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Abstract: A redox-active M2L2 metalla-macrocycle is depicted, of which construction has been achieved
through coordination driven self-assembly from an electron-rich 9-(1,3-dithiol-2-ylidene)fluorene
bis-pyridyl ligand and a cis-blocked square planar palladium complex (Pd(dppf)OTf2,
dppf = 1,1′-Bis(diphenylphosphino)ferrocene). The resulting metalla-macrocycle has been fully
characterized in solution, as well as in the solid state (X-ray crystal structure). Its electronic properties
show that both constitutive ligands can be oxidized independently through a one-electron process.

Keywords: supramolecular chemistry; self-assembly; coordination compound; metalla-macrocycle;
9-(1,3-dithiol-2-ylidene)Fluorene; redox-active compound

1. Introduction

Since the pioneering example reported by Fujita [1], a plethora of ever more sophisticated
metalla-rings and -cages constructed by coordination-driven self-assembly have been reported [2–7].
This methodology takes advantage of the labile character of the coordination bonds to produce high
yields and single step thermodynamically stable architectures, with complex structures that would
be challenging to reach through traditional organic chemistry. These self-assembled architectures
are usually characterized by an internal cavity that can be exploited in guest encapsulation
leading to various applications such as chemistry in confined space [8,9] or drug delivery [10–12].
Beyond the synthetic challenge in preparing such objects, there is a strong interest in providing
them with functionality, as encountered with recently described stimuli responsive rings and cages
structures [13–16]. In this context, the preparation of redox-active metalla-rings/cages which allow
a redox control over their overall charge appears relevant [17,18] and we described recently the first
examples of electron-rich redox-active coordination cages capable of modulating their encapsulation
properties through a redox stimulus [19,20].

In the course of our research related to the preparation of electron-rich self-assemblies [17,19–26], we have
recently demonstrated that the 9-(1,3-dithiol-2-ylidene)fluorene moiety, which is known to be readily
and reversibly oxidized into a cation-radical [27,28], can be used as a building-block for the construction
of electro-active self-assembled cages [29]. In line with this work, we describe herein the synthesis
of an original electron-rich M2L2 metalla-macrocycle constructed from the cis-blocked Pd(dppf)OTf2
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(dppf = 1,1′-Bis(diphenylphosphino)ferrocene) acceptor and a 9-(1,3-dithiol-2-ylidene)fluorene ligand
(L4Pyr) that incorporates two pyridin-4-yl units in the corresponding 3,6-positions.

2. Results and Discussion

The synthesis of ligand L4Pyr (Scheme 1) was carried out in two steps from 3,6-dibromo-9H-
fluoren-9-one 1 adapted from our previous described procedure [29]. A pallado-catalyzed Sonogashira
cross coupling reaction with 4-ethynylpyridine affords the new compound 2 with 59% yield upon
microwave irradiation. The subsequent Horner–Wardsworth–Emmons reaction was carried out with
the 4,5-bis(hexylsulfanyl)-1,3-dithiol phosphonate ester 3 to afford the target new ligand L4pyr with
75% yield after purification.
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Scheme 1. Synthesis of ligand L4Pyr and metalla-macrocycle [Pd2(L4Pyr)2(OTf)4].

Slow evaporation of a CH2Cl2/EtOH solution of ligand L4Pyr allowed for obtaining single
crystals suitable for X-Ray analysis. The corresponding solid-state crystal structure is depicted in
Figure 1. Remarkably, the presence of two hexylsulfanyl chains did not prevent crystallization. As for
its pyridin-3-yl homologous ligand [29], L4Pyr shows a nearly planar geometry with a slight folding
of the dithiole rings (6◦ across the S···S vector) and a slight twist of the pyridine units relatively to the
central planar fluorene core with angles of ca. 4.1◦. As expected, the angle observed between both
ethynyl axes is close to 90◦, an angle that is therefore extended to the coordination angle provided by
both nitrogen atoms of the pyridine fragments.

Reaction between ligand L4Pyr and complex Pd(dppf)OTf2 (Scheme 1) was carried out in CD2Cl2
and followed by 1H-NMR. After 2 h, the reaction converged to a unique structure that could be isolated
by precipitation with Et2O. The resulting 1H-NMR spectrum exhibits a single set of well resolved
signals as anticipated from a symmetrical discrete self-assembly (Figure 2). H4 and H5 signals are
upfield shifted compared to ligand L4Pyr due to through-space interactions between the coligand
phenyl units (dppf) and the pyridyl groups, confirming coordination to the metal center [22,24].
A 1H-NMR DOSY experiment revealed a single set of signals that confirms the formation of a unique
discrete species. From the corresponding diffusion value of D = 10−10 m2·s−1, a hydrodynamic radius
of ca. 10 Å was estimated from the Stokes-Einstein equation (T = 298 K) [30], a value which is compatible
with the formation of the expected tetracationic M2L2 architecture [Pd2(L4Pyr)2(OTf)4] [31,32].
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[Pd2(L4Pyr)2(OTf)4] (CD2Cl2) and (c) corresponding 1H-NMR DOSY spectra (related to (b)).

High resolution ESI-FTICR-MS spectrometry experiments were carried out to confirm the
stoichiometry of the discrete self-assembled complex. Surprisingly, regardless of the instrumental
conditions, the solvent and the concentration (10−5 M < C < 10−3 M), signal corresponding to the expected
M2L2 ([Pd2(L4Pyr)2(OTf)4]− 2OTf]2+; m/z = 1510.1598) was accompanied by mass peaks due to higher
nuclearity assemblies. In particular are observed M4L4 ([[Pd4(L4Pyr)4(OTf)8]− 3OTf]3+; m/z = 2064.1986)
and sometimes M6L6 species (see Figure 3 and Figure S8 for an illustrative example), whose relative
abundances diminish with aggregates size. In accordance with the previously-mentioned DOSY
experiment, such MS spectra suggest the presence in solution of M2L2 species that aggregate upon ESI
to form dimers and trimers, a phenomenon that is known to occur at high concentration and with soft
ionization conditions [33].



Inorganics 2018, 6, 44 4 of 10

Inorganics 2018, 6, x FOR PEER REVIEW  4 of 10 

 

 

Figure 3. ESI-FTICR mass spectrum of metalla-macrocycle [Pd2(L4Pyr)2(OTf)4] in CH2Cl2/CH3NO2 
(9/1) (C = 10−3 M), in black experimental isotopic pattern, in blue theoretical isotopic pattern. 

Fortunately, single crystals could be grown by slow diffusion of MeOtBu in a CH2Cl2 
solution containing [Pd2(L4Pyr)2(OTf)4] (C = 1 mM). X-ray crystallography analyses confirmed 
unambiguously the expected M2L2 stoichiometry (Figure 4). Two independent discrete 
assemblies were found in the crystal packing (Figure 4a). They exhibit a similar configuration 
but differ essentially by the dihedral angle between both dithiafulvenyl mean planes (DTF) 
(88.7° and 58.1 for blue and turquoise species respectively). The two forms interact through 
π–π interactions between their respective DTF units with interplanar distance of 3.45 Å, as 
well as CH–π interactions between DTF units and SHex chains. The geometrical 
characteristics of the constitutive L4Pyr ligand are mostly preserved in the metalla-macrocycle 
despite the fact that the average twisting between pyridine units and fluorene core increases 
to 12.5°. 

 
Figure 4. X-ray crystal structure of [Pd2(L4Pyr)2(OTf)4], (a) crystal packing showing two independent 
discrete assemblies (blue and turquoise respectively), (b) top view and (c) lateral view of turquoise 

Figure 3. ESI-FTICR mass spectrum of metalla-macrocycle [Pd2(L4Pyr)2(OTf)4] in CH2Cl2/CH3NO2

(9/1) (C = 10−3 M), in black experimental isotopic pattern, in blue theoretical isotopic pattern.

Fortunately, single crystals could be grown by slow diffusion of MeOtBu in a CH2Cl2 solution
containing [Pd2(L4Pyr)2(OTf)4] (C = 1 mM). X-ray crystallography analyses confirmed unambiguously
the expected M2L2 stoichiometry (Figure 4). Two independent discrete assemblies were found in
the crystal packing (Figure 4a). They exhibit a similar configuration but differ essentially by the
dihedral angle between both dithiafulvenyl mean planes (DTF) (88.7◦ and 58.1 for blue and turquoise
species respectively). The two forms interact through π–π interactions between their respective DTF
units with interplanar distance of 3.45 Å, as well as CH–π interactions between DTF units and SHex
chains. The geometrical characteristics of the constitutive L4Pyr ligand are mostly preserved in the
metalla-macrocycle despite the fact that the average twisting between pyridine units and fluorene core
increases to 12.5◦.
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UV-vis absorption spectra of ligand L4Pyr and metalla-macrocycle [Pd2(L4Pyr)2(OTf)4] were
recorded in dichloromethane at C = 1.5 × 10−5 M (Figure 5). The absorption profile of L4Pyr reveals
two high energy absorption bands at 290 nm and 350 nm attributed to π–π* transitions located
on the fluorene and pyridines units respectively, whereas the intense low energy band at 460 nm
(ε = 46,000 M−1·cm−1) shows an ICT character from the HOMO localized on the DTF unit to the
LUMO of the electron accepting pyridyles [34]. The absorption spectrum of [Pd2(L4Pyr)2(OTf)4]
complex exhibits a similar profile with maxima shifted to lower energy (λmax = 483 nm) as expected
from metal coordination, and ε values twice higher (ε = 102,000 M−1·cm−1) accordingly to the
metalla-ring formula.
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(C = 1.5 × 10−5 M in CH2Cl2).

The electrochemical properties of ligand L4Pyr and complex [Pd2(L4Pyr)2(OTf)4] were studied
by cyclic voltammetry in CH3CN/CH2Cl2 (1/1, v/v) (Figure 6). Ligand L4Pyr exhibits one reversible
oxidation wave at E1

ox = 0.57 V vs. Fc/Fc+ which is attributed to the formation of the DTF
radical-cation [27,28]. This potential is higher by 0.15 V compared to the one of the homologous
ligand bearing two pyridine-3-yl units [29]. This behavior is in accordance to previous observations
on pyridine-4-yl (vs. pyridine-3-yl) mono substituted TTF based ligands [35] and accounts for the
respective electronic effect of the nitrogen atom. The corresponding metalla-cycle complex presents two
reversible oxidation waves. The first one, anodically shifted by 20 mV compared to the uncoordinated
ligand is attributed to the oxidation of DTF units (E1

ox = 0.59 V vs. Fc/Fc+) while the second is centered
on the ferrocene moieties at E2

ox = 0.83 V, both processes presenting similar intensities. Altogether,
this behavior suggests that both organic redox active DTF units behave independently upon oxidation
to their radical cation state and that they do not interact electronically.
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(C = 10−3 M, CH3CN/CH2Cl2, 0.1 M nBu4NPF6, 100 mV·s−1, Pt) V vs. Fc/Fc+.

3. Materials and Methods

3.1. Chemicals

Compound 1 [36] and 3 [37] were synthetized as described in the literature. All reagents were
of commercial reagent grade and were used without further purification. Silica gel chromatography
was performed with a SIGMA Aldrich Chemistry SiO2 (pore size 60 Å, 40–63 µm technical grades)
(Sigma-Aldrich, Steinheim, Germany).

3.2. Instrumentation

The 300 (1H), 75.5 (13C) MHz NMR spectra were recorded at room temperature using
perdeuterated solvents as internal standards (1H on a NMR Bruker Avance III 300 spectrometer
(Bruker, Wissembourg, France). MALDI-TOF-MS spectra were recorded on a MALDI-TOF Bruker
Biflex III instrument (Bruker, Wissembourg, France) using a positive-ion mode. ESI-FTICR spectra were
performed in positive detection mode on a IonSpec (Agilent, Santa-Clara, CA, USA), 9,4 T hybride ESI
q-Q-q. Cyclic voltammetry experiments were carried out on a BioLogic SP-150 potentiostat (BioLogic,
Seyssinet-Pariset, France).

3.3. Experimental Procedure and Characterization Data

3.3.1. Synthesis of 3,6-bis(Pyridin-4-ylethynyl)-9H-fluoren-9-one (2)

To an argon degassed solution of 3,6-dibromo-9H-fluoren-9-one 1 (100 mg, 0.30 mmol) and
3-ethynylpyridine (122 mg, 1.18 mmol, 4 equiv.) in a mixture of diisopropylamine/toluene 1/1
(4 mL) placed in a microwave tube, Pd(PPh3)4 (68 mg, 0.06 mmol, 0.2 equiv.) and CuI (11 mg,
0.06 mmol, 0.2 equiv.) were added. The sealed tube was irradiated for 30 min at a constant
250 W and the solvent was evaporated under vacuum. The residue was then treated with water
and extracted with dichloromethane. The organic extracts were washed with water and dried
over magnesium sulfate. The solvent was evaporated under vacuum. A chromatography column
on silica gel was performed using a gradient of eluent: from dichloromethane/petroleum ether
(80/20) to dichloromethane/methanol (98/2). The residue was further purified by recrystallization in
dichloromethane/pentane. Compound 2 was obtained as yellow powder 67 mg, 59% yield. 1H-NMR
(300 MHz, CDCl3) δ 8.66 (d, J = 5.8 Hz, 4H), 7.73–7.70 (m, 4H), 7.54 (dd, J = 7.6, 1.1 Hz, 2H), 7.42 (dd,
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J = 4.6, 1.4 Hz, 4H); 13C-NMR (75.5 MHz, CDCl3) δ 191.64, 149.95, 143.65, 134.30, 133.28, 130.67, 128.62,
125.59, 124.57, 123.71, 92.93, 90.05; FAB-HRMS: found: 382.1099, calculated: 382.1106.

3.3.2. Synthesis of Ligand L4Pyr

n-Butyllithium (0.15 mL, 0.37 mmol, 1.6 M, 1.5 equiv.) was slowly added to a solution of phosphonate
ester 3 (165 mg, 0.37 mmol, 1.5 equiv.) in anhydrous tetrahydrofuran (10 mL) at −78 ◦C. The mixture
was stirred for one hour at −78 ◦C and a suspension of 3,6-bis(pyridin-3-ylethynyl)-9H-fluoren-9-one
2 (95 mg, 0.25 mmol, 1 equiv.) in anhydrous tetrahydrofuran (10 mL) at −78 ◦C was added via cannula.
The mixture was stirred for 1 h at −78 ◦C and overnight at room temperature. The solvent was
removed under vacuum. The residue was then treated with water and extracted with dichloromethane.
The organic extracts were washed with water, and dried over magnesium sulfate. The solvent was
removed under vacuum. A chromatography column on silica gel was performed using a gradient of
eluent: petroleum ether/dichloromethane (50/50) to dichloromethane/methanol (98/2). The residue
was further purified by recrystallization dichloromethane/methanol. Ligand L4Pyr was obtained as
orange crystals (132 mg, 75%). 1H-NMR (300 MHz, CDCl3) δ 8.63 (s, 4H), 8.06–7.99 (m, 2H), 7.74 (d,
J = 8.2 Hz, 2H), 7.61 (dd, J = 8.2, 1.5 Hz, 2H), 7.43 (d, J = 5.3 Hz, 4H), 2.98 (t, J = 7.3 Hz, 4H), 1.71 (m,
4H), 1.47 (m, 4H), 1.32 (m, 8H), 0.90 (t, J = 7.0 Hz, 6H) ; 13C-NMR (75.5 MHz, CDCl3) δ 149.58, 142.70,
137.52, 136.81, 131.86, 130.92, 129.64, 125.63, 123.39, 122.70, 119.49, 118.64, 95.12, 87.17, 36.78, 31.35,
30.96, 28.26, 22.56, 14.05; FAB-HRMS: found: 700.2082, calculated: 700.2074.

3.3.3. Synthesis of Metalla-Macrocycle [Pd2(L4Pyr)2(OTf)4]

A mixture of ligand L4Pyr (7.01 mg, 0.01 mol) and Pd(dppf)OTf2 (9.57 mg, 0.01 mol) in CH2Cl2
(1 mL) were stirred at 40 ◦C for 2 h. The red solution was cooled down to room temperature, and Et2O
(5 mL) was then added. The mixture was centrifuged and the resulting solid was dried in vacuum to
afford [Pd2(L4Pyr)2(OTf)4] as a red powder (14.3 mg, 86%). 1H-NMR (300 MHz, CD2Cl2) δ 8.69–8.44
(m, 8H), 8.01–7.78 (m, 20H), 7.64 (m, 28H), 7.49 (dd, J = 8.2, 1.6 Hz, 4H), 7.07 (dt, J = 5.3, 1.3 Hz, 8H),
4.80 (s, 10H), 4.63 (s, 10H), 2.94 (t, J = 7.3 Hz, 8H), 1.64 (m, 8H), 1.41 (m, 8H), 1.27 (m, 16H), 0.85 (m,
12H); 13C-NMR (75.5 MHz, CDCl3) δ 150.06, 144.93, 137.79, 136.21, 134.89, 134.15, 134.05, 132.84, 130.76,
129.79, 129.70, 127.78, 127.50, 127.04, 123.96, 122.43, 122.33, 119.77, 118.64, 117.22, 99.73, 85.66, 76.83,
76.77, 76.73, 75.35, 75.29, 70.10, 70.06, 69.58, 69.54, 36.55, 31.14, 29.59, 28.02, 22.38, 13.63; FTICR-HRMS
(m/z), [[Pd2L4pyr2]4+ − 2TfO−]2+: found: 1510.1598, calculated 1510.1660.

3.4. X-ray Crystallographic Analysis

X-ray single-crystal diffraction data for L4Pyr and [Pd2(L4Pyr)2(OTf)4] were collected at 150 K
on an Agilent Technologies SuperNova diffractometer equipped with an Atlas CCD detector and
micro-focus Cu Kα radiation (λ = 1.54184 Å). Both structures were solved by direct methods and
refined on F2 by full matrix least-squares techniques using SHELX (G.M. Sheldrick, 2013–2016)
package. All non-hydrogen atoms were refined anisotropically and the H atoms were included
in the calculation without refinement. Multiscan empirical absorption was corrected using CrysAlisPro
program (CrysAlisPro 1.171.38.41r, Rigaku Oxford Diffraction, 2015).

The structure refinement for [Pd2(L4Pyr)2(OTf)4] showed disordered electron density that could
not be reliably modeled, therefore PLATON/SQUEEZE was used to remove the corresponding
scattering contribution from the intensity data. This electron density can be attributed to solvent
molecules (methyl tert-butyl ether) and anions missing atoms (CF3SO3 anions). The assumed solvent
composition and missing anions atoms were used in the calculation of the empirical formula, formula
weight, density, linear absorption coefficient, and F(000).

Crystallographic data for L4Pyr: C42H40N2S4, M = 701.00, orange needle, 0.272× 0.099× 0.054 mm3,
orthorhombic, space group P212121, a = 4.9286(1) Å, b = 24.5232(3) Å, c = 30.1230(4) Å, V = 3640.8(1) Å3,
Z = 4, ρcalc = 1.279 g/cm3, µ = 2.640 mm−1, F(000) = 1480, θmin = 2.323◦, θmax = 76.681◦, 14570 reflections
collected, 7383 unique (Rint = 0.0223), parameters/restraints = 435/0, R1 = 0.0253 and wR2 = 0.0652 using
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6964 reflections with I > 2σ(I), R1 = 0.0292 and wR2 = 0.0679 using all data, GOF = 1.052, absolute
structure parameter = −0.006(5), −0.212 < ∆ρ < 0.238 e Å−3. CCDC 1834510.

Crystallographic data for [Pd2(L4Pyr)2(OTf)4]: C352H368F24Fe4N8O32P8Pd4S24, M = 7344.72, red
prism, 0.226 × 0.139 × 0.076 mm3, triclinic, space group P − 1, a = 20.4323(8) Å, b = 27.8575(11)
Å, c = 32.2485(11) Å, α = 74.192(3)◦, β = 88.216(3)◦, γ = 87.829(3)◦, V = 17644.6(12) Å3, Z = 2,
ρcalc = 1.382 g/cm3, µ = 5.192 mm−1, F(000) = 7600, θmin = 2.454◦, θmax = 72.990◦, 123021 reflections
collected, 66698 unique (Rint = 0.1446), parameters/restraints = 3061/97, R1 = 0.1257 and wR2 = 0.3112
using 22013 reflections with I > 2σ(I), R1 = 0.2092 and wR2 = 0.3734 using all data, GOF = 0.914,
−1.988 < ∆ρ < 2.867 e Å−3. CCDC 1834511.

4. Conclusions

The synthesis and characterization of a M2L2 self-assembled metalla-macrocycle [Pd2(L4Pyr)2(OTf)4]
constructed from an electron-rich ligand L4Pyr and a square planar cis-blocked Pd(II) salt
was demonstrated. This work illustrates once again the versatility and efficiency of the
coordination-driven self-assembly strategy, when specific macrocyclic targets are focused. In contrast
to M2L4 structure featuring the redox-active 9-(1,3-dithiol-2-ylidene)fluorene framework that was
previously obtained from a pyridine-3-yl functionalized ligand [29], the present work depicts
the construction of a totally different discrete M2L2 structure from a pyridine-3-yl functionalized
ligand. The resulting [Pd2(L4Pyr)2(OTf)4] complex features four electro-active units in total, i.e.,
two 9-(1,3-dithiol-2-ylidene)fluorene units which are independently and reversibly oxidized to the
corresponding cation-radical (0.59 V vs. Fc/Fc+), and two ferrocene moieties (0.83 V vs. Fc/Fc+).
The total charge of the metalla-ring can be therefore reversibly tuned between +4 and +8. Exploration
of this capability to tune electrostatic interactions along host-guest processes is underway.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-6740/6/2/44/s1,
NMR and ESI-FTICR mass spectra (Figures S1–S8), cif files and check cif files of L4Pyr and [Pd2(L4Pyr)2(OTf)4].

Author Contributions: Sébastien Goeb and Marc Sallé conceived, designed the experiments, analyzed the data
and wrote the paper; Serhii Krykun performed the experiments; Zoia Voitenko advises; Magali Allain performed
X-ray analyses; Vincent Carré and Frédéric Aubriet performed ESI-FTICR analyses.

Acknowledgments: This work has been supported partially by the ANR JCJC program (ANR-14-CE08-0001
BOMBER). The authors gratefully acknowledge the MENRT for a PhD grant (VC) and the French Embassy in
Kiev (Ukr) for a PhD grant (SK). They also acknowledge the ASTRAL platform (SFR MATRIX, Univ. Angers) for
their assistance in spectroscopic analyses.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fujita, M.; Yazaki, J.; Ogura, K. Preparation of a macrocyclic polynuclear complex, [(en)Pd(4,4’-bpy)]4(NO3)8

(en = ethylenediamine, bpy = bipyridine), which recognizes an organic molecule in aqueous media. J. Am.
Chem. Soc. 1990, 112, 5645–5647. [CrossRef]

2. Cook, T.R.; Stang, P.J. Recent developments in the preparation and chemistry of metallacycles and metallacages
via coordination. Chem. Rev. 2015, 115, 7001–7045. [CrossRef] [PubMed]

3. Mishra, A.; Kang, S.C.; Chi, K.-W. Coordination-Driven Self-Assembly of Arene–Ruthenium Compounds.
Eur. J. Inorg. Chem. 2013, 5222–5232. [CrossRef]

4. Smulders, M.M.J.; Riddell, I.A.; Browne, C.; Nitschke, J.R. Building on architectural principles for
three-dimensional metallosupramolecular construction. Chem. Soc. Rev. 2013, 42, 1728–1754. [CrossRef] [PubMed]

5. Young, N.J.; Hay, B.P. Structural design principles for self-assembled coordination polygons and polyhedra.
Chem. Commun. 2013, 49, 1354–1379. [CrossRef] [PubMed]

6. Cook, T.R.; Zheng, Y.-R.; Stang, P.J. Metal–organic frameworks and self-assembled supramolecular
coordination complexes: Comparing and contrasting the design, synthesis, and functionality of metal–organic
materials. Chem. Rev. 2012, 113, 734–777. [CrossRef] [PubMed]

7. Chakrabarty, R.; Mukherjee, P.S.; Stang, P.J. Supramolecular coordination: Self-assembly of finite two-and
three-dimensional ensembles. Chem. Rev. 2011, 111, 6810–6918. [CrossRef] [PubMed]

http://www.mdpi.com/2304-6740/6/2/44/s1
http://dx.doi.org/10.1021/ja00170a042
http://dx.doi.org/10.1021/cr5005666
http://www.ncbi.nlm.nih.gov/pubmed/25813093
http://dx.doi.org/10.1002/ejic.201300729
http://dx.doi.org/10.1039/C2CS35254K
http://www.ncbi.nlm.nih.gov/pubmed/23032789
http://dx.doi.org/10.1039/C2CC37776D
http://www.ncbi.nlm.nih.gov/pubmed/23254364
http://dx.doi.org/10.1021/cr3002824
http://www.ncbi.nlm.nih.gov/pubmed/23121121
http://dx.doi.org/10.1021/cr200077m
http://www.ncbi.nlm.nih.gov/pubmed/21863792


Inorganics 2018, 6, 44 9 of 10

8. Zarra, S.; Wood, D.M.; Roberts, D.A.; Nitschke, J.R. Molecular containers in complex chemical systems.
Chem. Soc. Rev. 2015, 44, 419–432. [CrossRef] [PubMed]

9. Amouri, H.; Desmarets, C.; Moussa, J. Confined nanospaces in metallocages: guest molecules, weakly
encapsulated anions, and catalyst sequestration. Chem. Rev. 2012, 112, 2015–2041. [CrossRef] [PubMed]

10. Casini, A.; Woods, B.; Wenzel, M. The Promise of Self-Assembled 3D Supramolecular Coordination
Complexes for Biomedical Applications. Inorg. Chem. 2017, 56, 14715–14729. [CrossRef] [PubMed]

11. Ahmad, N.; Younus, H.A.; Chughtai, A.H.; Verpoort, F. Metal–organic molecular cages: Applications of
biochemical implications. Chem. Soc. Rev. 2015, 44, 9–25. [CrossRef] [PubMed]

12. Cook, T.R.; Vajpayee, V.; Lee, M.H.; Stang, P.J.; Chi, K.-W. Biomedical and biochemical applications of
self-assembled metallacycles and metallacages. Acc. Chem. Res. 2013, 46, 2464–2474. [CrossRef] [PubMed]

13. Diaz-Moscoso, A.; Ballester, P. Light-responsive molecular containers. Chem. Commun. 2017, 53, 4635–4652.
[CrossRef] [PubMed]

14. Wang, W.; Wang, Y.-X.; Yang, H.-B. Supramolecular transformations within discrete coordination-driven
supramolecular architectures. Chem. Soc. Rev. 2016, 45, 2656–2693. [CrossRef] [PubMed]

15. McConnell, A.J.; Wood, C.S.; Neelakandan, P.P.; Nitschke, J.R. Stimuli-responsive metal–ligand assemblies.
Chem. Rev. 2015, 115, 7729–7793. [CrossRef] [PubMed]

16. Qu, D.-H.; Wang, Q.-C.; Zhang, Q.-W.; Ma, X.; Tian, H. Photoresponsive host–guest functional systems.
Chem. Rev. 2015, 115, 7543–7588. [CrossRef] [PubMed]

17. Croué, V.; Goeb, S.; Sallé, M. Metal-driven self-assembly: The case of redox-active discrete architectures.
Chem. Commun. 2015, 51, 7275–7289. [CrossRef] [PubMed]

18. Xu, L.; Wang, Y.-X.; Chen, L.-J.; Yang, H.-B. Construction of multiferrocenyl metallacycles and metallacages
via coordination-driven self-assembly: From structure to functions. Chem. Soc. Rev. 2015, 44, 2148–2167.
[CrossRef] [PubMed]

19. Szalóki, G.; Croué, V.; Carré, V.; Aubriet, F.; Aleveque, O.; Levillain, E.; Allain, M.; Arago, J.; Orti, E.;
Goeb, S.; et al. Controlling the Host–Guest Interaction Mode through a Redox Stimulus. Angew. Chem.
Int. Ed. 2017, 56, 16272–16276. [CrossRef] [PubMed]

20. Croué, V.; Goeb, S.; Szalóki, G.; Allain, M.; Sallé, M. Reversible Guest Uptake/Release by Redox-Controlled
Assembly/Disassembly of a Coordination Cage. Angew. Chem. Int. Ed. 2016, 55, 1746–1750. [CrossRef] [PubMed]

21. Szalóki, G.; Croué, V.; Allain, M.; Goeb, S.; Sallé, M. Neutral versus polycationic coordination cages: A
comparison regarding neutral guest inclusion. Chem. Commun. 2016, 52, 10012–10015. [CrossRef] [PubMed]

22. Bivaud, S.; Goeb, S.; Croué, V.; Allain, M.; Pop, F.; Sallé, M. Tuning the size of a redox-active
tetrathiafulvalene-based self-assembled ring. Beilstein J. Org. Chem. 2015, 11, 966–971. [CrossRef] [PubMed]

23. Vajpayee, V.; Bivaud, S.; Goeb, S.; Croué, V.; Allain, M.; Popp, B.V.; Garci, A.; Therrien, B.; Sallé, M.
Electron-Rich Arene–Ruthenium Metalla-architectures Incorporating Tetrapyridyl–Tetrathiafulvene Donor
Moieties. Organometallics 2014, 33, 1651–1658. [CrossRef]

24. Bivaud, S.; Goeb, S.; Croué, V.; Dron, P.I.; Allain, M.; Sallé, M. Self-assembled containers based on extended
tetrathiafulvalene. J. Am. Chem. Soc. 2013, 135, 10018–10021. [CrossRef] [PubMed]

25. Bivaud, S.; Balandier, J.Y.; Chas, M.; Allain, M.; Goeb, S.; Sallé, M. A metal-directed self-assembled
electroactive cage with bis(pyrrolo) tetrathiafulvalene (BPTTF) side walls. J. Am. Chem. Soc. 2012, 134,
11968–11970. [CrossRef] [PubMed]

26. Goeb, S.; Bivaud, S.; Dron, P.I.; Balandier, J.-Y.; Chas, M.; Sallé, M. A BPTTF-based self-assembled
electron-donating triangle capable of C60 binding. Chem. Commun. 2012, 48, 3106–3108. [CrossRef] [PubMed]

27. Perepichka, D.F.; Perepichka, I.F.; Ivasenko, O.; Moore, A.J.; Bryce, M.R.; Kuz’mina, L.G.; Batsanov, A.S.;
Sokolov, N.I. Combining High Electron Affinity and Intramolecular Charge Transfer in 1,3-Dithiole–Nitrofluorene
Push–Pull Diads. Chem. Eur. J. 2008, 14, 2757–2770. [CrossRef] [PubMed]

28. Amriou, S.; Wang, C.; Batsanov, A.S.; Bryce, M.R.; Perepichka, D.F.; Ortí, E.; Viruela, R.; Vidal-Gancedo, J.;
Rovira, C. The Interplay of Inverted Redox Potentials and Aromaticity in the Oxidized States of New
π-Electron Donors: 9-(1,3-Dithiol-2-ylidene) fluorene and 9-(1,3-Dithiol-2-ylidene) thioxanthene Derivatives.
Chem. Eur. J. 2006, 12, 3389–3400. [CrossRef] [PubMed]

29. Croué, V.; Krykun, S.; Allain, M.; Morille, Y.; Aubriet, F.; Carré, V.; Voitenko, Z.; Goeb, S.; Sallé, M. A
self-assembled M2L4 cage incorporating electron-rich 9-(1,3-dithiol-2-ylidene) fluorene units. New J. Chem.
2017, 41, 3238–3241. [CrossRef]

http://dx.doi.org/10.1039/C4CS00165F
http://www.ncbi.nlm.nih.gov/pubmed/25029235
http://dx.doi.org/10.1021/cr200345v
http://www.ncbi.nlm.nih.gov/pubmed/22251425
http://dx.doi.org/10.1021/acs.inorgchem.7b02599
http://www.ncbi.nlm.nih.gov/pubmed/29172467
http://dx.doi.org/10.1039/C4CS00222A
http://www.ncbi.nlm.nih.gov/pubmed/25319756
http://dx.doi.org/10.1021/ar400010v
http://www.ncbi.nlm.nih.gov/pubmed/23786636
http://dx.doi.org/10.1039/C7CC01568B
http://www.ncbi.nlm.nih.gov/pubmed/28382335
http://dx.doi.org/10.1039/C5CS00301F
http://www.ncbi.nlm.nih.gov/pubmed/27009833
http://dx.doi.org/10.1021/cr500632f
http://www.ncbi.nlm.nih.gov/pubmed/25880789
http://dx.doi.org/10.1021/cr5006342
http://www.ncbi.nlm.nih.gov/pubmed/25697681
http://dx.doi.org/10.1039/C5CC00597C
http://www.ncbi.nlm.nih.gov/pubmed/25812077
http://dx.doi.org/10.1039/C5CS00022J
http://www.ncbi.nlm.nih.gov/pubmed/25723131
http://dx.doi.org/10.1002/anie.201709483
http://www.ncbi.nlm.nih.gov/pubmed/29083516
http://dx.doi.org/10.1002/anie.201509265
http://www.ncbi.nlm.nih.gov/pubmed/26693832
http://dx.doi.org/10.1039/C6CC04610J
http://www.ncbi.nlm.nih.gov/pubmed/27440274
http://dx.doi.org/10.3762/bjoc.11.108
http://www.ncbi.nlm.nih.gov/pubmed/26124899
http://dx.doi.org/10.1021/om401142j
http://dx.doi.org/10.1021/ja404072w
http://www.ncbi.nlm.nih.gov/pubmed/23795694
http://dx.doi.org/10.1021/ja305451v
http://www.ncbi.nlm.nih.gov/pubmed/22768798
http://dx.doi.org/10.1039/c2cc00065b
http://www.ncbi.nlm.nih.gov/pubmed/22344044
http://dx.doi.org/10.1002/chem.200701459
http://www.ncbi.nlm.nih.gov/pubmed/18240117
http://dx.doi.org/10.1002/chem.200501326
http://www.ncbi.nlm.nih.gov/pubmed/16453366
http://dx.doi.org/10.1039/C7NJ00062F


Inorganics 2018, 6, 44 10 of 10

30. Cohen, Y.; Avram, L.; Frish, L. Diffusion NMR spectroscopy in supramolecular and combinatorial chemistry:
An old parameter—New insights. Angew. Chem. Int. Ed. 2005, 44, 520–554. [CrossRef] [PubMed]

31. Shanmugaraju, S.; Vajpayee, V.; Lee, S.; Chi, K.-W.; Stang, P.J.; Mukherjee, P.S. Coordination-driven self-assembly
of 2d-metallamacrocycles using a new carbazole-based dipyridyl donor: Synthesis, characterization, and C60

binding study. Inorg. Chem. 2012, 51, 4817–4823. [CrossRef] [PubMed]
32. Mishra, A.; Ravikumar, S.; Hong, S.H.; Kim, H.; Vajpayee, V.; Lee, H.; Ahn, B.; Wang, M.; Stang, P.J.; Chi, K.-W.

DNA binding and unwinding by self-assembled supramolecular heterobimetallacycles. Organometallics
2011, 30, 6343–6346. [CrossRef] [PubMed]

33. Ferrer, M.; Gutiérrez, A.; Rodríguez, L.; Rossell, O.; Ruiz, E.; Engeser, M.; Lorenz, Y.; Schilling, R.; Gómez-Sal, P.;
Martín, A. Self-assembly of heterometallic metallomacrocycles via ditopic fluoroaryl gold (I) organometallic
metalloligands. Organometallics 2012, 31, 1533–1545. [CrossRef]

34. Niu, Z.; Li, D.; Liu, D.; Xia, D.; Zou, Y.; Sun, W.; Li, G. Syntheses, electrochemical behaviors, spectral
properties and DFT calculations of two 1,3-dithiole derivatives. Chem. Res. Chin. Univ. 2014, 30, 425–430.
[CrossRef]

35. Zhao, Y.-P.; Wu, L.-Z.; Si, G.; Liu, Y.; Xue, H.; Zhang, L.-P.; Tung, C.-H. Synthesis, spectroscopic,
electrochemical and Pb2+-binding studies of tetrathiafulvalene acetylene derivatives. J. Org. Chem. 2007, 72,
3632–3639. [CrossRef] [PubMed]

36. Estrada, L.A.; Neckers, D.C. Synthesis and photophysics of ambipolar fluoren-9-ylidene malononitrile
derivatives. J. Org. Chem. 2009, 74, 8484–8487. [CrossRef] [PubMed]

37. Broman, S.L.; Andersen, C.L.; Jousselin-Oba, T.; Manso, M.; Hammerich, O.; Frigoli, M.; Nielsen, M.B.
Tetraceno [2,1,12,11-opqra] tetracene-extended tetrathiafulvalene–redox-controlled generation of a large
PAH core. Org. Biomol. Chem. 2017, 15, 807–811. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/anie.200300637
http://www.ncbi.nlm.nih.gov/pubmed/15625667
http://dx.doi.org/10.1021/ic300199j
http://www.ncbi.nlm.nih.gov/pubmed/22468683
http://dx.doi.org/10.1021/om200802v
http://www.ncbi.nlm.nih.gov/pubmed/22180697
http://dx.doi.org/10.1021/om201028q
http://dx.doi.org/10.1007/s40242-014-3518-z
http://dx.doi.org/10.1021/jo0622577
http://www.ncbi.nlm.nih.gov/pubmed/17441770
http://dx.doi.org/10.1021/jo901869g
http://www.ncbi.nlm.nih.gov/pubmed/19813737
http://dx.doi.org/10.1039/C6OB02666D
http://www.ncbi.nlm.nih.gov/pubmed/28054066
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Materials and Methods 
	Chemicals 
	Instrumentation 
	Experimental Procedure and Characterization Data 
	Synthesis of 3,6-bis(Pyridin-4-ylethynyl)-9H-fluoren-9-one (2) 
	Synthesis of Ligand L4Pyr 
	Synthesis of Metalla-Macrocycle [Pd2(L4Pyr)2(OTf)4] 

	X-ray Crystallographic Analysis 

	Conclusions 
	References

