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Abstract: Activation of the dialkylpalladium complex (phen)Pd(CH3)2 (phen = 1,10-phenanthroline)
with B(C6F5)3 affords a competent catalyst for the dimerization of vinyl silanes. All organic products
of the catalytic dimerization of trialkoxyvinylsilanes were characterized by in situ NMR spectroscopy
and GC–MS. The putative palladium cation was characterized by NMR spectroscopy. Upon activation,
the palladium complex generated products in moderate yield (60–70%) and selectivity (~60:40,
dimer:disproportionation products).
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1. Introduction

Transformations of chemical feedstocks, small molecules such as ethylene and styrene, are of
interest in the area of organometallic chemistry [1–5]. Of particular interest are the products of
homocoupling reactions of unsaturated substances; such processes attract attention because they
function as model systems for both oligomerization and polymerization reactions of alkenes [6,7].
A wide variety of homocoupling reactions of unsaturated substrates are known [8–20]; however, only
a few exist that involve vinyl silanes [21–29].

Trialkoxyvinylsilanes are attractive substrates to target as they are used extensively in materials
and surface science [30–38], nanotechnology [39,40] for various applications including modification
of surfaces [31,37], formation of sol–gel [36,37], and organogelators [32,34,35], to obtain novel
organic–inorganic hybrid materials [33], preparation of nanocomposites [39], and several hybrid [38]
and supported catalysts. In most of these applications, the nature of the precursor trialkoxysilane
has a profound effect on the properties of the final product [1–20]. Therefore, the availability of a
diverse pool of trialkoxysilane precursors would enable incorporation of unprecedented properties
to those end products [30–41]. In organic syntheses, trialkoxyvinylsilanes are reaction partners
in numerous transformations including Heck reactions [42,43], Friedel–Crafts alkylations [44,45],
Diels–Alder reactions [46,47], and 1,3-dipolar additions [48,49].

Similarly, bis(trialkoxysilanes) containing unsaturated double bonds would be even more important
reagents in building molecular complexity via aforementioned transformations since they may contain
two similar or dissimilar alkoxysilane groups [50]. Surprisingly, bis(trialkoxysilanes) containing
unsaturated double bonds, such as 1,4-bis(trimethoxysilyl)butenes, are very rarely used in organic
syntheses or materials science [50]. Synthetic methods for their preparation are scarce [51,52].
For example, Khvostenko et al. reported the formation of (E)-1,4-bis(trimethoxysilyl)-1-butene in
80% yield with 49% conversion of starting trimethoxy(vinyl)silane in the presence of a complex
Ti(OBu)4:Ph3P:Et3Al (1:1:6) catalytic system [51]. Keller and Matusiak observed that, in the
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presence of alkylidenedinitrosylmolybdenum complexes (Mo(NO)2(CHMe)(OR)2(AlCl2)(EtAlCl2)
(R = Et, O-i-Pr)), self-metathesis and dimerization of trimethyl(vinyl)silane takes place, resulting
in formation of 1,2-bis(trimethylsilyl)ethene (yield = 20%) and 1,4-bis(trimethylsilyl)but-2-ene
(yield = 30%) as major reaction products, respectively [52]. A number of transition-metal complexes
are known to mediate homocoupling of (vinyl)silanes via disproportionation leading to 1,2- or
1,1-diylbis(trialkoxy/alkylsilyl)ethene derivatives (Scheme 1) [53]. We were intrigued by the recent
report of Jun and coworkers that a simple iridium catalyst could affect vinyl silane dimerization in a
regioselective manner (Scheme 1) [29].

Inorganics 2018, 6, x FOR PEER REVIEW  2 of 7 

 

[51]. Keller and Matusiak observed that, in the presence of alkylidenedinitrosylmolybdenum 
complexes (Mo(NO)2(CHMe)(OR)2(AlCl2)(EtAlCl2) (R = Et, O-i-Pr)), self-metathesis and dimerization 
of trimethyl(vinyl)silane takes place, resulting in formation of 1,2-bis(trimethylsilyl)ethene (yield = 
20%) and 1,4-bis(trimethylsilyl)but-2-ene (yield = 30%) as major reaction products, respectively [52]. 
A number of transition-metal complexes are known to mediate homocoupling of (vinyl)silanes via 
disproportionation leading to 1,2- or 1,1-diylbis(trialkoxy/alkylsilyl)ethene derivatives (Scheme 1) 
[53]. We were intrigued by the recent report of Jun and coworkers that a simple iridium catalyst 
could affect vinyl silane dimerization in a regioselective manner (Scheme 1) [29]. 

 
Scheme 1. Homocoupling of vinyl silanes via disproportionation or dimerization. 

Pd-complexes are not typically employed in catalyzing the disproportionation of (vinyl)silanes, 
although they do mediate other reactions, which include dehydrogenative silation, hydrosilation, 
and self- and co-polymerizations of various (vinyl)silyl compounds with olefins [54–57]. For 
example, cationic Pd(II) complexes, [(phen)Pd(CH3)L]+[BAr′4]− (phen = 1,10-phenanthroline; L = Et2O, 
Me3SiC≡CSiMe3; Ar′ = 3,5-(CF3)2C6H3) are known to catalyze dehydrogenative silation and 
hydrosilation of (vinyl)silanes [54]. Additionally, (α-Diimine)PdMe+ complexes (α-diimine = 
(2,6-iPr2−C6H3)N=C(Me)C(Me)=N(2,6-iPr2−C6H3)) copolymerize (vinylsilyl)ethers with olefins 
forming OSiR3-containing polyolefins [55]. Moreover, the aforementioned complexes are able to 
polymerize (vinyl)ethers [56]. The palladium complex [(α-diimine)Pd(μ-Cl)]2+ dimerizes 
(vinyl)ethers, including (vinylsilyl)ether, to the corresponding acetals [57]. In this brief 
communication, we report on the capability of the in situ generated cationic system (Phen)PdMe to 
dimerize (vinyl)silanes to 1,4-bis(trialkoxysilyl)butenes. Products were characterized using a 
combination of GC–MS and multi-nuclear NMR analysis. 

2. Results and Discussion 

The cationic system (Phen)PdMe is readily prepared by mixing the known dimethyl precursor, 
(Phen)PdMe2 [58], with one equivalent of B(C6F5)3 (Scheme 2). Upon mixing, the newly formed 
compound is readily soluble in methylene chloride. When carried out in CD2Cl2 at room 
temperature, formation of a new ionic complex is clear from NMR analysis; the 11B NMR of the 
reaction mixture shows a new sharp peak at −16 ppm, while, in the 1H NMR of the same mixture, a 
new singlet shows up at 0.2 ppm. These new NMR signals represent the tetra-coordinated anionic 
boron species [MeB(C6F5)3]− [59,60]. From these observations, the formation of the ionic species 
[(Phen)PdMe]+[MeB(C6F5)3]− is proposed. 

 
Scheme 2. Synthesis of the putative Pd cation (phen)Pd(Me)(solv.). 

Scheme 1. Homocoupling of vinyl silanes via disproportionation or dimerization.

Pd-complexes are not typically employed in catalyzing the disproportionation of (vinyl)silanes,
although they do mediate other reactions, which include dehydrogenative silation, hydrosilation, and
self- and co-polymerizations of various (vinyl)silyl compounds with olefins [54–57]. For example,
cationic Pd(II) complexes, [(phen)Pd(CH3)L]+[BAr′4]− (phen = 1,10-phenanthroline; L = Et2O,
Me3SiC≡CSiMe3; Ar′ = 3,5-(CF3)2C6H3) are known to catalyze dehydrogenative silation and
hydrosilation of (vinyl)silanes [54]. Additionally, (α-Diimine)PdMe+ complexes (α-diimine = (2,6-iPr2–
C6H3)N=C(Me)C(Me)=N(2,6-iPr2–C6H3)) copolymerize (vinylsilyl)ethers with olefins forming
OSiR3-containing polyolefins [55]. Moreover, the aforementioned complexes are able to polymerize
(vinyl)ethers [56]. The palladium complex [(α-diimine)Pd(µ-Cl)]2

+ dimerizes (vinyl)ethers, including
(vinylsilyl)ether, to the corresponding acetals [57]. In this brief communication, we report on
the capability of the in situ generated cationic system (Phen)PdMe to dimerize (vinyl)silanes to
1,4-bis(trialkoxysilyl)butenes. Products were characterized using a combination of GC–MS and
multi-nuclear NMR analysis.

2. Results and Discussion

The cationic system (Phen)PdMe is readily prepared by mixing the known dimethyl precursor,
(Phen)PdMe2 [58], with one equivalent of B(C6F5)3 (Scheme 2). Upon mixing, the newly formed
compound is readily soluble in methylene chloride. When carried out in CD2Cl2 at room temperature,
formation of a new ionic complex is clear from NMR analysis; the 11B NMR of the reaction
mixture shows a new sharp peak at −16 ppm, while, in the 1H NMR of the same mixture, a new
singlet shows up at 0.2 ppm. These new NMR signals represent the tetra-coordinated anionic
boron species [MeB(C6F5)3]− [59,60]. From these observations, the formation of the ionic species
[(Phen)PdMe]+[MeB(C6F5)3]− is proposed.
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Subsequently, we applied this complex as the catalyst (1 mol %) in the homodimerization
of trimethoxy(vinyl)silane (1a) to furnish 1,4-bis(trimethoxysilyl)butene isomers (2aa and 3aa),
1,2-bis(triethoxy(silane))ethylene (4aa), and 1,1′-bis(trimethoxysilylmethyl)ethylene (5aa) (Scheme 3).
Organic reaction products were identified based upon GC–MS and NMR analysis (see Supplementary
Materials). There is moderate selectivity for homodimers 2aa and 3aa over disproportionation
products 4aa and 5aa. Notably, control experiments that employed (Phen)PdMe2 or B(C6F5)3 alone,
under otherwise identical conditions, did not affect the dimerization reaction. We believe this
strongly implicates the cationic, coordinatively unsaturated [(Phen)PdMe]+ to be responsible for
catalytic activity.
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Under these non-optimized reaction conditions triethoxy(vinyl)silane also dimerizes to form the
corresponding dimers with 70% combined yield as a mixture of isomers (Scheme 4). Disproportionation
of (vinyl)silanes was somewhat minimized in the reaction of the bulkier substrate 1b compared to
1a; 1,2- and 1,1-bis(trialkoxylsilyl)ethene isomers produced in combined yields of 38% (4aa and 5aa,
Scheme 4) and 24% (4bb and 5bb, Scheme 4) with trimethoxy- and triethoxy(vinyl)silane, respectively.
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Scheme 4. NMR-scale homodimerization studies of 1b catalyzed by (phen)Pd(Me)(solv.).

In competing reactions of 1a with styrene (1c), under similar reaction conditions, the cross-dimer
product 6 was obtained as the major product after a 96-h reaction period (Scheme 5, top). At 96 h,
the conversion of trimethoxy(vinyl)silane was only 76%. Homodimerization and disproportionation
of trimethoxy(vinyl)silane also took place, forming corresponding products in trace amounts (as
evidenced by GC–MS). In a similar competition experiment between trimethoxy(vinyl)silane and
ethylene (1d), no cross-dimer product between alkene monomers or homodimerization product of
trimethoxy(vinyl)silane was observed (Scheme 5, bottom). Taken together, our results lead us to
propose the catalytic cycle shown in Scheme 6. Of particular significance, the work of Elsby and
Johnson, in closely related C–H silylation chemistry employing a nickel catalyst, lends support to our
proposed mechanism [61].
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3. Conclusions

In summary, we disclosed a (vinyl)silane dimerization reaction leading to a mixture of 1,4-bis
(trimethylsilyl)but-2-ene and 1,4-bis(trimethylsilyl)but-1-ene as major products. This reaction is
believed to be mediated by the [(Phen)PdMe]+[MeB(C6F5)3]− complex generated in situ at a 1 mol %
catalyst loading. The substrate scope of the reaction over various (vinyl)silanes and more detailed
mechanistic studies are underway in our laboratories to elaborate on this preliminary communication.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-6740/6/4/102/
s1: General remarks; typical procedure for catalytic dimerization reactions; NMR data of catalytic reactions.
Reference [54] is cited in the supplementary materials.
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