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Abstract: In the past 20 years, perovskite-related research has attracted wide attention. The related
research into two-dimensional/quasi-two-dimensional perovskite has propelled the research of
perovskite materials to a new height. To improve the properties of quasi-2D perovskite, improve
the stability of materials, and achieve specific functions, using different types, volumes, and lengths
of organic spacers is an essential method. In this paper, quasi-2D perovskites with EDA (ethylene
diammonium), PDA (1,3-propanediammonium), and BDA (1,4-butanediammonium) (m = 2–4) as
organic spacers were prepared, and the effects of different organic spacers on the 2D perovskite
were investigated. The results show that the length of the organic spacer significantly impacts the
perovskite’s properties. A shorter organic spacer can effectively reduce the quantum confinement
and dielectric confinement in perovskite. It should be noted that if the organic spacer is too short, the
stability of the quasi-2D perovskite will be greatly reduced.

Keywords: quasi-2D perovskite; transient absorption spectra; carrier dynamics

1. Introduction

With the development of human society, the living standard of human beings is
constantly improving, accompanied by the rapid consumption of energy. The utilization
of renewable energy has become an important way to solve this problem. Perovskite is
starting to attract attention in this context. Because of its excellent performance and low
cost, it has become the research hotspot of many scholars. It has shown a broad application
prospect in many fields, such as solar cells [1–10], LEDs [11–21], and so on. In order to
make perovskite materials achieve specific functions and improve their efficiency, it is
very important to understand the carrier dynamics of perovskite materials, which have an
important guiding role.

In order to obtain high-stability and high-efficiency perovskite materials, research
on 2D/quasi-2D perovskite has been an important direction. The basic properties of
Dion−Jacobson (DJ) perovskite are usually determined by organic spacer cations [22–24].
Among these organic spacer cations, diammonium is the most widely studied, includ-
ing linear cations [25,26] and ring cations [27–29]. The ammonium cation of an organic
spacer cation can form hydrogen bonds with multiple ends of the inorganic octahedral
structure, so factors such as the spatial configuration and length of the organic spacer
cation are crucial to the structure and size of perovskite [30–32]. It also directly affects the
distortion of the inorganic layer connected by the organic spacer [33,34]. In contrast to
three-dimensional perovskite, quasi-2D perovskite has quantum confinement and dielectric
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confinement [35–37]. The quantum confinement and dielectric confinement lead to a degra-
dation of the properties of quasi-2D perovskite. There are two ways to solve this problem:
using a shorter and higher-dielectric-constant organic isolation layer [38] or improving
the cross-layer charge transfer [39]. It has been found that large organic alkyl ammonium
cations can achieve a uniform distribution of quantum wells (QWs) in perovskite and
create a flat energy landscape [40]. Kanatzidis studied DJ-type perovskites with organic
spacers of different chain lengths (m = 4–9) and proved that the carbon chain length of alkyl
diammonium cations can affect the optical properties of perovskite materials by adjusting
the spacing between inorganic layers [41]. Using smaller organic spacer cations instead
of larger organic spacer cations in order to shorten the distance between inorganic layers
can effectively weaken the quantum confinement effect in perovskite [42]. In other aspects,
Ahmacl et al. [43] and Zheng et al. [44] used organic isolation layers to adjust and control
the crystallinity, charge mobility, QW width, and distribution of aligned 2D perovskites.
However, researchers still lack understanding regarding the effect of organic spacers of
different lengths on quasi-2D perovskites. The internal mechanisms of quasi-2D perovskite
properties (such as the energy-transfer processes) induced by different organic spacers still
need to be further explored.

In order to further explore the effects of different organic spacer cations on the carrier
dynamics of quasi-2D perovskite, we prepared quasi-2D perovskite thin films with CsPbBr3
as a matrix and EDA2+ (ethylene diammonium), PDA2+ (1,3-propanediammonium), and
BDA2+ (1,4-butanediammonium) as organic spacer cations. As shown in Figure 1, per-
ovskites with different n values also have some differences in structure. The quasi-2D
perovskite film used in this paper is made using the spin-coating method, and the n value
is four.
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2. Results

In this study, the films of EDACs3Pb4Br13, PDACs3Pb4Br13, and BDACs3Pb4Br13 are
denoted as EDA, PDA, and BDA, respectively. The composition and content of quasi-2D
perovskite were examined using ultraviolet−visible spectroscopy (UV−Vis absorption
spectrum).

Figure 2a illustrates the exciton absorption signals of EDA, PDA, and BDA. Notably,
a prominent exciton absorption peak is observed near 480 nm in all three samples. This
specific exciton absorption peak signal aligns with the absorption characteristics of the
four-dimensional phase (n = 4) [40].
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In perovskite materials, the notation n = 4 signifies the presence of the n = 4 phase
within the perovskite film, indicating that the film consists of four inorganic layers. This
designation holds for any other value of n as well. Notably, the exciton absorption peaks at
480 nm for the n = 4 phase in different organic spacers are nearly identical, suggesting their
four-dimensional phase band gaps are closely aligned. Moreover, the EDA film sample
exhibits a notable exciton absorption peak at 381 nm, corresponding to the one-dimensional
phase absorption of the EDA film. In forming a DJ-type perovskite, the precursor solution
is tailored according to the specific n value desired for the perovskite. It is worth noting that
other dimensional phase components may also emerge in the final production of perovskite.
While the UV−Vis spectra do not show exciton absorption signals of other dimensional
phases, this does not imply the absence of low-dimensional phase components in quasi-2D
perovskite films. These findings suggest that the enhanced interlayer interaction in EDA,
PDA, and BDA films mitigates the quantum confinement effect in the quasi-2D phase.
Furthermore, short-chain organic spacers in EDA effectively reduce the distortion of DJ-
type perovskite [45–47]. The quantum confinement effect (QCE) is a phenomenon in which
the quantization of energy in microscopic particles becomes more pronounced as the spatial
confinement of their motion decreases. In the context of electrons in a solid, when at least
one dimension in the three-dimensional scale reaches the nanometer scale, the movement
of electrons in that dimension becomes restricted, leading to the manifestation of quantum
effects. This confinement results in an increase in the energy-level band gap. In the case
of perovskite films, this effect leads to a uniform distribution of QWs. Comparing RP
perovskite with DJ perovskite, it is noted that DJ perovskite has fewer organic spacers. This
reduction in organic spacers is suggested as one of the reasons why the exciton absorption
peak of DJ perovskite is not as prominent.

Additionally, subtle differences exist despite the close proximity of the n = 4 exciton
absorption peaks in quasi-2D organic spacer cations of perovskite films. Specifically, the
n = 4 phase exciton absorption peak of PDA exhibits a 4 nm blue shift compared to the other
two samples. Examining the exciton absorption of EDA at 380 nm in UV−Vis spectra, it is
observed that EDA demonstrates higher exciton absorption at 380 nm. This suggests that
EDA2+, compared to PDA2+ and BDA2+, can promote the formation of a low-dimensional
phase with small n values.

The exciton absorption peaks of perovskite films are initially observable through
UV−Vis spectroscopy, providing valuable information on the absorption characteris-
tics of the sample. In Figure 2b, the photoluminescence (PL) spectra of quasi-2D per-
ovskite films with different organic spacer cations are presented. The three samples are
excited from the top, and the PL spectra collected from the bottom of the perovskite
film are analyzed. The PL spectrum signal exhibits two main parts. First, there is a
broad peak near 500 nm in the left part of the spectrum. Combined with UV−Vis spec-
tra, it can be deduced that this broad peak corresponds to the fluorescence signal of the
n = 4 phase. The second part is a narrow peak near 525 nm in the right part of the spectrum.
This peak is attributed to the amplified spontaneous emission (ASE) signal of the quasi-2D
perovskite samples. The ASE signal in the PL spectrum is produced by the bulk phase
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formed in quasi-2D perovskite. In the excited state, carriers spontaneously radiate to the
ground state, releasing photons. The energy of these photons corresponds to the energy
difference between the excited-state carrier and the ground-state carrier. The photons
produced by spontaneous emission can induce stimulated emission of carriers in the bulk
phase, and the effect is that the spontaneous emission signal is amplified, and, thus, the
ASE signal is produced. Although the ASE signal contains stimulated radiation, it is still
spontaneous radiation in nature. The amplification of spontaneous emission is directly
related to the number of particles in the upper energy level. From the PL spectra, EDA
perovskite film samples are more likely to produce an ASE signal than BDA and PDA
samples. This is because the energy transfer in EDA film samples is more intense and
smoother. The carrier in the n = 4 phase can transfer into the bulk phase rapidly and
effectively. The carrier number can be rapidly accumulated in the bulk phase. Compared
to the PL spectrum without an ASE signal, the decrease in the fluorescence signal of the
n = 4 phase when the ASE signal is generated also proves this point. From the PL spectra, it
can be seen that the ASE signal is more easily generated by the excitation of the quasi-2D
perovskite samples from the bottom. The energy-transfer process from the low-dimensional
phase to the bulk phase at the bottom of perovskite films is better than that at the top of
the perovskite film. We attribute this phenomenon to the higher density of states at the
bottom of perovskite films. This is due to the deposition of partial phases on the bottom of
the films under gravity during spin coating. The next experiments will also prove it.

In Figure 2b, the PL spectra of the perovskite films reveal a notable blue shift of 4 nm
in the PL emission peak of PDA perovskite films compared to BDA and EDA. This shift
aligns with the findings from the UV−Vis spectra. The origin of this phenomenon is the
distortion of the perovskite lattice induced by PDA2+ organic spacer cations. The distortion
alters the Pb−Br bond length in quasi-2D perovskite, resulting in a modification of the
perovskite’s band gap to some extent. Referencing the literature [48], when the organic
spacer cations are PDA2+, the distortion in the perovskite is more pronounced compared to
with BDA2+ and EDA2+ organic spacer cations. For PDA, this substantial lattice distortion
is responsible for the observed blue shift in the PL spectral emission peak. Furthermore,
this lattice distortion is also responsible for the weak n = 4 phase fluorescence signal of
PDA. When the organic spacer cations are BDA2+ and EDA2+, the perovskite lattice also
undergoes distortion, albeit less severely than with PDA2+. Consequently, the band gap
of the n = 4 phase experiences minimal change. Notably, EDA2+ cations, being shorter in
length compared to BDA2+, would ideally result in a slightly narrower n = 4 phase gap.
However, the lattice distortion caused by EDA2+ is slightly greater than that induced by
BDA2+. These two factors compensate for each other, resulting in a nearly identical PL
peak. From Figure 2b, it is clear that the PL peak of EDA is significantly higher than BDA.
This is because the shorter chain length of EDA2+ reduces the distance between inorganic
layers in quasi-2D perovskite and weakens the quantum confinement effect and dielectric
confinement in quasi-2D perovskite. This results in lower exciton binding energy, which is
beneficial for improving the carrier separation rate in quasi-2D perovskite [49].

As shown in the Time-Resolved Photoluminescence (TRPL) spectra of perovskite films
in Figure 2c, the decay of PDA perovskite films is the most rapid, and the attenuation
curves of BDA and EDA do not have many differences. The fluorescence lifetimes of the
BDA, PDA, and EDA films were 3.6 ns, 1.9 ns, and 3.5 ns, respectively. The fluorescence
lifetime of PDA can also be attributed to the decrease in radiation recombination due to the
lattice distortion caused by organic spacer cations. The lattice distortion caused by BDA2+

is slightly less than that caused by EDA2+. The difference in fluorescence lifetime between
BDA and EDA also verifies the above conclusion.

In order to analyze the effect of organic spacers of different lengths on quasi-2D
perovskite further, we collected the transient absorption spectra of three perovskite film
samples. As shown in Figure 3, the transient absorption spectrum mainly consists of two
parts; the positive signal of the transient absorption spectrum is a broad peak covering a
range of tens of nanometers, and the negative signal in the transient absorption spectrum
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is the ground-state bleaching signal (GSB) of the n = 4 phase. Although the broad peaks
are in the form of positive signals, they also contain GSB signals of two-dimensional and
three-dimensional phases. The intensity of the excited-state absorption (ESA) signal is
stronger than the intensity of the GSB signal, so the ESA signal covers the negative signal
of the ground-state bleaching signal, and the transient absorption spectrum shows as a
positive signal. In addition, the Stark effect is also one of the reasons why the GSB signal of
the two-dimensional and three-dimensional phases is covered. The positive signal mainly
appears around the GSB signal of the n = 4 phase, which is caused by the absorption change
of material under the influence of the electric field [50–52]. It is obvious that the transient
absorption spectra under positive excitation are much weaker than those under negative
excitation. In combination with PL spectra and the above analysis, the reason for the above
phenomenon is that the density of states at the bottom of the perovskite film is higher than
that at the top of the film. In the process of preparing perovskite films by spin coating the
perovskite precursor solution, the perovskite films began to crystallize at the liquid−gas
interface. However, due to the influence of gravity, the quasi-2D phase, which should be
uniformly distributed, is inevitably deposited, and the density of states at the bottom of the
perovskite film increases.
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The transient absorption spectra under positive excitation for perovskite films exhibit
similarities to those under negative excitation. We extracted the transient absorption
spectra for both top-excited and bottom-excited films, and the results are presented in
Figure 4a and 4b, respectively. Moreover, the relationship between the transient absorption
spectra of different organic spacer cationic perovskite materials excited from the top and
bottom of the film is also similar. The time constants of monomolecular recombination
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(defect recombination), bimolecular recombination (radiation recombination), and auger
recombination can be obtained by three-exponential fitting of the transient absorption
attenuation [53,54]. The fitting formula is shown below.

y = C0 + C1e(−
x

τ1
)
+ C2e(−

x
τ2
)
+ C3e(−

x
τ3
)
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According to the time constants, the average carrier lifetime of different samples can
be obtained. The average carrier lifetimes of EDA, PDA, and BDA are 2.11 ns, 2.37 ns, and
2.35 ns, respectively. The average carrier lifetime is calculated as follows:

τ =
C1τ1

2 + C2τ2
2 + C3τ3

2

C1τ1 + C2τ2 + C3τ3

The transient absorption signal intensity of the EDA samples is the highest of the three
samples, and the second is the BDA samples. As shown in Figure 2a, the n = 4 exciton
absorption peaks of the three samples are very close, which means that the n = 4 phase
contents of the three perovskite films are close. As shown in Figure 4a, the enhancement
of the transient absorption spectrum signal is accomplished in an extreme time. In such a
short period of time, the trap has a limited effect on it. It can be inferred that the difference
in the transient absorption spectrum signals of the three perovskite films mainly comes
from ways other than the carrier generated by the n = 4 phase itself. We attribute the signal
difference mainly to the energy transfer of perovskite from the small-n-value phase to the
large-n-value phase. The transient absorption signal of three perovskite films was enhanced
to the maximum within 1 ps, and the rising time of the signal was the same. It is obvious
that the rising speed of the three samples is EDA > BDA > PDA. If the sample is excited
from the top of the film, the rise time of the transient absorption spectrum signal is 0.5 ps
longer than that from the bottom of the film. The EDA sample shows a faster and smoother
energy-transfer process, which is mainly related to two factors. First, the EDA perovskite
sample has a more favorable energy landscape for energy transfer, which can be seen from
UV to Vis. The second is that EDA2+ has the shortest chain length among the three, which
means that the distance between the inorganic layers of the low-dimensional phase in
the EDA perovskite film sample is shorter than that between PDA and BDA. The shorter
barrier reduces the quantum confinement effect and the dielectric confinement effect in the
low-dimensional phase and weakens the effect of carriers being trapped in the inorganic
layer. The PDA is supposed to have a stronger energy transfer than the BDA, but, in fact,
it is the opposite. We think it is related to perovskite lattice distortion caused by PDA2+.
The lattice distortion in perovskite leads to the increase in the low-dimensional interphase
barrier of perovskite. The increased barrier due to lattice distortion is even longer than
the barrier when the organic cations are PDA2+ and BDA2+. Therefore, the energy-transfer
efficiency in PDA perovskite films is significantly reduced. Although EDA2+ and BDA2+
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organic spacer cations also cause perovskite lattice distortion, the degree of lattice distortion
of perovskites is not as severe as that of PDA.

We can conclude a carrier transfer model of quasi-2D perovskite materials. After being
excited by light, perovskite materials rapidly transition from the ground state to the excited
state and produce a large number of hot carriers. Then, these hot carriers will move in the
same n value phase and from small-n phases (wide band gap) to large-n phase (narrow
band gap). The latter process is mainly related to two factors: the energy landscape of
perovskite materials and the quantum confinement effect in perovskite materials. In several
picoseconds after photoexcitation, the carriers also transfer rapidly to the perovskite phase,
resulting in a population inversion and ASE signal in a very short time.

We have recorded the PL spectra of perovskite thin films at different locations of the
pump light spot. It can be seen from Figure 5 that the PL peak value at the center of the
pump light spot is generally stronger than that at the edge of the pump spot. This is related
to the concentration of the carrier at the measurement spot. By comparing the PL peak at
the edge of the area and the PL peak at the center of the area in different perovskite samples,
we can obtain the result as shown in Figure 5. The attenuation of carrier concentration from
the center of the spot to the edge of the EDA sample is the smallest, while that of PDA is
the strongest. This means that the carrier transfer process in EDA samples is superior to
that in BDA and PDA, which is in agreement with the conclusions obtained above.
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the films. (d) The ratio of the PL emission peak at the edge of the pump light spot to the central
emission peak.

Although EDA perovskite has some advantages in fluorescence and energy transfer, it
has a disadvantage that cannot be ignored compared to BDA and PDA. As seen in Figure 6,
the transient absorption and fluorescence signals of EDA perovskite samples show a serious
redshift (25.96 nm) after a while. This means that many of the original quasi-2D phases in
EDA perovskite samples no longer have low-dimensional characteristics. The connection
between the EDA2+ organic cation and the inorganic plate has been broken. Although the
PDA sample and BDA sample also have a certain degree of redshift (PDA: 7.67 nm, BDA:
7.65 nm), compared with the EDA sample, the redshift of the PDA and BDA samples is not
large. As shown in the picture, the degree of redshift of the PDA and BDA samples was the
same. The result shows that the stability of the PDA and BDA samples is higher than that
of the EDA sample.
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3. Discussion

Based on the aforementioned experiments, the paper delves into the impact of organic
spacer cations on perovskite. Notably, it was observed that shorter organic spacers result
in reduced distances between inorganic layers. The organic cations follow the order of
EDA2+ < PDA2+ < BDA2+ in terms of length, with shorter lengths indicating smaller barriers
and enhanced performance. However, barrier width is not the sole factor influencing
perovskite performance. The two ends of the organic spacer extend into the connected
inorganic layer, and the extent of this extension directly affects perovskite stability and
lattice distortion.

As evidenced above, lattice distortion induced by PDA2+ is considerably greater than
that caused by EDA2+ and BDA2+ [49]. Lattice distortion, in turn, alters the length of the
Pb−Br bond, impacting the perovskite’s band gap. Simultaneously, lattice distortion plays
a role in modifying the barrier width to some degree. This phenomenon results in a larger
band gap, diminished luminescence properties, and weaker energy transfer for PDA, as
depicted in Figures 2 and 4.

The organic spacer EDA2+ has the shortest length, allowing it to penetrate the inorganic
layer to a limited extent. Consequently, EDA exhibits a narrower barrier and superior
performance. However, the shorter penetration distance compromises the stability of the
connection between organic spacer cations and the inorganic layer in EDA, making it less
stable compared to PDA and BDA, a trend consistent with Figure 6.

4. Materials and Methods

Perovskite thin film: The precursor solution was prepared according to the ratios of
CsBr:PbBr2:EDABr2 = 3:4:1, CsBr:PbBr2:PDABr2 = 3:4:1, and CsBr:PbBr2:BDABr2 = 3:4:1.
Dimethyl Sulfoxide (DMSO) was used as a solvent in the sample. Quartz flakes were
cleaned with ethanol. The quartz sheet was then illuminated with ultraviolet light (UVO)
for 15 min. The precursor solution was then spun onto the quartz sheet. Finally, the samples
were annealed and encapsulated. The film was prepared using the spin-coating method
and annealed at 70 ◦C.

Film characterization: The UV–Vis spectra of the films were obtained using the New
Century T6 UV−Vis spectrophotometer. TRPL spectra were obtained using the Lifespec II
instrument system. The transient absorption spectra of the thin films were measured by a
self-built transient absorption spectroscopy system. The central wavelength of the laser
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was 800 nm, and the repetition frequency was 1 kHz. The pulse width of the laser used in
the experiment was 40 fs. The system can achieve femtosecond time resolution.

5. Conclusions

In this study, quasi-2D perovskites featuring organic spacer cations of varying chain
lengths were investigated. However, due to distortion effects, PDACs3Pb4Br13 and
BDACs3Pb4Br13 samples were explicitly prepared for experiments. Notably, EDACs3Pb4Br13,
with the shortest organic isolation cation, exhibited weaker quantum-limiting effects and di-
electric limiting compared to the other two samples. Remarkably, under identical excitation
intensity, EDACs3Pb4Br13 demonstrated a more vigorous luminous intensity. Addition-
ally, in the short time following light excitation, EDACs3Pb4Br13 exhibited faster carrier
accumulation. If we consider the influence of organic spacer cation chain length on per-
ovskite materials, the performance of the PDACs3Pb4Br13 sample would be expected to
surpass that of the BDACs3Pb4Br13 sample. However, the distortion on the perovskite
lattice caused by the PDA2+ organic spacer cation resulted in a decrease in the performance
level of PDACs3Pb4Br13 compared to its expected level. Furthermore, experimental re-
sults confirmed that the luminescence performance and energy transfer of PDACs3Pb4Br13
were weaker than those of BDACs3Pb4Br13. Despite the advantages exhibited by the
EDACs3Pb4Br13 perovskite sample over BDACs3Pb4Br13, it was observed that the stability
of the BDACs3Pb4Br13 sample was significantly higher than that of the EDACs3Pb4Br13.
This suggests that, while EDACs3Pb4Br13 may show favorable characteristics in certain
aspects, the long-term stability of BDACs3Pb4Br13 makes it a more promising candidate for
practical applications.
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