex 22, which was
previously described by Maiti [30], as well as later by the Zhang group [35]. The reaction of
Co(III)-aryl complex 22 with tert-butyl isocyanide at room temperature in 10 min yielded
Co(III) intermediate 39, which was isolated and its structure was confirmed by HRMS and
XRD analysis. Both intermediates 22 and 39 were used as catalysts for the transformation
of benzamide 1b to iminoisoindolinone derivative 37 under standard reaction conditions
and were found to be active in catalysis.
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Later the same year, Sundararaju and colleagues reported a strategy for benzamide 1b
C-H and N-H bond annulation with alkynes by merging cobalt-mediated catalysis with
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photocatalysis (Scheme 15) [38]. Employing relatively similar reaction conditions to the
group’s previous report [35] and Na2Eosin Y as the photoredox catalyst, various electron-
donating and electron-withdrawing benzamides delivered isoquinolones with yields up to
99%. In addition, Co(III) complex 22 was found to be catalytically active in reaction with
benzamide 1b, delivering isoquinolone 38 with 50% yield in contrast to Co(acac)2, which
furnished the desired product with 98% yield.

A year later, in 2019, Chatani reported an efficient protocol for cobalt-catalyzed C-
H bond iodination of benzamides 40 with elemental iodine (Scheme 16) [39]. Thus, 2-
Aminophenyloxazoline-based bidentate chelation as a directing group in combination
with Co(OAc)2·4H2O catalyst and Ag2CO3 oxidant were found to represent the optimal
catalytic system for the synthesis of 2-iodobenzamides 41 in moderate to great yields. When
methylbenzamide 40a was treated with equimolar amount of Co(OAc)2·4H2O and Ag2CO3
in DCE at 120 ◦C for 2 h, the Co(III) complex 42 was successfully isolated and characterized
by HRMS and NMR spectroscopy. Interestingly, without the oxidant Co(III), complex 42
furnished the iodination product only in 38% yield along with a significant amount of
unidentified byproducts, whereas in the presence of Ag2CO3 the yield increased to 83%,
and no byproducts were detected. Based on these experiments, the authors concluded that
despite the catalytic activity of Co(III) complex 42, silver oxidant is an essential component
of the reaction, promoting the iodination reaction and eliminating the formation of byprod-
ucts. The authors therefore speculated that Co(III) complex 42 is not the key intermediate
of the reaction, but exists as a resting state.
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In 2020, the Ackermann group identified and characterized electrochemically gen-
erated high valent cobalt (III/IV) complexes as crucial intermediates in electrochemical
cobalt-catalyzed C-H bond functionalization reactions (Scheme 17) [40].
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Scheme 17. Electrochemical synthesis of Co(III)-aryl complex 44 and its reactivity studies [40].

The envisioned 18e− cobaltacycle 44 was electrochemically synthesized starting from
benzamide 43 and an equimolar amount of Co(OAc)2, and its structure was unambiguously
confirmed by NMR spectroscopy, ESI-MS, and XRD analysis. Investigating the red-ox
potential by means of voltammetry, the authors were able to affirm the anodic generation of
Co(IV) complexes. Interestingly, the authors observed the formation of alkoxylated product
45 from Co(III)-aryl complex 44 only when voltage was applied. Such a result supports the
oxidation-induced reductive elimination pathway involving Co(IV) species. At the same
time, Co(III) complex 44 reaction with phenylacetylene proceeded smoothly, allowing to
obtain product 46 in 99% yield. These findings are indicative of different mechanisms being
operative for the C-O versus C-H formations.

A novel methodology merging visible-light photocatalysis and cobalt catalysis was
reported by the Ghosh group in 2020 (Scheme 18) [41].
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catalyzed C-H bond activation [41].

The developed protocol gives an efficient access to isoindolone spirosuccinimides 47
by the oxidative cyclization of benzamides 1 with maleimides. The main advantage of
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the developed transformation was the use of photocatalyst Eosin Y, a commonly available
organic dye, instead of sacrificial metal oxidant to reoxidize the in-situ formed low-valent
Co(I) to active high valent Co(II)/Co(III) species to continue the catalytic cycle. Mild
reaction conditions tolerated well a broad variety of benzamides 1 containing substituents
both in phenyl moiety and in the aminoquinoline directing group moiety, delivering
isoindolones 47 with yields up to 92%. It should be noted that authors were able to identify
a five-membered Co(III)intermediate 22a by HRMS, which validated the involvement
of Co(III) complex 22a in the reaction mechanism, although no further identification of
reaction intermediates was performed.

One year later, in 2021, Liu and co-workers depicted metallaphotoredox dearomatiza-
tion of indoles for the facile generation of indoloisoquinolinones 48 via [4 + 2] annulation
reaction with benzamides 1 (Scheme 19) [42]. The developed catalytic system employed
Co(OAc)2 catalyst and Ir(bt)2acac photocatalyst, sodium pivalate additive, and benzoylace-
tone ligand in TFE at room temperature. Similar to Ghosh’s report [41], no external oxidant
was required due to photocatalytic reoxidation of the catalyst. The substrate scope studies
showed that both electron-rich and electron-poor substrates displayed similar reactivity
and gave the products mostly in good to excellent yield (up to 92%). Control experiments
revealed the involvement of single electron transfer processes, as with the addition of
radical scavengers, the generation of product was entirely suppressed. To gain insight
into the mechanism, the authors performed deuterium-labeling experiments, as well as
studied KIE of the reaction. In addition, the authors synthesized Co(bzac)3, which was
found to be catalytically competent. Moreover, two Co(III) complexes 49 and 22a were
detected by ESI-HRMS, establishing the intermediacy of the related Co(III) system in the
present reaction.
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In the same year, Grigorjeva and co-workers reported an efficient methodology for
the synthesis of dihydroisoquinolinolones 51 via cobalt catalyzed C-H bond carbonylation
of phenylalanine derivatives 50 (Scheme 20) [43]. Interestingly, in this transformation, the
picolinamide directing group revealed its traceless nature as it was cleaved in situ under
the reaction conditions. The authors were able to demonstrate a diverse substrate scope,
delivering the desired N-unsubstituted cyclization products 51 with moderate to excellent
yields (up to 95%). Furthermore, it was shown that the developed methodology may be
applicable to a late-stage functionalization of short peptides, although partial racemization
of some products was observed. Besides, under the standard reaction conditions, authors
were able to isolate the key intermediates, including Co(III) complex 53. The employment
of Co(III) intermediate 53 as the reaction catalyst gave product 51a in 52% yield. In addition,
C-H activated Co(III)-aryl intermediate 52b was successfully isolated, and its structure
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was unambiguously confirmed by XRD analysis. Pleasingly, under CO (1 atm) at room
temperature, cobaltacycle 52b quantitatively formed C-H carbonylation product 51b, which
supported the author’s conclusion this complex most likely was the key intermediate of
the reaction.
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Scheme 20. Cobalt-catalyzed carbonylation of phenylalanine derivatives 50 [43].

In 2022, along with cobalt complexes formed in ligand exchange/oxidation step, the
Shi group were able to synthesize and isolate C-H activated Co(III)-aryl intermediates
(Scheme 21) [28]. For example, the reaction of previously isolated Co(III) complex 17 was
conducted in the presence of NaOPiv and 4-methoxypyridine as a neutral ligand to stabilize
the resulting cobalt complex. As a result, Co(III)-aryl complex 54 was obtained in 36% yield
as a single octahedral diastereomer via asymmetric C-H activation step.
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Alternatively, cobalt(III) intermediate 54 was also obtained in quantitative yield di-
rectly from phosphinic amide 13 by the reaction with equimolar amount of ligand 15, Co(II)
acetate, oxidant, NaOPiv, and 4-methoxypyridine as a stabilizing ligand. Notably, the con-
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figuration of azaphosphinine oxide 14 matches the stereochemistry of phosphorus center
in 17, which led authors to consider enantio-determining C-H bond cleavage. Regarding
this, authors performed stoichiometric kinetic resolution of racemic 55. It was revealed that
only one enantiomer gave corresponding Co(III) intermediate 57, which further suggested
that the chirality of the phosphorus center was established through enantio-determining
C-H bond cleavage.

As a continuation of their previous work on amino acid C-H functionalization, in 2022,
Grigorjeva and co-workers reported novel protocol for the cobalt-catalyzed C-H bond imi-
nation of α,β-unsaturated phenylalanine derivatives 58 using isocyanides (Scheme 22) [44].
The substrate scope was explored using several α,β-unsaturated phenylalanines 58 and
different isocyanides, delivering 26 different iminoisoquinolines 59 in good to excellent
yields (up to 96%). Although picolinamide did not act as a traceless directing group, as
shown in their previous report [43], it can be easily cleaved under the reductive conditions
using LiAlH4 or Zn/AcOH. In addition, the developed methodology was applied for the
synthesis of PDE5 inhibitor. In order to gain insight into the reaction mechanism, the au-
thors performed series of control experiments, including ligand exchange and competition
experiments, H/D scrambling and KIE studies. Besides, a stoichiometric experiment with
Co(III)-aryl complex 52a was performed. Interestingly, 52a in the reaction with tert-butyl
isocyanide gave product 59a in quantitative NMR yield in the absence of external oxidant,
indicating that 59a is very likely the intermediate of proposed catalytic cycle.
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Scheme 22. Cobalt-catalyzed imination of phenylalanine derivatives 58 [44].

In the same year, Jiang and colleagues demonstrated an interesting approach towards
C-H bond acyloxylation of picolinamides 60 with silver carboxylates under cobalt catalysis
(Scheme 23) [45]. Generally, substituted silver carboxylates and substituted picolinamides
60 were reactive, delivering a very wide and diverse product scope consisting of 73 different
products with good to excellent yields (up to 94%). Investigation of the reaction mechanism
by means of KIE studies led to the conclusion that C-H bond activation may not be
the turnover-limiting step. Furthermore, authors were able to obtain chelated Co(III)-
aryl complex 62, which was accurately characterized by NMR and HRMS analyses. The
employment of Co(III) intermediate 62 as the reaction catalyst gave the desired product
61 in 42% yield, whereas under standard reaction conditions using CoCl2 catalyst, it was
obtained in 73% yield. From these results, the authors concluded that complex 62 was the
key intermediate in the developed C-H bond acyloxylation reaction.
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Scheme 23. Cobalt-catalyzed acetoxylation of picolinamide 60 [45].

Very recently, an enantio- and regioselective electrooxidative cobalt-catalyzed C-H/N-
H annulation reaction with alkenes was developed by Shi and co-workers (Scheme 24) [46].
In their report, π–π interactions between the phenyl ring in the oxazoline ligand 63 and
the quinoline moiety of the benzamides 1 secured the chirality at cobalt, leaving chiral
cave in one direction open for alkene coordination, facilitating the formation of annulation
products 64 in high enantio- and regioselectivities (up to 99% ee).
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Additionally, octahedral Co(III) complexes were synthesized and characterized to
understand the coordination fashion of cobalt catalyst and the mode of stereoinduction.
Benzamide 1a in the reaction with an equimolar amount of Co(OAc)2·4H2O and oxazoline
ligand (R)-63 under electrolysis conditions provided penta-coordinated Co(III)-aryl complex
65 in 28% yield. The addition of 3,4,5-trichloropyridine as a coordinative ligand under
similar reaction conditions provided hexa-coordinated Co(III)-aryl complex 66 in 33% yield.
The authors note that both 65 and 66 were stable at ambient temperature and were fully
characterized by NMR and ESI-MS analyses. However, attempts to obtain single-crystals for
X-ray diffraction analysis were unsuccessful. On the other hand, under thermal conditions,
using oxazoline ligand (S)-63 analogous penta-coordinated Co(III)-aryl, complex 67 was
obtained in 55% yield. Complex 67 crystallization from MeOH gave Co(III) complex 68,
whose structure was unambiguously confirmed by XRD analysis.

Interestingly, the stoichiometric reaction of Co(III)-aryl complex 65 with hex-1-ene
yielded product 64a with moderate enantioselectivity and poor regioselectivity, which
was attributed to the lack of secondary bond interaction (Scheme 25) [46]. The authors
found, that enantio- and regioselectivities reappeared with the addition of 1 equivalent of
3,4,5-trichloropyridine, which acted as a coordinative ligand. Moreover, hexa-coordinated
Co(III)-aryl complex 66 gave product 64a with excellent enantioselectivity and regiose-
lectivity. These results led authors to conclusion that the combination of oxazoline and
pyridine ligands is essential to ensure high enantio- and regio- selectivity for the developed
methodology.
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5. C-H Bond Functionalization

The C-H bond functionalization is the third elementary step in the generally accepted
high-valent cobalt catalysis mechanism occurring after C-H bond cobaltation. As we de-
scribed above, the plausible intermediacy of C-H activated Co(III)-aryl complexes has
been evidenced by numerous groups by successfully exploiting such isolated or synthe-
sized complexes as catalysts or substrates in stoichiometric amounts to obtain C-H bond
functionalization products. However, the detection and/or isolation of potential cobalt
intermediates, which are operative after the C-H bond metalation step, is a challenging
task due to the reactivity of such cobalt complexes. As we described before, in 2018, Sun-
dararaju and co-workers reported tert-butyl isocyanide coordinated cobalt complex 39,
which formed after Co(III)-aryl complex 22 reaction with tert-butyl isocyanide at room
temperature (Please see Scheme 15). Although the complex was isolated and its structure
was confirmed by HRMS and XRD analyses, the authors was not able to detect further
reaction intermediates [38]. As far as we know, only two examples can be found in the
literature describing Co(III) complexes formed after migratory insertion process.
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In 2018, Ackermann’s group reported the cobalt-catalyzed electro-oxidative C-H/N-H
activation of benzamides 69 with internal alkynes (Scheme 26) [47]. In their study, the
catalytic system employed a Co(OAc)2 catalyst, PivOH additive, and electricity as the sole
oxidant in TFE at room temperature to deliver isoquinolinones 70 in moderate to great
yields (up to 96%). Additionally, the authors were able to detect by ESI-HRMS Co(III)
intermediate 71, which formed after the migratory insertion of alkyne into the Co-Ar bond.
Moreover, computational mechanistic studies provided further support for the formation
of the observed seven-membered Co(III) species 71, which after reductive elimination
delivered the desired product 70 and Co(I).
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Kapur and co-workers, in late 2022, reported an interesting approach towards benza-
mide 1 C-H bond allylation using merged cobalt and photoredox catalysis (Scheme 27) [48].
In contrast to Maiti’s allylation with terminal alkenes [26,30], authors used vinyldiazo
esters as allylating reagents. As a result, allylbenzamides 72 were obtained in moder-
ate yield, although the developed methodology proved to be effective for the late-stage
diversification of biologically active molecules, including cholesterol, nerol, and others.
In the proposed reaction mechanism, after ligand exchange and C-H activation, cobalt
intermediate 35 could form. The authors propose, that Co(III)-aryl complex 35 undergoes a
diazo coordination and insertion, which leads to the formation of the Co(III) intermediate
73. Both cobaltacycles 35 and 73 were observed by HRMS, although none of them was
isolated from the reaction.
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6. Oxidation

The last elementary step of C-H bond functionalization reactions is re-oxidation of the
cobalt catalyst after reductive elimination to return the active Co(III) species to the catalytic
cycle. Although no Co(I) species are isolated, there have been few reports on plausible
reaction intermediates arising after oxidation of Co(I) species. For example, Grigorjeva and
colleagues were able to isolate Co(III) catalyst coordinated to picolinamide, which formed
after the hydrolysis of the directing group (please see Scheme 20) [43].

In 2016, Wu and colleagues studied the cobalt-catalyzed homo-coupling of benzamide
1 derivatives (Scheme 28) [49]. Prior to optimization of the reaction conditions, Daugulis
and co-worker reported their results on the same transformation, focusing their attention
on different substrates for the dimerization reaction. Nevertheless, during initial studies,
authors were able to isolate Co(III) complexes 75 and 76 in 26% and 43% yields, respectively.
The difference between 75 and 76 is the orientation of the acetylacetone group attached to
the cobalt center. In addition, XRD analysis was performed, unambiguously confirming
structures to be biaryl-linked Co(III) complexes, which would lead to the desired product
74 after demetallation.
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In 2020, along with Co(III) complexes which were formed in the C-H bond activation
step, Ackermann and colleagues noticed the formation of a significant amount of byprod-
ucts, especially with the electron rich substrates 43 [40]. Based on their mechanistic studies,
authors hypothesized a possible oxidation of Co(III)-aryl species to Co(IV) complexes,
which would undergo oxidation-induced reductive elimination for homo-coupling of the
coordinated substrates 43, leading to paramagnetic Co(II) complexes. Further, various
solvents were probed, and the reaction temperature was adjusted. As a result, benzamide
43 delivered the desired Co(II) complex 77, using MeCN at 60 ◦C (Scheme 29). Moreover,
the structure 77 was completely verified by XRD characterization, providing strong support
for an oxidation-induced reductive elimination from a high-valent Co(IV) intermediate.
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7. Conclusions and Outlook

In this review, we have summarized the overall current progress on the isolation and
identification of key cobalt intermediates in cobalt-catalyzed, bidentate-chelation assisted
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C-H bond functionalization reactions. The general Co(II)-Co(III)-Co(I) mechanism, which
is based on literature reports, is overviewed in detail according to the elementary steps.

The identification and characterization of reaction intermediates over the years has
become an essential approach for understanding the reaction mechanism, which along
with additional mechanistic experiments, including kinetic isotope effects, labeling studies,
competitive experiments, and others, can serve as direct and indirect evidence to decipher
the full picture of the catalytic cycle. The first two elementary steps of the C-H functionaliza-
tion reaction, i.e., substrate coordination/oxidation and C-H bond activation, are relatively
well-studied and supported by a diverse scope of isolated key Co(III) intermediates. Most
of the isolated key intermediates are Co(III) 18 e- complexes. Typically, octahedral Co(III)
18 e- complexes are considered as stable and relatively inert species, which tend to vacate
at least one coordination site to participate in the reaction. Based on this fact, the most
likely key reaction intermediates are coordinatively unsaturated 16 e- or 14 e-complexes,
which react with solvent or other ligand upon isolation and/or crystallization to form
stable species.

However, the next elementary steps of the reaction mechanism (C-H bond function-
alization and catalyst re-oxidation) are studied much less and are supported by only a
few examples of isolated or detected cobalt species. Difficulties in isolating potential key
intermediates after the C-H bond activation step may be attributed to the high reactivity
of such cobalt species, which makes it challenging even to detect by HRMS analysis. First
reports appeared only five years ago and currently only two examples of Co(III) species
after the migratory insertion step are known. Therefore, this part of general catalytic
cycle remains underdeveloped. The creation of novel methods for the isolation and/or
characterization of such intermediates will very likely be an enormous breakthrough for
the understanding of the mechanism of cobalt-catalyzed C-H functionalization reactions
and represent a valuable direction for future research.

Although many research groups have succeeded in the isolation of Co(III) key reaction
intermediates, and the general Co(II)-Co(III)-Co(I) mechanism is studied in detail, currently,
there is indisputable evidence for the Co(II)-Co(III)/Co(IV)-Co(II) catalytic cycle which
could be operative depending on the used reaction component. Numerous examples
of the cobalt-catalyzed C-H bond functionalization methodology that are not consistent
with the Co(II)-Co(III)-Co(I) mechanism continue to be discovered. However, the Co(II)-
Co(III)/Co(IV)-Co(II) pathway is not completely confirmed due to the lack of evidence and
difficulties in obtaining it. From our perspective, this is another highly important future
direction and a challenging task for researchers.
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