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Abstract: The study comprehensively investigates the design and performance of self-cleaning
surfaces fabricated by coating aluminum foil with an acrylic paint matrix enriched with different
content of titanium dioxide (TiO2) nanoparticles. The main goal was to assess the self-cleaning
characteristics of the surfaces obtained. This study employs scanning electron microscopy (SEM)
to analyze the morphology of TiO2-modified acrylic surfaces, revealing spherical particles. Raman
spectroscopy elucidates signatures characterizing TiO2 incorporation within the acrylic matrix,
providing comprehensive insights into structural and compositional changes for advanced surface
engineering. Alternating current (AC) impedance spectroscopy was used to assess selected charge
transport properties of produced self-cleaning surfaces, allowing us to gain valuable insights into the
material’s conductivity and its potential impact on photocatalytic performance. The self-cleaning
properties of these tiles were tested against three frequently used textile dyes, which are considered to
pose a serious environmental threat. Subsequently, improving self-cleaning properties was achieved
by plasma treatment, utilizing a continuous plasma arc. The plasma treatment led to enhanced
charge separation and surface reactivity, crucial factors in the self-cleaning mechanism. To deepen
our comprehension of the reactive properties of dye molecules and their degradation dynamics, we
employed a combination of density functional tight binding (DFTB) and density functional theory
(DFT) calculations. This investigation lays the foundation for advancing self-cleaning materials with
extensive applications, from architectural coatings to environmental remediation technologies.

Keywords: self-cleaning; photocatalysis; impedance spectroscopy; electrical conductivity; DFTB;
DFT; molecular electrostatic potential (MEP)

1. Introduction

According to the most recent report from the World Health Organization, approxi-
mately 850 million people worldwide lack access to potable water [1]. The issue of water
pollution has garnered significant attention. Various industries, including textile dyeing,
food processing, papermaking, cosmetics, and paints, discharge effluents containing dyes
into the environment, leading to dye-contaminated wastewater [2]. The textile industry
poses a huge threat since dye effluents are released into water bodies. Therefore, various
pollutants, such as synthetic azo dyes, enter the wastewater [3]. Effluents containing dyes
are high in color, suspended solids, pH [4], biochemical and chemical oxygen demand,
metals, and salts [5].
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Various methods, such as advanced oxidation processes, have been employed to treat
wastewater contaminated with dyes [6] to promote their reaction kinetics [7]. Photocatal-
ysis with TiO2 is an environmentally friendly process consisting of reduction/oxidation
complex reactions wherein electron–hole pairs are generated by semiconductors activated
under irradiation through the absorption of light energy [8]. In the construction indus-
try, the application of TiO2 photocatalysis has promoted several new materials [9] whose
surfaces are functionalized with self-cleaning [10], depolluting [11], and antimicrobial
properties [12]. Photocatalytic active aluminum films [13], ceramics [14,15], glass [16], mor-
tars, and cement [17,18] have been synthesized using TiO2 nanoparticles as a surface coating
or embedded in the bulk [6].

The application of TiO2 nanoparticles to various materials is achieved exclusively through
coating, as opposed to being blended with the base material (e.g., mortar, cement, or ceramic
paste). This technique facilitates the utilization of the entire radiation-activated TiO2 within a
singular, efficient surface layer [19–21]. The advantage of applying TiO2 as a deposited layer
is that the difficulties of removing the catalyst from the solution are eliminated, significantly
reducing the process’s cost. Also, applying TiO2 as a coating allows the use of the complete
amount of TiO2 activated through irradiation, and the possibility of reusing self-cleaning
surfaces favors their use [22,23]. The substrate contributes to the stability of the coating [24]
and performance in photocatalysis [25,26], influencing the enduring characteristics of the
coated surface. Consequently, limited information is available regarding the long-term im-
plementation of coatings applied to different substrates [27]. Given their potential variation
in internal characteristics, this is an urgent requirement for enhanced comprehension of the
durability challenges associated with diverse substrate types [28].

However, significant challenges persist in the photocatalytic active surfaces’ produc-
tion technology, encompassing the coating durability assessment for practical utilization
in outdoor conditions [29]. These films directly interface with the environment in routine
applications on external building surfaces or within wastewater treatment facilities. They
are regularly exposed to diverse weathering processes capable of altering the support
characteristics and stability of the coatings themselves [30]. Critical issues related to coating
durability involve the extended performance of photocatalytic material surfaces and the
potential release of TiO2 into the environment [6,31].

The commercially leveraged photoinduced hydrophilic conversion of the TiO2 surface
has created self-cleaning, anti-fogging surfaces applicable in various sectors, including
paints, textiles, glass, cement, and tiles [2]. The widespread use of TiO2 coatings to modify
glass and tiles has been instrumental in constructing building materials with photocatalytic
self-cleaning properties [32]. Japan, for instance, widely employs self-cleaning, eco-friendly
windows, facades, and roof tiles [33]. The automotive industry has also embraced self-
cleaning coatings to develop clear, glare-free windows, automotive mirrors, headlights,
and mirrors [34]. While numerous reviews have discussed the functionalization and
application of self-cleaning surfaces with TiO2 nanoparticles and their inherent self-cleaning
properties [35], there remains a notable gap in the data regarding their potential use in
wastewater treatment plants.

Electrical conductivity measurements show great potential for future developments in
self-cleaning tiles. They could help to monitor surface contamination, create clean surfaces
more effectively, develop electrochemical cleaning methods, and innovate new materials [36].

Applying atomistic calculations to understand different properties of materials is an
essential task in computational materials science. Different methods based on atomistic
calculations allow researchers to gain an understanding of materials at the atomic level
and predict their macroscopic properties. Various computational methods are crucial for
designing materials, allowing scientists to predict essential properties before synthesis or
production [37–40]. When computational methods for materials modeling are combined
with experimental findings, a comprehensive understanding of underlying mechanisms is
enabled, pawing the way to develop new materials [41–45]. Thanks to rapid development,
different computational methods are now available for the theoretical investigation of
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molecules and periodic structures, which enables scientists to design new materials and
products with finely tuned properties [46–50].

Coating with materials in which different photocatalytic nanoparticles are incorpo-
rated can efficiently produce photoactive surfaces with self-cleaning properties. This study
aimed to employ a strategy to produce tiles with significant self-cleaning properties by
coating the aluminum foil with white acrylic paint mixed with Hombikat TiO2 nanopar-
ticles. Self-cleaning properties of such obtained tiles were tested against three dyes that
are frequently used in industry and pose a significant environmental threat—methylene
blue (MB), methyl orange (MO), and rhodamine b (RB). While testing the self-cleaning
properties, dyes were dropped on coated surfaces, after which the samples were exposed to
two types of irradiation to activate photocatalytic nanoparticles and initiate the degradation
of dyes. This simple approach yielded highly affordable self-cleaning surfaces. We used
several experimental techniques to characterize these samples’ charge transport properties
using impedance spectroscopy and measurements of electrical conductivity. To enhance
the self-cleaning properties, surfaces were treated with a continuous plasma arc to improve
activation of the acrylic paint layer modified with TiO2. Plasma-activated tiles showed
significant self-cleaning efficiency, leading to removing RB, MO, and MB from the tiles’
surface under SS irradiation. The overall results support the idea that self-cleaning tiles
are a promising solution for water purification treatment owing to their activity, simplicity,
and low processing cost.

2. Results and Discussion
2.1. Material Characteristics: SEM, Raman Analysis, and Contact Angle

The SEM results offer crucial insights into surface morphology, particle characteriza-
tion, and quality control, guiding research and development and correlating with material
properties. Our SEM results related to self-cleaning modified acrylic paint tiles with varying
TiO2 concentrations, presented in Figure 1 and Table 1, mainly indicate the presence of
spherical particles. Table 1 provides the chemical composition from EDS spectra, aiding in
understanding stoichiometry and impurity levels despite slight variations within the same
sample, notably showing shifts in carbon, oxygen, calcium, and titanium percentages as
TiO2 content increases. These variations suggest successful TiO2 incorporation, potentially
influencing material properties like enhanced self-cleaning capabilities. TiO2 is the most
commonly used pigment in paint formulations because of its high refractive index and
brightness, excellent coverage, durability, whiteness, and opacity. Since the control sample
was acrylic paint, it was expected to detect Ti in the control sample (Figure 1 and Table 1).

The analysis of Raman spectra (Figures 2 and 3) should give complete insight into
possible interactions between TiO2 nanopowder and acrylic matrix upon TiO2 addition by
investigating structural and chemical modifications.

Table 1. EDS results for control and self-cleaning modified acrylic paint tiles with different content
of TiO2.

Sample TiO2
(mg/cm3)

EDS Results

C
(wt.%)

O
(wt.%)

Ca
(wt.%)

Ti
(wt.%)

Total
(wt.%)

Control 0 30.46 49.75 16.45 3.34 100.00

TiO2
0.5 26.70 43.53 24.71 4.29 100.00
1.0 25.92 43.14 26.27 4.68 100.00
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Figure 1. The SEM images and EDS spectra of self-cleaning modified acrylic paint tiles with different
content of TiO2.

The Raman spectra of pure acrylic paint and 2.0TiO2 samples in a wide spectral range
are shown in Figure 2. The features dominate the spectrum of pure acryl paint (a) at
446 and 610 cm−1, which may be ascribed to Eg and A1g modes of the rutile phase of
TiO2, respectively. Broad bands at ~235 and ~350 cm−1 can also be ascribed to the rutile
phase [51]. Also, a sharp feature at ~143 cm−1 should be ascribed to rutile low-intensity
first-order B1g mode, but the contribution of a minimal amount of anatase phase cannot be
excluded. Besides these modes, which originate from rutile TiO2 as a white pigment, there
are several Raman features in the spectra of acryl paint. Sharp Raman modes at ~157, 283,
175, 1087 cm−1 are related to calcite (CaCO3) [52], whereas Raman features at ~999, 1030,
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1304, 1449, 1605 cm−1, together with bands related to C-H (~2867 and 2919 cm−1) and O-H
(~3060 cm−1) vibrations, have been ascribed to modified alkyd resin [53,54].

Figure 2b shows the Raman spectrum of the sample with 2.0TiO2 powder. This
spectrum is similar to the spectrum of acrylic paint in the investigated range, pointing out
that the procedures of sample preparation make no noticeable impact on the components
of this paint. The only exception is the appearance of Raman features originating from
inserted TiO2 nanopowder, which will be analyzed more thoroughly.
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Figure 2. Raman spectra of (a) pure acrylic paint and (b) 2.0TiO2 sample in extended range. Raman
features of rutile, anatase, calcite, and alkyd resin are denoted by R, A, c, and *, respectively.

The Raman spectra of acrylic paint with different amounts of TiO2 nanopowder
(Figure 3) are shown together with the spectra of TiO2 nanopowder, aluminum foil, and
pure acrylic paint to investigate the influence of mixing acrylic paint with TiO2 nanopowder,
application of these mixtures on aluminum foil, and subsequent heating/drying at 200 ◦C
on characteristics of the samples.

The domination of anatase modes in the spectrum of TiO2 nanopowder confirms the
high content of the anatase phase, but the presence of rutile modes (the inset of Figure 3)
points to a small amount of rutile phase. The spectrum of aluminum foil does not show
any distinctive Raman features in the region of interest, confirming that this substrate is
suitable for Raman investigations [55]. In the spectra of pure acrylic paint and the samples
0.5TiO2, 1.0TiO2, and 2.0TiO2, all deposited on Al foil, the dominant Raman features of
rutile remain unchanged regarding the mode position and linewidth (Figure 3), which
confirms that the procedure of sample preparation does not affect the rutile pigment within
acrylic paint. With the addition of TiO2 nanopowder, the Raman feature at ~143 cm−1 is
significantly intensified. The intensifying of this mode, ascribed to anatase Eg, together
with the appearance of 520 cm−1 spectral feature ascribed to anatase fingerprint A1g + B1g
mode [52], point to an increase in anatase content in the samples, also confirmed by the
integrated intensity ratio of anatase Eg mode at 143 cm−1 to rutile A1g mode at 610 cm−1

shown in Figure 4. A nearly linear increase in this ratio with added TiO2 nanopowder
certifies the successful integration of anatase nanopowder within the acrylic matrix. Also,
this intensity ratio is almost independent (within the experimental error) on measuring
points at the surface of each sample, indicating that TiO2 nanopowder has been uniformly
dispersed in the acrylic matrix.
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different content (mg/cm3) of TiO2 nanopowder in acrylic paint samples. The dashed line illustrates
the linear fitting of the experimental data.
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The position of anatase Eg mode (~143 cm−1) in the spectra of acrylic paint with
different content of TiO2 nanopowders is not changed. The Raman linewidth (7–8 cm−1) is
smaller than the original TiO2 nanopowder (~9 cm−1), which may point to a bit of improved
anatase crystallinity due to heating during sample preparation.

The consistent position of the anatase Eg mode in acrylic paint with different content
of TiO2 indicates minimal structural changes in the TiO2 powder due to sample preparation.
This suggests that the observed changes in elemental content, especially in carbon (Figure 1,
Table 1), might not stem directly from structural modifications in the TiO2 nanostructure.

This work’s contact angle was qualitatively determined by observing water droplets
placed on produced tiles. The droplet’s maintenance of a spherical shape without significant
spreading on each tile (Figure 5) indicates a higher contact angle and the hydrophobic nature
of the self-cleaning tiles. Notably, consistency in droplet behavior was observed across
multiple tests, reinforcing the reliability of these findings. A high contact angle denotes
exceptional water repellency and potential self-cleaning capabilities in self-cleaning surfaces.
A superhydrophobic surface is characterized by static water contact angles exceeding 150◦.
Surfaces exhibiting both a high contact angle and a sliding angle below 10◦ possess self-
cleaning properties. The tiles utilized in this study demonstrated a low sliding angle and a
high level of superhydrophobic behavior, indicating substantial self-cleaning properties.
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2.2. Nyquist Plot

Impedance spectroscopy is a potent and flexible instrument in materials science,
providing a distinctive perspective for researchers further to understand the electrochemical
properties and interactions in various materials. This technique involves applying a small
perturbation to a system and measuring its response over a range of frequencies, allowing



Inorganics 2024, 12, 35 8 of 23

for the extraction of valuable information regarding the system’s impedance. Such insights
are pivotal in understanding charge transfer processes, diffusion phenomena, and interface
behaviors that are otherwise challenging to discern using conventional methods.

In these regards, Nyquist plots emerge as an integral graphical representation. By
plotting the imaginary impedance component against its real part, Nyquist plots unveil
the interplay between a material or system’s resistive, capacitive, and inductive elements.
Their shape and features can hint at underlying processes, time constants, and even the
quality of interfaces, making them indispensable for researchers aiming to provide the
characteristics of materials.

In the context of ceramic tiles coated with acrylic paint embedded with TiO2 Hombikat
nanoparticles, impedance spectroscopy, and Nyquist plots have particular importance.
These tools can illuminate the interactions between the ceramic substrate, paint layer, and
nanoparticles, providing a deeper understanding of the material’s electrochemical behavior.
Such knowledge is crucial, especially when considering the potential applications of these
coatings in realms like photocatalysis, where charge transfer efficiency directly impacts
performance. In this investigation, we captured the complex impedance spectra within the
frequency range from 100 Hz to 200 kHz. The measurements were conducted using a Hioki
Impedance Analyzer IM3590, employing a cell configuration with copper electrodes. To
discuss the influence of a TiO2 coating, the measurements were conducted on a sample with
acrylic paint and samples with acrylic paint doped with all TiO2 content. The results are pre-
sented as a Nyquist plot in Figure 6. The observed variance in impedance response among
the examined samples is evident, suggesting a modification in the transport mechanism of
charge carriers resulting from the introduction of 1.0TiO2 doping. Comparable outcomes
were achieved for the specimens featuring 0.5 and 2.0 mg/cm3 of TiO2, meaning doping in
this concentration range does not significantly affect R and C parameters. Consequently,
in discussing charge transport properties, we will present the 1.0 mg/cm³ TiO2 results to
simplify the presentation.
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Figure 6. The complex impedance spectra for the coated foils with (a) acrylic paint and (b) 1.0TiO2-
modified acrylic paint (black dots) fit with an equivalent circuit (red curve).

For the sample with acrylic paint, we employed a fitting model comprising the active
electrolyte resistance in conjunction with the parallel capacitance arrangement, the compo-
nent is connected in series and a constant phase element (CPE). The Nyquist plot for the
sample with 1.0 mg/cm3 of TiO2 can be described with resistance and CPE connected in
parallel. It is important to highlight a strong agreement between the experimental data
points and the fitted spectrum for both samples. Fitting with the model above using the
Newton algorithm and amplitude function yielded the values of parameters as presented in
Table 2. These values are determined with the following errors: ∆R = 0.29%, ∆CPE = 0.13%,
and ∆n = 0.01%, for modified sample and ∆R = 24.8%, ∆CPE = 0.17%, ∆C = 0.07% and
∆n = 0.04% for acrylic paint.



Inorganics 2024, 12, 35 9 of 23

Table 2. The values of electrical circuit parameters.

Sample R (kΩ) A (nF) n C (pF) τ = (R·A)1/n (µs) τ = 1/2πfmax (µs)

acrylic paint 2.13 3.02 0.51 1.53 - -
1.0TiO2 60.28 0.54 0.88 - 8.28 8.69

According to the presented results, the charge transfer resistance of the system for
the 1.0TiO2 was obtained to be 60.28 kΩ. Higher values of this parameter suggest a more
resistive interface, and this value will serve for comparisons in our future studies dealing
with the properties of acrylic paint modified with different nanoparticles. The fairly high
resistance value suggests that the coating creates a resistive barrier.

n is the value of the CPE exponent, which indicates the deviation from ideal capacitive
behavior. In our modified sample case, the CPE exponent’s obtained value is 0.88, indicating
it is closer to capacitive behavior but with certain non-idealities. These non-idealities could
be attributed to TiO2 nanoparticles in several ways. For example, TiO2 nanoparticles can
lead to a heterogeneous surface at the microscopic level, or if the TiO2 nanoparticles tend
to aggregate within the paint matrix, this can introduce further irregularities and non-
uniformities in the electrochemical response. These aggregates can create regions with
different dielectric properties or charge transfer characteristics. The non-idealities can also
be attributed to porosity and percolation. Namely, if the inclusion of TiO2 nanoparticles
affects the porosity or creates percolative pathways within the coating, this can influence
the impedance. For instance, increased porosity might lead to more significant electrolyte
infiltration and modified electrochemical behavior regarding samples with acrylic paint.

As presented in Table 2, time constants (τ) were determined only for the modified
sample. Values of this parameter are obtained via two approaches (one derived from the
Randles circuit model with CPE and the other derived from the frequency at which the
maximum impedance is observed) are in excellent agreement, indicating that the Nyquist
plot is a good representation of the collected experimental data. The obtained values of τ
being in the microsecond range indicates relatively quick electrochemical processes in the
obtained system.

2.3. Frequency-Dependent Behavior

Figure 7 depicts the variation in the imaginary part of the complex impedance with
frequency for the samples under investigation. The absence of a peak in the spectra for
acrylic paint suggests a relaxation process in a lower frequency range than the measured
one, also indicated by the Nyquist plot. On the other hand, the appearance of one peak
for a modified sample is by the presence of one relaxation process. Furthermore, the fact
of asymmetric peaks indicates that the relaxation process in the material is contingent on
temperature. Hence, the dispersion curves of the investigated samples affirm the substantial
impact of TiO2 coating on dielectric behavior.
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The relaxation time can also be established by referring to the characteristic frequency,
corresponding to Z// max using the following relation [56]:

τ =
1

2π fmax
(1)

where f max is the distinctive frequency corresponding to Z// max.
It is essential to highlight a remarkably strong agreement between the values of the

parameter τ obtained through this method and those acquired by fitting the experimental
data from the impedance spectra.

Examining the frequency-dependent behavior of dielectric permittivity within the
frequency range associated with dielectric dispersion is essential in gaining insights into the
nature and source of losses. Frequency-dependent analysis is also significant for studying
the material’s electrical homogeneity, confirming the relaxation mechanism and electrical
conduction behavior [57].

The dielectric permittivity sand real (ε/) and imaginary parts (ε//) were computed by
utilizing the experimentally measured resistance (Rp) and capacitance (Cp) according to the
following relations:

ε/ =
d
S
·

Cp(ω)

εo
; ε// =

1
Rp(ω) · ω · C0

(2)

where d is the sample thickness, S is the cross-sectional area, angular frequency, and free
space permittivity C0 is the free space permittivity.

Variations in the real part of dielectric permittivity with frequency for the investigated
samples are shown in Figure 8. The frequency dependence of dielectric loss is presented
in Figure 9.
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The dielectric characteristics of a material are linked to various types of polarizations,
including dipolar, electronic, atomic, and free-charge separations. These polarizations
strongly depend on the composition and nature of the material. Based on Figures 8 and 9,
the decrease in the values of both dielectric parameters for investigated samples as a
function of frequency can be noticed. Also, these dielectric parameters reach a constant
value at higher frequencies (104–106 Hz) when the frequency of electron jumps fails to keep
up with the swift alterations in the applied external field. The influence of TiO2 coating is
manifested in a significant increase in both dielectric quantities of modified samples in the
low-frequency range.

The predominant mechanism at these frequencies involves polarization resulting from
separating free charges within the investigated sample. In this scenario, charge carriers
accumulate at the crystallite surface near the electrodes, inducing polarization in the sample,
akin to findings reported by Parker and Wasilik [57] in single-crystal rutile samples. Due
to the relatively extensive area of this interface, it possesses a significant capacitance and,
consequently, a relatively large time constant for the polarization of charges within the
interface induced by the AC signal. Consequently, these charges struggle to track the
oscillations of the electric field at higher frequencies, where processes with smaller time
constants would become prominent.

In conclusion, the observed dielectric properties of the system containing TiO2 nanocrys-
talline samples can be elucidated by the trapping and de-trapping of charge carriers at
localized states present on the crystallite surface or grain boundaries.

2.4. Electrical Conductivity

Figure 10 depicts the electrical conductivity characteristics of the examined sample
about frequency. The AC conductivity values can be expressed by:

σac(ω) = A · ωs (3)

where A represents a pre-exponential factor and is the universal exponent that defines the
extent of interaction between mobile entities and lattices. Figure 10a exhibits pronounced
frequency dependence, affirming the semiconductor characteristics of acrylic paint and its
adherence to power law behavior. The AC conductivity magnitude for the modified sample
(Figure 10b) remains nearly constant at low frequencies, indicative of alignment with a DC
value, and steadily rises in the high-frequency range (beyond 1000 Hz). Additionally, a
substantial enhancement in conductivity is evident, attributed to the presence of TiO2 coating.
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modified acrylic paint.

As per Jonscher [58], the conductivity, varying with frequency, is ascribed to relaxation
phenomena originating from mobile charge carriers. As these carriers transition from their
initial positions to new locations, they experience a displacement between two potential
energy minima, incorporating inputs from additional mobile defects. Over an extended
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period, the defect may relax until the lattice potential energy’s two minima align with the
lattice site. The values of the factor s were determined as 0.671 and 0.329 through the linear
fitting of the experimental data illustrated in Figure 10.

To ascertain the magnitude of the potential barrier that charge carriers need to over-
come, the formula incorporating the factor ‘s’ was utilized:

s =
d(ln σac)

d(ln ω)
= 1 − 6kBT

Wm
(4)

where kB is the Boltzmann constant, T is the temperature, and the potential barrier height
is Wm. The obtained value of Wm = 0.48 eV for acrylic paint and Wm = 0.23 eV for
1.0TiO2-modified acrylic paint suggests the charge carriers hopping between the localized
states as a dominant mechanism.

The analyses of the frequency dependence of dielectric loss of the investigated sample
also satisfy the equation [59]:

ε′′ = Aωm (5)

In this context, A represents a temperature-dependent constant, and m represents the nega-
tive exponent of the power function of the angular frequency. The experimental measurements
showcased in this study facilitated the determination of the parameter m and the potential
barrier height Wm by analyzing the slope of the linear function logε// = f(logf) (Figure 11).
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(a) acrylic paint and (b) 1.0TiO2-modified acrylic paint.

The computations employed the Giuntini model, which is designed to characterize
dielectric dispersion [59]. This model draws inspiration from Elliott’s concept of charge
carriers hopping across the potential barrier between charged defect states [60]. The as-
sumption is that each pair of states forms a dipole, and its relaxation time (τ) is contingent
upon the energy required to surpass the potential barrier. As per this model, at a given tem-
perature (T) and field frequency, the parameter m is expressed by the following equation:

m = −4kT
Wm

(6)

The obtained Wm = 0.21 eV value of the modified sample agrees well with the previous
one, determined according to conductivity measurements. However, the potential barrier
height Wm of acrylic paint is given as Wm = 0.29 eV, meaning that the exact mechanism
does not drive this sample’s relaxation and conductivity processes.

2.5. Self-Cleaning Properties of Prepared Tiles

This chapter outlines an exhaustive investigation into the self-cleaning capabilities
of prepared samples. These samples underwent rigorous testing under varied conditions
to mimic real-world scenarios to validate their practical utility. The evaluation involved
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applying two different dye volumes (20 µL and 10 µL) solely to the tiles with acrylic dye as
a control and alongside different TiO2 contents (0.5, 1.0, and 2.0 mg/cm3) to assess effective-
ness across varying contamination levels. Simulated solar (SS) irradiation mimicked field
environmental conditions during a 10 h evaluation of the tiles’ self-cleaning properties.

Figure 12 indicates that self-cleaning tests on control tiles did not achieve complete
color removal. However, partial color fading after 10 h was evident, attributed to TiO2
within the commercial acrylic paint.
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In the subsequent experiment (Figures 13–15), we explored the self-cleaning capacities
of tiles treated with diverse TiO2 concentrations. Using tiles coated with 0.5TiO2-modified
acrylic paint, we observed MB and MO dye removal within 8 h and 10 h, respectively, while
RB’s color faded within 10 h.

Inorganics 2024, 12, x FOR PEER REVIEW 15 of 25 
 

 
Figure 13. Dye removal using self-cleaning 0.5TiO2-modified acrylic paint tiles under irradiation. 

 
Figure 14. Dye removal using self-cleaning 1.0TiO2-modified acrylic paint tiles under irradiation. 

Figure 13. Dye removal using self-cleaning 0.5TiO2-modified acrylic paint tiles under irradiation.



Inorganics 2024, 12, 35 14 of 23

Inorganics 2024, 12, x FOR PEER REVIEW 15 of 25 
 

 
Figure 13. Dye removal using self-cleaning 0.5TiO2-modified acrylic paint tiles under irradiation. 

 
Figure 14. Dye removal using self-cleaning 1.0TiO2-modified acrylic paint tiles under irradiation. Figure 14. Dye removal using self-cleaning 1.0TiO2-modified acrylic paint tiles under irradiation.

Inorganics 2024, 12, x FOR PEER REVIEW 16 of 25 
 

 
Figure 15. Dye removal using self-cleaning 2.0TiO2-modified acrylic paint tiles under irradiation. 

To direct further research, we subjected our prepared tiles to plasma obtained from 
a continuous discharge arc. Plasma treatments are recognized for their ability to modify 
and activate surfaces, and in our case, proved to have a favorable impact. The plasma 
treatment notably enhanced the self-cleaning properties of our tiles. Remarkably, even the 
persistence of the RB dye was overcome after a 10 h exposure under SS irradiation, 
showcased in Figure 16. This demonstrates the promising potential of plasma treatments 
in augmenting the self-cleaning efficiency of the tiles. 

 
Figure 16. Dye removal using self-cleaning TiO2-modified acrylic paint tiles activated with 
continuous plasma arch under SS irradiation. 

The enhanced self-cleaning properties observed in tiles post-plasma treatment likely 
stem from generating functional groups on surfaces, altering surface wettability, and 
potentially increasing surface area. Additionally, plasma treatments can induce defects in 
TiO2 nanoparticles or modify their electronic structure. These induced defects might act 

Figure 15. Dye removal using self-cleaning 2.0TiO2-modified acrylic paint tiles under irradiation.

Upon SS irradiation, tiles containing 1.0TiO2 exhibited more efficient outcomes, requir-
ing shorter irradiation durations for MB and MO dye removal. MO was removed within
approximately 2 h, whereas MB necessitated 3 h. Despite this, traces of RB persisted on the
tile surfaces after 10 h (Figure 15).

The 2.0TiO2-modified acrylic paint tiles (Figure 15) displayed significantly enhanced
self-cleaning and dye removal efficiency. MO and MB were eliminated within 1.5 h and
3.0 h, respectively, while RB’s color faded but remained on the tile surface. Surprisingly,
there was no notable difference in self-cleaning efficacy between 1.0TiO2 and 2.0TiO2-
modified acrylic paint tiles. Thus, considering cost-effectiveness, we proceeded with the
1.0TiO2-modified acrylic paint tiles for subsequent experiments.

To direct further research, we subjected our prepared tiles to plasma obtained from
a continuous discharge arc. Plasma treatments are recognized for their ability to modify
and activate surfaces, and in our case, proved to have a favorable impact. The plasma
treatment notably enhanced the self-cleaning properties of our tiles. Remarkably, even
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the persistence of the RB dye was overcome after a 10 h exposure under SS irradiation,
showcased in Figure 16. This demonstrates the promising potential of plasma treatments
in augmenting the self-cleaning efficiency of the tiles.
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The enhanced self-cleaning properties observed in tiles post-plasma treatment likely
stem from generating functional groups on surfaces, altering surface wettability, and
potentially increasing surface area. Additionally, plasma treatments can induce defects in
TiO2 nanoparticles or modify their electronic structure. These induced defects might act
as sites for trapping electrons and holes, potentially diminishing their recombination and
ultimately enhancing the photocatalytic activity.

2.6. Computational Analysis

To understand the observed self-cleaning properties of produced tiles, we have per-
formed a computational analysis of dye molecules whose degradation has been studied.
We have employed a combination of global and local reactivity descriptors to achieve this.
Global reactivity descriptors provide essential information on the reactivity of molecular
systems. In contrast, a descriptor like the molecular electrostatic potential (MEP) helps
identify molecular sites prone to electrostatic interactions [61–64]. This combination of
parameters helped us explain the degradation of dyes observed in our experiments. One of
the best-known and most frequently applied types of visualization of MEP is by mapping
its values to the electron density surface, which leads to the so-called MEP surfaces. This
method has been utilized in this study as well. Additionally, it is essential to mention that
M06-2X density functional has been used to prepare MEP surfaces, as it outperforms B3LYP
regarding thermochemical molecular properties.

Global reactivity parameters of studied dye molecules have been summarized in
Table 3, while MEP surfaces of MB, MO, and RB have been presented in Figure 17.

Table 3. Selected global reactivity parameters of dye molecules.

Duy EHOMO [eV] ELUMO [eV] η [eV] S [eV−1] µD [Debye] ω [eV]

MB −6.23 −2.96 1.64 0.61 11.91 6.45
MO −6.59 −1.47 2.56 0.39 8.61 3.17
RB −6.15 −2.46 1.84 0.54 9.68 5.02
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Derived from the results in Table 3, the chemical hardness parameter is the lowest for
the MB dye molecule, indicating minor stability among all the considered dyes. Moreover,
various parameters, including dipole moment and electrophilicity index, exhibit excep-
tionally high values, indicating that this molecular system is notably reactive. The lowest
stability and highest reactivity are in close agreement with experimental results, according
to which this color is removed in the shortest time.

While global reactivity descriptors explain why MB dye is removed fastest, they cannot
explain why MO degrades faster than RB dye since the chemical hardness of MO is much
higher than the chemical hardness of RB. This situation required considering the local
reactivity properties via MEP surfaces.

The analysis of the MEP surface in Figure 17b indicates that MO is characterized by
far the highest magnitudes of both negative and positive MEP values. This makes it the
dye with the highest propensity to interact with negatively charged species. In particular, it
is also notable in the case of this dye that the most prominent reactivity sites are located
very close to each other, making one part of this molecule particularly reactive. Therefore,
significant stability indicated by chemical hardness is compensated by the fact that extreme
values of MEP are located in their close vicinity, making this molecule highly reactive at
one particular molecular site.

According to experimental results, the efficiency of removing RB dye is the lowest.
In many cases, this dye remained at least a little bit on the tile’s surface even after 10 h of
irradiation with UV LED and SS irradiation. This dye was removed after 10 h of irradiation
only after plasma treatment. Global reactivity descriptors explain why this dye is more
persistent than MB. However, other facts should be taken into account to explain why it
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is more persistent than MO. Namely, this dye is characterized by very high magnitudes
of negative and positive MEP values. Although its highest magnitude of positive MEP is
lower than in the case of the MO dye, it should be noted that the highest value of MO dye
comes from the positive Na ion. In the case of the RB dye, the positive MEP values are
present due to the core molecular part and spread practically all over the molecule. Such
topology of RB makes it less locally reactive than MO, and in combination with its size
(65 atoms), it explains why it is more difficult to remove from the tile surface.

3. Materials and Methods
3.1. Chemicals and Solutions

All chemicals utilized were of reagent grade and were employed without undergoing
purification. Chemicals used were RB (C28H31ClN2O3, >99.9%, Merck, Darmstadt, Ger-
many), MB (C16H18ClN3S, >99%, Merck, Germany), and MO (C14H14N3NaO3S, >99.9%
Kemika, Zagreb, Croatia), ethanol (C2H6O, >99.8%, Merck, Germany), acrylic concrete
paint (Betokril, Poly, Šid, Serbia), TiO2 Hombikat (100% anatase, Sigma-Aldrich, specific
surface area 35–65 m2/g). Every solution was formulated using ultrapure water (pH 6.56,
κ = 0.055 µS/cm, total organic carbon TOC < LOD). The dye concentration within the
aqueous stock solution was 0.05 mmol/dm3.

3.2. Materials for Synthesis

Commercial aluminum (Al) foil was used as a solid surface for applying TiO2-modified
acrylic paint with 0.5, 1.0, and 2.0 mg/cm3 TiO2 Hombikat as photocatalysts. Al foil was
cleaned with ethanol. The mixture of TiO2 acrylic paint was made by adding the appropriate
amount of TiO2 to acrylic paint, after which this mixture was homogenized. After that, the
tiles were coated with a TiO2 acrylic paint layer. The coated samples underwent air drying
and were then subjected to a 15 min treatment in an oven at 200 ◦C to enhance adhesion to
the substrate [65].

3.3. Characterization Methods

Impedance spectroscopy was employed to characterize the electrical properties of the
examined sample within the frequency from 100 Hz to 1 MHz. These measurements were
conducted using a Hioki Impedance Analyzer in a cell configuration with copper electrodes.

The contact angle was descriptively determined [66] using the micropipette. A drop
of 10 µL of ultrapure water was placed on the clean tiles’ surface.

The structure of self-cleaning modified acrylic paint tiles with different content of TiO2
is assessed using SEM, where the presence of gold-coated particles was detected using
a JEOL JSM-6460LV operating at 20 keV. SEM analysis was employed, utilizing an EDS
detector, explicitly employing the INCAx-sight detector and ‘INAx-stream’ pulse processor
from Oxford Instruments, to ascertain the composition and quality of self-cleaning modified
acrylic paint tiles.

Raman scattering spectra were captured in backscattering geometry employing a
Jobin-Yvon T64000 triple spectrometer with gratings of 1800 grooves/mm. The setup
included a confocal microscope and a nitrogen-cooled charge-coupled device detector. The
samples were excited using a 514.5 nm line of Ar+/Kr+ ion laser with an output power of
~20 mW to avoid sample heating (~200 µW under the objective of 50× magnification). The
measurements were performed at room temperature in open air.

3.4. Plasma Treatment

Plasma used to treat tiles was produced in an electric wall-stabilized arc, operated at
atmospheric pressure, and used in a direct current regime. The arc consists of six water-
cooled copper discs, each 7.1 mm thick, separated by Teflon discs, each of which is 0.5 mm
thick. The copper and Teflon discs form the arc channel, which is 70 mm long and has a
diameter of 5 mm. This channel ends with tungsten electrodes on each side. The electrodes
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are hollow and are closed off with removable windows to the outside. More details about
the used arc can be found in [67].

Pure argon gas was introduced into the arc channel at a flow rate of 3 L/min. The used
electric current was 30 A. In this way, plasma is produced between the electrodes in the arc
channel. At its axis, this plasma reaches an electron density of a few times 1016 cm−3 and
an electron temperature ranging from 10,000 K to 11,000 K [68,69].

For this work, the window behind the anode was removed, and the tiles were placed
at the opening, perpendicular to the plasma column axis. Each tile was exposed for 1 s.

3.5. Photodegradation Experiments

For self-cleaning experiments, tiles were placed on a flat surface, and an irradiation
beam was focused on them. In total, 10 µL and 20 µL of dye solutions were applied to
the surface of the tiles before irradiation. Tiles were irradiated for 10 h using SS radiation
(50 W halogen lamp, Philips, with an intensity of 661.0 W/m2 in the visible region and
1.071 W/m2 in the UV region). The distance between the tiles and the irradiation source
was 50 mm. In one series of experiments, 2 µL of ultrapure water was added to the tile’s
surface after each hour of irradiation.

The radiation energy fluxes were measured using a Delta Ohm HD 2102.2 (Padova,
Italy) radiometer, which was fitted with the LP 471 UV (spectral range 315–400 nm) and
LP 471 RAD (spectral range 400–1050 nm) sensors.

3.6. Computational Details

Computational study of dye molecules was performed using quantum-mechanical calcu-
lations based on density functional tight binding (DFTB) and density functional theory (DFT)
methods. GFN2-xTB method [70–74] developed by Prof. Stefan Grimme and coworkers was
used to pre-optimize molecular structures of dyes. Further geometrical re-optimizations were
performed using the combination of B3LYP [75–78] density functional and 6-31G(d,p) basis
set. Actual ground states of molecules were confirmed by vibrational frequency analysis,
which yielded only positive frequencies. Molecular electrostatic potential (MEP) calculations
have also been performed using the DFT calculations by applying M06-2X density functional
combined with a 6-311++G(d,p) basis set. All GFN2-xTB calculations have been performed
with the xTB program [72] version 6.6.1. through the atomistica.online molecular modeling
platform, freely available at https://atomistica.online (accessed on 1 November 2023). Ge-
ometrical optimization at the DFT level was performed with the ORCA [79–83] molecular
modeling package. Single-point energy calculations to obtain MEP descriptors have been
performed with the Jaguar [84–87] program, while molecular visualization of MEP descriptors
was performed with the Maestro program [88], both as implemented in the Schrödinger
Materials Science Suite 2023-3.

4. Conclusions

In this work, we prepared a tile base with self-cleaning properties by coating foil with
acrylic white paint mixed with Hombikat TiO2 nanoparticles. A detailed analysis of charge
transport properties involved impedance spectroscopy and the investigation of electrical
conductivity. By fitting the Randles circuit with a CPE, the charge transfer resistance of
the system was calculated to be 60.28 kΩ, indicating that the coating created a resistive
barrier. The n parameter took a value of 0.88, suggesting that the system leans towards
capacitive behavior but with certain non-idealities, which are most likely a consequence
of the TiO2 nanoparticles in the acrylic paint. The time constant values obtained via the
two approaches show good agreement regarding the quality of the Nyquist plot, while
the numerical value of the µs order indicates relatively quick electrochemical processes
in the system. Regarding frequency-dependent properties, measurements suggest that
the dominant mechanism at low frequencies is polarization due to the separation of free
charges in the samples. Electrical conductivity measurements identify charge hopping
between localized states as the dominant mechanism of conductivity.

https://atomistica.online
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The characterization of control and self-cleaning surfaces, created by applying an
acrylic paint matrix enriched with varying levels of titanium dioxide TiO2 nanoparticles
(0.5, 1.0, 2.0 mg/cm3) onto aluminum foil, revealed significant insights. SEM analysis
delineated morphological shifts, notably the emergence of spherical particles, correlating
with increased TiO2 content. Raman spectroscopy provided distinct signals linked to TiO2
phases, confirming their successful integration within the acrylic matrix. Together, these
observations underscore the substantial influence of TiO2 content on surface attributes,
offering crucial insights into customizing self-cleaning capabilities for diverse practical
applications. Contact angle measurements depicted a noteworthy rise in hydrophobicity
with increasing TiO2 concentrations, highlighting stronger water repellency across the
modified acrylic surfaces. The difference in charge transport properties indicates a change
in the transport mechanism of the charge carriers due to doping acrylic paint with TiO2.
The samples exhibited comparable results of 0.5, 1.0, and 2.0 mg/cm3 of TiO2, meaning
doping in this concentration range does not significantly affect observed parameters.

Self-cleaning properties were tested against three frequently used industrial dyes,
considered significant environmental threats. These properties were evaluated under the
influence of SS irradiation. Better self-cleaning results were observed under SS irradiation,
wherein MB and MO were wholly removed from the tile surface after 2 h each. However,
RB remained on the tile surface in both cases. Complete removal of RB paint was achieved
by exposing the self-cleaning wafers to plasma from a continuous discharge arc, indicating
the promising potential of this technique for further improvement of the self-cleaning
properties of the prepared wafers and further research. A detailed analysis of the reactive
properties of dye molecules was performed using a combination of DFTB and DFT. These
results aided our understanding of the dye removal efficiency in more detail. Specifically,
the MB dye is the least stable dye according to the chemical hardness descriptor. MO, the
most stable based on chemical hardness, exhibits extreme charge separation in a small
molecular area around the SO3 group, which is likely the molecular site where degradation
begins. In terms of chemical hardness, RB is between MB and MO. However, it is the most
persistent dye, which may be due to its size. Specifically, RB contains almost twice as many
atoms as MB or MO.
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