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Abstract: Crystals of LiCs2[N(CN)2]3 were obtained from the reaction of stoichiometric amounts of
aqueous solutions of LiCl and CsBr with Ag[N(CN)2]. X-ray single-crystal structure analysis showed
that LiCs2[N(CN)2]3 crystallizes isotypically to NaCs2[N(CN)2]3 and adopts the hexagonal space
group P63/m (No. 176), with a = 6.8480(8), c = 14.1665(17) Å, and Z = 2. The IR and Raman spectra of
the title compound exhibit modes typical for the dicyanamide anion.
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1. Introduction

Nitrogen-based materials are interesting not only for research purposes but also for industrial
applications. Whether used as fertilizers, high-performance steel coatings, or lithium-ion battery
materials [1,2], the research on nitrogen compounds has advanced and recently focused on complex
nitrogen-containing compounds opposed to simple nitrides [3]. One interesting inorganic moiety is
the boomerang-shaped dicyanamide anion [N(CN)2]− which is often dubbed as [dca]−. This [dca]
species has been found to allow for a rich diversity of compounds, simply due to its chemical stability
as well as its ability to coordinate metal ions through terminal and/or bridging nitrogen atoms.
Whenever coordination with all three nitrogen atoms of the [dca] anion occurs, ferromagnetic and
antiferromagnetic transition-metal compounds with a rutile-like structure result [4]. On the other hand,
[dca]− also forms one-dimensional (1D)- and two-dimensional (2D)-structures, which makes this anion
interesting for crystal engineering [5]. Moreover, some dicyanamides show promise as water-oxidation
catalysts [6], whilst Li[dca] has been suggested as a potential lithium-ion battery material [7]. In total,
there is an enormous variety of pseudo-binary dicyanamide compounds available with examples
known for ammonium [8], alkali metals [9–12], alkaline-earth metals [13], transition metals [4–6,14–19],
and rare-earth metals [20–22]. Additionally, a number of pseudo-ternary dicyanamides has
also been reported with KCs[dca]2 [23], LiK[dca]2 [24], LiRb[dca]2 [24], NaRb2[dca]3·H2O [23],
and NaCs2[dca]3 [25]. We here report the synthesis and single-crystal structure determination of
the new pseudo-ternary compound LiCs2[dca]3 according to its IR and Raman spectra.

2. Results and Discussion

2.1. Structural Description and Discussion

LiCs2[dca]3 crystallizes isotypically to NaCs2[dca]3 [25] in the hexagonal space group P63/m
(No. 176) with a = 6.8480(4), c = 14.1665(17) Å, and Z = 2. The lattice parameters of LiCs2[dca]3 are
smaller than those of NaCs2[dca]3 (a = 7.0001(4), c = 14.4929(7) Å) due to the smaller cationic size of
lithium compared to sodium. The boomerang-shaped dicyanamide anion exhibits bond lengths and
angles consistent with those given in the literature: the bond length of d(C–N1) = 1.16 Å of the terminal
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C–N pairs indicates a triple bond, while the central C–N pairing with d(C–N2) = 1.31 Å is found to be
in the expected distance range of a C–N single bond. The angles of the [dca] anion are also typically
found for such a moiety with ](N1–C–N2) = 172.1◦ and ](C–N1–C) = 119.8◦ (Figure 1, Table 1).
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Figure 1. Crystal structure of LiCs2[dca]3 with (a) viewed along the c axis and (b) along the b axis.
The thermal ellipsoids correspond to 90% probability using the refined ADPs.

Table 1. Selected bond lengths (Å) and angles (◦) of LiCs2[dca]3 in comparison to NaCs2[dca]3.

LiCs2[dca]3 NaCs2[dca]3 [25]

Li–N1 (6×) 2.2823(1) Na–N1 (6×) 2.468(3)
Cs–N2 (3×) 3.5225(2) Cs–N2 (3×) 3.629(3)
Cs–N1 (3×) 3.2289(2) Cs–N1 (3×) 3.284(3)
Cs–N1 (3×) 3.2473(2) Cs–N1 (3×) 3.276(3)

Cs–N1 (3×) 3.741(2)
N1–C 1.1647(1) N1–C 1.154(4)
N2–C (2×) 1.3133(1) N2–C (2×) 1.315(3)
](C–N2–C) 119.792(7) ](C–N2–C) 119.5(2)
](N1–C–N2) 172.140(4) ](N1–C–N2) 172.6(3)

Li+ is octahedrally coordinated by six terminal nitrogen atoms of six different [dca] moieties
with d(Li–N1) = 2.28 Å. This distance is in good agreement with Li–N distances for the octahedrally
coordinated lithium cation in Li[dca] (2.22–2.29 Å) [9]. These octahedra are connected with each other
by sharing three [N(CN)2]− and they are bonded by the terminal nitrogen atoms. In this way columns
are formed parallel to the crystallographic c axis. These columns are packed hexagonally, forming
channels hosting the cesium cations (Figure 1).

NaCs2[dca]3 was reported to incorporate coordination spheres around cesium with twelve
nitrogen atoms from nine [dca]-groups and with two different distances [25]. A closer look at the
structure of NaCs2[dca]3 reveals that there are four different d(Cs–N) (Table 1). The calculated valence
bond sum (VBS [26]) confirms that all twelve nitrogen atoms are part of the coordination sphere for
Cs+ in NaCs2[dca]3. This is not the case for the title compound. Calculations via VBS analysis reveals
that the coordination sphere of Cs+ contains nine nitrogen atoms of nine different dicyanamides with
three different distances (Figure 2, Table 1), generating a tri-capped trigonal prism according to IUPAC
nomenclature. Two cesium atoms share six of these groups. Half of these anions coordinate the Cs+

via their bridging nitrogen with d(Cs–N2 = 3.52 Å); for the other half, it was found that six nitrogen
atoms coordinate terminally to the cesium cation with d(Cs–N1 = 3.25 Å). The coordination sphere
is completed by three terminal nitrogen atoms in the layers below or above the Cs+ with d(Cs–N1
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= 3.23 Å). These distances are in good agreement with Cs–N distances in Cs[dca] (3.26–3.62 Å with
CN = 10 and 3.15–3.31 Å with CN = 8) [12].
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2.2. Vibrational Spectra

The frequencies obtained from the IR and Raman spectra of the title compound confirm
the presence of the [dca] moiety and agree very well to the IR/Raman data of the isostructural
NaCs2[dca]3 [25] (Figure 3, Table 2). The IR spectrum was measured under atmospheric conditions,
therefore it shows the presence of water due the hygroscopic nature of the title compound.
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Table 2. IR and Raman data of LiCs2[dca]3 in comparison to NaCs2[dca]3. All numbers are given
in cm−1.

νIR(LiCs2[dca]3) νRaman(LiCs2[dca]3) ν(NaCs2[dca]3) [25]

σas(N–C≡N) 515 - 516
γas(N–C≡N) - 522 526
γs(N–C≡N) - 545 543
σs(N–C≡N) 663 669 666

νs(N–C) 913 920 930/917
νas(N–C) 1333 - 1342

νs(N–C) + σs(N–C≡N) 1428 - 1437
νas(N≡C) 2146 2133 2167

νas(N–C) + νs(N–C) 2203 2218 2228/2206
νs(N≡C) 2265 - 2286/2267

νas(N≡C) + νs(N–C) 3036 - 3061
νs(N≡C) + νs(N–C) 3178 - 3213/3179
νs(N≡C) + νas(N–C) 3529 - 3549/3528/3471

3. Materials and Methods

3.1. Synthesis

All synthetic steps involving AgNO3 or Ag[dca] were carried out under exclusion of light. Ag[dca]
was synthesized by mixing aqueous solutions of Na[dca] (974.45 mg, 10.95 mmol in 10 mL) and AgNO3

(1965.26 mg, 11.57 mmol in 10 mL). After 1 h of stirring, the white Ag[dca] (1827.96 mg, 10.51 mmol,
yield = 96%) was filtered off, washed with water, and dried under vacuum.

LiCs2[dca]3 was obtained by adding stoichiometric amounts of CsBr (382.89 mg, 1.80 mmol) and
LiCl (38.31 mg, 0.90 mmol) to an aqueous Ag[dca] (472.06 mg, 2.71 mmol, 5 mL H2O) suspension.
The suspension was stirred for 12 h. The solid silver halides were decanted off and LiCs2[dca]3

(314.37 mg, 0.722 mmol, yield = 79.9% compared to Ag[dca]) was obtained after water evaporation.
Colorless, transparent crystals suitable for X-ray diffraction were selected and measured.

3.2. Single-Crystal Diffraction

Suitable single crystals were mounted on glass fibers. Intensity data were collected with a Bruker
SMART APEX CCD detector (Bruker AXS GmbH, Karlsruhe, Germany) equipped with an Incoatec
microsource (Mo-Kα1 radiation, λ = 0.71073 Å, multilayer optics). Temperature control was achieved
using an Oxford Cryostream 700 (Oxford Cryosystems Ltd, Oxford, United Kingdom) at 100 K.
Collected data were integrated with SAINT+ [27] and multi-scan absorption corrections were applied
with SADABS [28]. The structure was solved by charge-flipping methods (Superflip [29]) and refined
on F2 as implemented in Jana2006 [30]. More crystallographic details can be found in Tables 3–5 and in
the supplementary materials. Additional details concerning the structure determination are available
in CIF format and have been deposited under the CCDC entry number 1866007. Copies of the data can
be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC,
12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44 1223 336033; E-mail: deposit@ccdc.cam.ac.uk)

Table 3. Crystallographic data of LiCs2[dca]3.

Chemical Formula LiCs2[dca]3

Formula weight (g·mol−1) 434.85
Crystal system hexagonal

Space group P63/m (no. 176)
Temperature (K) 100

a (Å) 6.8480(8)
c (Å) 14.1665(17)

V (Å3) 575.33(1)

http://www.ccdc.cam.ac.uk/conts/retrieving.html
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Table 3. Cont.

Z 2
Radiation, λ (Å) Mo-Kα1, 0.71073

µ (mm−1) 6.317
Crystal shape and color Colorless block

Crystal size (mm3) 0.02 × 0.02 × 0.03
ρcalc (g·cm−3) 2.7181
Diffractometer Bruker APEX CCD

Absorption correction Multi-scan, SADABS 2014/15
Tmin, Tmax 0.5361, 0.7461

No. of measured, independent and
observed [I>3σ(I)] reflections 4655, 617, 528

Robs 0.014
Rall 0.018

GOFobs 1.07
No. of parameters, restraints 30, 0

Table 4. Atomic coordinates and equivalent isotropic displacement parameters Ueq (Å2) of LiCs2[dca]3.

Atom Site x y z Ueq

Li 2b 0 0 0 0.0144(17)
Cs 4f 1/3 2/2 0.078375(12) 0.00920(6)
N2 6h 0.3590(4) 0.3077(4) 1/4 0.0155(9)
N1 12i 0.3115(2) 0.1284(2) 0.09385(11) 0.0122(6)
C 12i 0.3333(3) 0.2014(3) 0.16978(12) 0.0098(6)

Table 5. Anisotropic displacement parameters Uij (Å2) of LiCs2[dca]3.

Atom U11 U22 U33 U12 U13 U23

Li 0.016(2) 0.016(2) 0.010(3) 0.0082(10) 0 0
Cs 0.00892(8) 0.00892(8) 0.00975(10) 0.00446(4) 0 0
N2 0.0245(11) 0.0113(10) 0.0101(9) 0.0084(10) 0 0
N1 0.0134(7) 0.0122(7) 0.0107(7) 0.0062(6) 0.0005(5) 0.0017(5)
C 0.0089(7) 0.0086(7) 0.0128(8) 0.0050(6) 0.0006(6) 0.0033(6)

3.3. Infrared and Raman Spectra

For the recording of the IR spectrum, an ALPHA II FT-IR-spectrometer (Bruker Optik
GmbH, Ettlingen, Germany) equipped with an ATR Platinum Diamond measuring cell was used.
All measurements were performed within the range of 4000 to 400 cm−1.

Raman-spectroscopic investigations were performed on a microscope laser Raman spectrometer
(Jobin Yvon, Unterhaching, Germany, 4 mW, equipped with a HeNe laser with an excitation line at
λ = 632.82 nm, 50× magnification, 2 × 40 s accumulation time). The Raman spectrum was recorded
on a crystal sealed in a thin-walled glass capillary.

4. Conclusion

The compound LiCs2[dca]3 was synthesized, its crystal structure determined, and its IR and
Raman spectra were reported. The acquired data of the vibrational spectra as well as the structural
results are similar to the data of the previously reported alkali metal dicyanamides NaCs2[dca]3,

Li[dca] and Cs[dca], although the smaller Li+ changes the coordination of Cs+.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-6740/6/4/108/s1:
CIF and CIFchecked files.
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