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Abstract: Syntheses of heavier Group 14 analogues of “Arduengo-type” N-heterocyclic carbene
majorly involved the use of conventional alkali metal-based reducing agents under harsh reaction
conditions. The accompanied reductant-derived metal salts and chances of over-reduced impurities
often led to isolation difficulties in this multi-step process. In order to overcome these shortcomings,
we have used 1,4-bis-(trimethylsilyl)-1,4-diaza-2,5-cyclohexadiene as a milder reducing agent for the
preparation of N-heterocyclic germylenes (NHGe) and stannylenes (NHSn). The reaction occurs in
a single step with moderate yields from the mixture of N-substituted 1,4-diaza-1,3-butadiene, E(II)
(E(II) = GeCl2·dioxane, SnCl2) and the organosilicon reductant. The volatile byproducts trimethylsilyl
chloride and pyrazine could be removed readily under vacuum. No significant over reduction was
observed in this process. However, N-heterocyclic silylene (NHSi) could not be synthesized using an
even stronger organosilicon reductant under thermal and photochemical conditions.
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1. Introduction

Carbene chemistry kick-started with the ground-breaking discovery of the bottle-able
N-heterocyclic carbene (NHC) by Arduengo in 1991 [1]. Since this seminal work, the versatile NHCs
have replaced the classical phosphine-based ligands for transition-metal catalysts [2]. Subsequently,
the isolation of heavier Group 14 analogues of ‘Arduengo type’ carbene NHE (E = Si, Ge, and Sn)
have been the subject of intense study, both for fundamental interests and potential applications in
transition metal catalysis, similar to the NHCs. To date, a handful of NHEs have been synthesized
and structurally characterized [3,4]. Obviously, the heavier analogues possess distinct electronic
features compared to the NHCs, and hence exhibit different reactivities [3,4]. While N-heterocyclic
silylenes (NHSi) have been engaged as ancillary ligands in numerous homogeneous catalysis [5–7],
N-heterocyclic germylenes (NHGe) serve as a precursor for polymerization chemistry [8–10] and also
for chemical vapour depositions [11].

Typically, the synthesis of the five-membered N-heterocyclic tetrylenes involves the reaction
between N-substituted 1,4-diaza-1,3-butadiene, Group 14 halides, and the harsh alkali metal based
reducing agents (Scheme 1) [3,4]. In the case of NHGe and NHSn, the initial step involves the reduction
of N-substituted 1,4-diaza-1,3-butadiene by lithium metal, followed by cyclization of the dianion
with the corresponding Group 14 E(II) halides [12–15]. While in the case of NHSi, the precursor
cyclic diaminodichlorosilane was obtained by the cyclization of the dilithiated diazabutadiene
with SiCl4 [16–18]. West et al. reported the first synthesis of NHSi by the reduction of this cyclic
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diaminodichlorosilane with potassium metal in tetrahydrofuran [18]. In these approaches, the choice
of reductant play crucial role in the reductive dehalogenation step [12–18]. Moreover, the syntheses
suffer from involvement of multiple steps, associated metal salts as byproduct and hence product
isolation difficulties, and sometimes cases of over reduction. Certainly, these shortcomings urge a
careful revisit into the synthetic methodology involved and finding an alternate milder reducing agent.
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Scheme 1. Typical synthetic route for heavier Group 14 analogue of “Arduengo-type” carbene.

The milder organosilicon reductants have been well-known to efficiently reduce early transition
metals without the formation of reductant-derived metal salts and over-reduced impurities [19,20].
Very recently, 2,3,5,6-tetramethyl-1,4-bis(trimethylsilyl)-1,4-diaza-2,5-cyclohexadiene have been
employed for metal salt-free reduction of dibromobismuthine and dibromostibine to dibismuthine
and distibine, respectively [21]. Worth mentioning, there are few discrete examples where a NHE
(E = Si, Ge, and Sn) has been synthesized under metal-free conditions: Dehydrochlorination of
cyclic diaminohydrochlorosilane using bulky NHC [22], dehydrogenation of dihydrogermane by
frustrated Lewis pair [23], and transamination of Sn{N(SiMe3)2}2 with α-amino-aldimines [24,25],
respectively. In this study, we have developed a simple one-pot synthetic route under milder
conditions to synthesize NHGe and NHSn, respectively, free from reductant-derived metal salts
using 1,4-bis-(trimethylsilyl)-1,4-diaza-2,5-cyclohexadiene [19,20] as the reductant.

2. Results and Discussion

The N-heterocyclic germylene (NHGe) 1 (Scheme 2) has been synthesized in one step by the
low temperature addition of GeCl2·dioxane to a mixture of N1,N2-dimesitylethane-1,2-diimine and
1,4-bis-(trimethylsilyl)-1,4-diaza-2,5-cyclohexadiene in tetrahydrofuran. The volatile byproducts
trimethylsilyl chloride and pyrazine, were easily removable under vacuum (Figures S1–S3). Since
small amounts of insoluble solids appeared upon hexane addition, compound 1 was isolated as yellow
solid from its hexane extract in an acceptable yield of 80%. Compound 1 was characterized by NMR
study (Figures S4 and S5). Single crystals of 1 were grown from hexane at −40 ◦C, and its structure
was determined using single crystal X-ray crystallography (Figure S23 and Table S1). This method is
also applicable for other aromatic substituents, such as 2,6-diisopropylphenyl (Figures S6 and S7).
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A similar method has been employed for the synthesis of N-heterocyclic stannylene (NHSn) 2
(Scheme 2). Formation of metallic tin was observed in the reaction mixture, which was removed by
filtration. This arises due to the thermolabile nature of NHSn [24,25], leading to difficulties in acquiring
NMR data (Figures S8 and S9). The presence of additional peaks in the 119Sn NMR (Figure S10) of
the reaction mixture may be attributed to the formation of Sn(IV) compounds [26,27]. Single crystals
of compound 2 were obtained from hexane extract at −40 ◦C in a yield of 35% (Figures S11–S13
and S24, Table S2). Notably, Gudat et al. reported the first synthesis of NHSn by transamination of
Sn{N(SiMe3)2}2 with α-amino-aldimines [25].

Despite several trials, we have been unsuccessful in synthesizing N-heterocyclic silylene
(NHSi). Low temperature one-pot reaction (Scheme 3(i)) of N1,N2-dimesitylethane-1,2-diimine, SiCl4,
and two equivalents of stronger reducing agent 1,1′-bis(trimethylsilyl)-1,1′-dihydro-4,4′-bipyridine
(R2) led to a mixture of cyclic diaminodichlorosilane (A) and the disilylated product (B), along
with a large amount of insoluble solid (Figures S14 and S15). Notably, the organosilicon
reducing agents do not reduce diazabutadiene (Figure S22), while they react with Group 14
halides. Subsequently, we attempted to reduce the synthesized cyclic diaminodichlorosilane [16]
using both 1,4-bis-(trimethylsilyl)-1,4-diaza-2,5-cyclohexadiene (R1) and also the stronger reductant
1,1′-bis(trimethylsilyl)-1,1′-dihydro-4,4′-bipyridine (R2) (Scheme 3(ii)) under thermal conditions. The
NMR data always reflected the presence of unreacted cyclic diaminodichlorosilane, along with other
unidentifiable products (Figures S16–S19). On a related context, 1,4-bis(trimethylsilyl)-substituted
1,4-dihydropyrazine has been reported to be capable of organosilyl group exchange reactions [28].
We have also tried reductions under UV irradiation conditions, anticipating enhanced Si–Cl bond
cleavage [29]. However, each time NMR led to a mixture of unidentifiable products, in addition to the
unreacted cyclic diaminodichlorosilane (Figures S20 and S21). Probably, the relatively lower reduction
potentials of these organosilicon reductants do not allow the reduction of diaminodichlorosilanes.
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Schlenk techniques or in a dry box. Tetrahydrofuran, toluene, and hexane were refluxed over 
sodium/benzophenone. All solvents were distilled and stored under argon and degassed prior to use. 
C6D6 was purchased from Sigma Aldrich (Sigma Aldrich Co., St. Louis, MO, USA) and dried over 
potassium. All chemicals were used as purchased. Diazabutadiene [30] ligand, and the reducing 
agents 1,4-bis-(trimethylsilyl)-1,4-diaza-2,5-cyclohexadiene, 1,1′-bis(trimethylsilyl)-1,1′-dihydro-4,4′-
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3. Materials and Methods

3.1. General Information

All manipulations were carried out under a protective atmosphere of argon, applying standard
Schlenk techniques or in a dry box. Tetrahydrofuran, toluene, and hexane were refluxed over
sodium/benzophenone. All solvents were distilled and stored under argon and degassed prior
to use. C6D6 was purchased from Sigma Aldrich (Sigma Aldrich Co., St. Louis, MO, USA) and
dried over potassium. All chemicals were used as purchased. Diazabutadiene [30] ligand, and
the reducing agents 1,4-bis-(trimethylsilyl)-1,4-diaza-2,5-cyclohexadiene, 1,1′-bis(trimethylsilyl)-1,
1′-dihydro-4,4′-bipyridine [19,20] were synthesized according to reported literature procedure.
Photochemical reactions were performed in Peschl Photoreactorsystem (Peschl Ultraviolet GmbH,



Inorganics 2018, 6, 69 4 of 6

Mainz, Germany). 1H, 13C{1H}, and 29Si{1H} NMR spectra were referenced to external SiMe4 using the
residual signals of the deuterated solvent (1H) or the solvent itself (13C). 119Sn NMR was referenced
to SnCl4 as the external standard. Melting points were determined under argon in closed NMR
tubes and are uncorrected. Elemental analyses were performed on Elementar vario EL analyzer
(Elementar Analysensysteme GmbH, Langenselbold, Germany). Single crystal data were collected
on a Bruker SMART APEX four-circle diffractometer equipped with a CMOS photon 100 detector
(Bruker Systems Inc., Fällanden, Switzerland) with a Cu Kα radiation (1.5418 Å). Data were integrated
using Bruker SAINT software and absorption correction using SADABS. Structures were solved by
Intrinsic Phasing module of the direct methods (SHELXS) [31] and refined using the SHELXL 2014 [32]
software suite. All hydrogen atoms were assigned using AFIX instructions, while all other atoms were
refined anisotropically.

3.2. Experimental Detail

Synthesis of compound 1: GeCl2 Dioxane (0.087 g. 0.38 mmol) dissolved in THF was added
drop-wise to a schlenk flask containing N1,N2-dimesitylethane-1,2-diimine (0.11 g, 0.38 mmol) and
1,4-bis(trimethylsilyl)-1,4-dihydropyrazine (0.084 g, 0.38 mmol) in THF kept at −10 ◦C. The reaction
mixture was slowly warmed to room temperature and stirred overnight. The volatiles were removed
under vacuum and extracted in hexane. The solvent was removed completely to give compound 1
as a yellow solid ((0.110 g, % yield = 80), which was further bulk crystallized from hexane at −40 ◦C
with a crystallization yield of (0.097 g, % yield = 71) (Decomp. 115–118 ◦C). 1H NMR (400 MHz, C6D6,
TMS) δ = 6.87 (s, 4H, ArH); 6.57 (s, 2H, NCH); 2.23 (s, 12H, o-CH3); 2.19 (s, 6H, p-CH3) ppm; 13C{1H}
NMR (101 MHz, C6D6, TMS ) δ = 142.41 (i-ArC); 134.87 (o-ArC); 133.61 (p-ArC); 128.88 (m-ArC); 125.16
(NCH); 20.60 (CH3); 18.06 (CH3) ppm. Elemental Analysis: Calcd. For C20H24GeN2: C, 65.80; H, 6.63;
N, 7.67. Found: C, 65.82; H, 6.68; N, 7.62.

Synthesis of compound 2: SnCl2 (0.324 g, 1.71 mmol) dissolved in THF was added
drop-wise to a schlenk flask containing N1,N2-dimesitylethane-1,2-diimine (0.5 g, 1.71 mmol) and
1,4-bis(trimethylsilyl)-1,4-dihydropyrazine (0.386 g, 1.71 mmol) in THF kept at −10 ◦C. The reaction
mixture was stirred for 10 min, maintaining the same temperature. Subsequently, the volatiles were
removed under vacuum. Hexane was added to the red-brown residue and the product was extracted
in hexane. The red filtrate of hexane was concentrated and kept at −40 ◦C to give red crystals of 2
(0.247 g, crystallization yield = 35%). (Decomp. 145–147 ◦C). 1H NMR (400 MHz, Toluene-D8, 248 K)
δ = 6.92 (s, 4H, m-CH); 6.91 (s, 2H, NCH); 2.33 (s, 12H, CH3); 2.29 (s, 6H, CH3) ppm. 13C NMR (101 MHz,
Toluene-D8, 248 K) δ = 145.91 (i-ArC); 133.97 (o-ArC); 133.01 (p-ArC); 129.01 (m-ArC); 128.32 (NCH);
20.82 (CH3); 18.48 (CH3) ppm. 119Sn NMR (149.74 MHz, Toluene-D8, 248 K) δ = 250 ppm. Elemental
Analysis: Calcd. For C20H24SnN2: C, 58.43; H, 5.88; N, 6.81. Found: C, 58.46; H, 5.95; N, 6.87.

4. Conclusions

We have established a salt-free reductive route for the synthesis of N-heterocyclic germylene and
stannylene in one step. The easily removable volatile byproducts of the reaction leads to easy isolation
of N-heterocyclic tetrylenes in acceptable yields. However, we have not been able to synthesize
N-heterocyclic silylene using organosilicon reductants under thermal or photochemical conditions.
The potential of this benign salt-free reduction method in the synthesis of other interesting low-valent
main-group compounds is a much coveted area to explore.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-6740/6/3/69/s1,
detailed synthetic trials for preparing NHSi, NMR Spectra Figures, Crystallography Tables, ORTEP Figures.
Figures S1 and S2: 1H and 13C NMR of Compound 1 (crude reaction mixture, before crystallization), Figure S3:
1H NMR in CDCl3 of the hexane insoluble solid residue from the crude reaction mixture of compound 1, Figures
S4 and S5: 1H NMR, 13C NMR of Compound 1, Figure S6: 1H NMR, Figure S7: 13C NMR, Figures S8–S10: 1H,
13C, and 119Sn NMR of Compound 2 (crude reaction mixture, before crystallization), Figure S11–S13: 1H, 13C,
and 119Sn NMR of Compound 2, Figures S14 and S15: 1H and 13C NMR plot of Trial 1 (* = 4,4’-Bipyridine, ’ = A,
” = B), Figures S16 and S17: 1H and 29Si NMR of Trial 2, Figures S18 and S19: 1H and 29Si of Trial 3, Figures S20
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and S21: 1H and 29Si NMR of Trial 4, Figure S22: 1H NMR study for the reaction between diazabutadiene and
organosilicon reductant, Figure S23: Molecular structure of 1 in the solid state (thermal ellipsoids at 30%, H atoms
omitted for clarity). Selected bond lengths [Å] and bond angle [◦]: Ge1–N1 = 1.8679 (18) Å, Ge1–N2 = 1.8786
(18); N1–Ge–N2 = 83.62 (8), Figure S24: Molecular structure of 2 in the solid state (thermal ellipsoids at 30%, H
atoms omitted for clarity). Selected bond lengths [Å] and bond angle [◦]: Sn1–N1 = 2.089 (4) Å, Sn1–N2 = 2.096 (4);
N1–Sn–N2 = 77.95 (16), Table S1: Crystal data and structure refinement for Compound 1, Table S2: Crystal data
and structure refinement for Compound 2.
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