
inorganics

Article

Cyclometalated Iridium(III) Complexes Containing
Benzoxazole Derivatives and Different Ancillary
Ligands for Catalytic Oxidation of Toluene

Kelvin H.-C. Chen 1, Pei-Chun Liu 1, Tsun-Ren Chen 1,* and Jhy-Der Chen 2

1 Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan;
kelvin@mail.nptu.edu.tw (K.H.-C.C.); Lpc1012@hotmail.com (P.-C.L.)

2 Department of Chemistry, Chung-Yuan Christian University, Chung-Li 32023, Taiwan; jdchen@cycu.edu.tw
* Correspondence: trchen@mail.nptu.edu.tw; Tel.: +886-9-3326-1376

Received: 27 September 2018; Accepted: 26 October 2018; Published: 29 October 2018
����������
�������

Abstract: A series of cyclometalated iridium(III) complexes that have the general formula
[(CˆN)2Ir(NR)(X)] (CˆN = monoanionic bidentate cyclometalating ligands; NR = pyridine derivatives;
X = Cl− or I−) are designed, prepared, and applied for the transformation of toluene to benzaldehyde
using a clean, highly efficient, and environmentally-friendly process. The activation energies that are
needed for the catalytic oxidation of toluene when using these complexes as catalysts are quite low:
between 22.9 and 30.8 kcal mol−1. The catalytic frequencies (TOF) are fairly high (up to 7.0 × 102 h−1)
with excellent reliability, and the turnover number (TON) can reach 4.2 × 103 after 6 h of processing
time. Catalytic tests, X-ray absorption near-edge structure (XANES), and kinetic modeling are used
to derive detailed insights into the characteristics of the catalysts and their effects on the reactions
that are featured in the catalytic oxidation of toluene.
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1. Introduction

The selective oxidation of toluene to benzaldehyde is an important issue in modern synthetic
chemistry and pharmaceutical industry, as it provides the potential for the synthesis of fine
chemicals and intermediates in an innovative fashion [1–4]. Previously, we have reported some
cyclometalated iridium(III) complexes composed of benzoxazole ligand that can spontaneously release
metalloradicals to promote two types of reactions: the carbon–hydrogen bond activation (CHA) and
carbon–carbon bond activation (CCA) for ketones and aldehydes [5]. We have also demonstrated that
the cyclometalated iridium(III) complexes could directly transform toluene into benzaldehyde [6].

Traditionally, benzaldehyde was produced through the oxidation of benzyl alcohol using
stoichiometric amounts of halogenated reagents or chromium salts. This noncatalytic method showed
a severe drawback in that the oxidant was environmentally unfriendly; therefore, tremendous efforts
have been devoted to the design of catalytic systems that use O2 as the primary oxidant [7–20].
Although there have been some achievements for the catalytic oxidation of benzyl alcohols to prepare
benzaldehydes [21–29], the preparation of benzyl alcohols is still a problem. Benzyl alcohols are
commonly obtained through the halogenation of benzyl compounds; it is still a stoichiometric reaction
with a highly harmful process.

In the previous report, several iridium complexes with a general formula [(CˆN)2Ir(NˆO)] were
prepared and used as catalysts for the direct transformation of toluene to benzaldehydes [30]. In the
report, both CˆN and NˆO are monoanionic bidentate cyclometalating ligands. In solution, the NˆO
ligand was firstly released from the complexes, and a four-coordinate intermediate with a vacant
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coordination site was formed. Experimental data showed that the catalytic capabilities of the complexes
for the transformation of toluene were obviously affected by the structural character of the bidentate
CˆN ligand. The catalytic rates by using previous complexes come to 3.44 µM s−1 with an excellent
reliability under the processing conditions. To prepare more powerful catalysts for the transformation
of benzyl compounds and investigate the factors that govern the catalytic ability, we have modified
the structures of the complexes further. Herein, we report the design and synthesis of a series of
cyclometalated iridium(III) complexes of the general formula [(CˆN)2Ir(NR)(X)] (CˆN = monoanionic
bidentate cyclometalating ligands; NR = pyridine derivatives; X = Cl− or I−). Their application in
the transformation of toluene to benzaldehyde forms the subject of this study. By applying these
complexes to the transformation of toluene, the catalytic rates can reach 20.3 µM s−1 with fairly high
turnover frequency (TOF up to 9940 h−1). Benzaldehyde is the major product in the reaction system;
the selectivity of transforming toluene into benzaldehyde can be up to 97%.

2. Results and Discussion

2.1. Synthesis

In this report, we designed and synthesized nine iridium complexes with the general formula
[(CˆN)2Ir(NR)(X)]. The notation CˆN represents monoanionic bidentate cyclometalating ligands,
including 2-phenylbenzoxazolato (pbo) and 3,5-difluorophenyl benzoxazolato (dfpbo), whereas the NR
ligands are pyridine derivatives, such as pyridine (py), 4-methylpyridine (4mpy), and 4-cyanopyridine
(4cnpy), and X is a Cl− or I− anion. The molecular structures of the complexes are shown in Chart 1.
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Chart 1. Molecular structure of complexes 1–9. 

The synthetic route to the ligands and iridium complexes is illustrated in Scheme 1. Ligands, 

including 2-phenylbenzoxazole and 2-(3,5-difluorophenyl)benzoxazole (dfpbo), were prepared using 

Phillips condensation, as described in our previously reported procedure [31]. The cyclometalated 

Ir(III) chloro-bridged dimers, [(pbo)2Ir(μ-Cl)2Ir(pbo)2] (D1) and [(dfpbo)2Ir(μ-Cl)2Ir(dfpbo)2] (D2), 

Chart 1. Molecular structure of complexes 1–9.

The synthetic route to the ligands and iridium complexes is illustrated in Scheme 1. Ligands,
including 2-phenylbenzoxazole and 2-(3,5-difluorophenyl)benzoxazole (dfpbo), were prepared using
Phillips condensation, as described in our previously reported procedure [31]. The cyclometalated
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Ir(III) chloro-bridged dimers, [(pbo)2Ir(µ-Cl)2Ir(pbo)2] (D1) and [(dfpbo)2Ir(µ-Cl)2Ir(dfpbo)2] (D2),
were synthesized by a method also depicted in our previous reports [31,32]. Cyclometalated
Ir(III) Iodo-bridged dimers, [(dfpbo)2Ir(µ-I)2Ir(dfpbo)2] (D3), were synthesized according to the
Finkelstein method. All of the iridium complexes were purified and identified by 1H NMR,
13C NMR, FAB-MS spectrometry, and elemental analyses. In addition, the complexes (pbo)2Ir(Cl)(py)
(1), (pbo)2Ir(Cl)(4mpy) (2), (dfpbo)2Ir(Cl)(py) (4), (dfpbo)2Ir(Cl)(4mpy) (5), (dfpbo)2Ir(Cl)(4cnpy)
(6), (dfpbo)2Ir(I)(4mpy) (8), and (dfpbo)2Ir(I)(4cnpy) (9) were structurally characterized by
X-ray crystallography.
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Scheme 1. Synthetic route to ligands, iridium dimers D1–D3, and complexes 1–9.

In general, bidentate ligands can bind to the central metal tighter than monodentate ligands,
and ionic ligands can bind to the central metal tighter than neutral ligands. Therefore, complexes 1–9
should easily release the neutral monodentate ligand to form an unsaturated structure [(CˆN)2Ir(Cl)]
with a vacant site. The unsaturated structure is an electron acceptor (Lewis acid), which can accept
some substrates possessing an electron pair or π-donor, and the coordinative unsaturation could
facilitate carbon–hydrogen bond activation. The stability and reactivity of the complexes should
depend on the characteristics of ligands CˆN and halogen.

2.2. Crystal Structures

The single-crystal structures of complexes 1, 2, 4–6, and 8–9 are represented with ORTEP diagrams
in Figure 1. While the crystal of complex 1 conforms to the monoclinic space group C2/c, the crystals of
complexes 2, 8 and 9 conform to the triclinic space group Pı̄, and the crystal of complex 4 conforms to
the monoclinic space group P21/n, those of complexes 5 and 6 conform to the monoclinic space group
P21/c, respectively. Basic information pertaining to the crystal parameters and structure refinement is
summarized in the Supporting Information. Selected bond distances and angles are listed in Table 1.
The diversity of the space groups for this series of complexes suggested that the packing of these
complexes was sensitive to the substituent of the ligands [32].
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Figure 1. X-ray crystal structures of (a) (pbo)2Ir(Cl)(py) (1); (b) (pbo)2Ir(Cl)(4mpy) (2);
(c) (dfpbo)2Ir(Cl)(py) (4); (d) (dfpbo)2Ir(Cl)(4m py) (5); (e) (dfpbo)2Ir(Cl)(4cnpy) (6); (f) (dfpbo)2Ir(I)(4m
py) (8); and (g) (dfpbo)2Ir(I)(4cnpy) (9). Thermal ellipsoids are draw at the 20% probability level.
The hydrogen atoms and solvent are omitted for clarity.
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Table 1. Selected Bond Distance (Å) and Bond Angles for Complexes 1, 2, 4–6, and 8–9.

Bond Distance (Å)

Complex Ir–Cav Ir–N(1) a Ir–N(2) a Ir–N(3) b Ir–X c

1 2.018(4) 2.044(4) 2.153(4) 2.162(4) 2.3458(11)
2 2.023(3) 2.174(3) 2.046(3) 2.187(3) 2.3586(8)
4 2.013(3) 2.042(3) 2.049(3) 2.159(3) 2.4395(8)
5 2.036(3) 2.058(2) 2.035(2) 2.149(2) 2.4241(6)
6 2.040(4) 2.052(4) 2.049(4) 2.182(4) 2.4476(11)
8 2.041(5) 2.054(4) 2.051(4) 2.159(3) 2.7440(3)
9 2.037(3) 2.027(2) 2.058(2) 2.146(3) 2.7336(2)

Bond Angles (◦)

Complex C(13)–Ir–C(26) N(1)–Ir–N(2) N(3)–Ir–X

1 94.79(18) 98.40(14) 90.74(10)
2 92.48(13) 98.91(10) 91.53(7)
4 87.75(12) 175.67(11) 91.12(7)
5 87.14(10) 176.71(8) 89.71(6)
6 92.37(17) 172.75(14) 89.17(10)
8 88.14(17) 174.35(14) 91.24(9)
9 85.50(12) 173.60(10) 92.59(7)

a the nitrogen of CˆN ligands; b the nitrogen of pyridine derivatives (NR). c the chlorine for
complexes 1, 2, and 4–6, or iodine for complexes 8–9.

All of the complexes adopted distorted octahedral coordination geometry around the iridium.
For complexes 1 and 2, the two CˆN ligands adopt a cis-C–C and a cis-N–N chelate disposition,
respectively, such that the bond lengths of the two Ir–N(CˆN) are different from each other. The bond
length of the Ir–N(CˆN) trans to the carbon atom of the other one of the CˆN ligand is longer than that
of the Ir–N(CˆN) trans to chlorine. For complex 1, the bond length of the Ir–N(2) trans to the carbon is
2.153 Å, and the bond length of the Ir–N(1) trans to the chlorine is 2.044 Å. In contrast, the two CˆN
ligands of complexes 4–6 and 8–9 adopt a cis-C–C and a trans-N–N chelate disposition, respectively,
and the bond lengths of the two Ir–N(CˆN) are similar.

A thermal gravimetric analysis (TGA) was used to evaluate the thermal stability of complexes 1–9,
and the weight losses (%) for complexes 1–9 under a specific temperature are listed in Table 2. It is
shown that, for all of the complexes, the NR group was the first group to be released. The temperature
when the NR group was completely lost is denoted as TDNR.

Table 2. Thermal gravimetric analysis (TGA) Data of Complexes 1–9.

Para.
Complex 1 2 3 4 5 6 7 8 9

MW a 695 709 719 768 781 791 859 873 884
WNR

b 11.4 13.1 14.5 10.3 11.9 13.2 9.2 10.7 11.8
TDNR

c 251 220 200 297 360 237 180 289 326
a molecular weight of complex, b weight percentage of NR group for complex, c the temperature at which the NR
group was completely lost.

As shown in Table 2, all of the complexes are quite thermostable, among which complex 5 is the
most stable, with a very high decomposing temperature (TDNR = 360 ◦C). For the complexes with the
same type of NR and halogen ligands, complexes possessing ligand dfpbo are more stable than those
with pbo, which demonstrates that the cyclometalating ligand dfpbo stabilizes the structure better
than pbo.

2.3. Oxidation of Toluene with Dioxygen

Although complexes 1–9 are inert and quite stable in solid state, they release an active structure in
solution. For example, under air, the toluene solution of complex 4 has a weak electron paramagnetic
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resonance (EPR) signal at room temperature (Figure 2a), and shows a much stronger signal at higher
temperature (80 ◦C) (Figure 2b). The EPR spectrum of compound 4 displays an isotropic signal at
g = 1.9116, which is characteristic of an organic centered radical.
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Figure 3. Reaction progress for the oxidation of neat toluene with 0.1 mM of complex 4 as catalyst at 

a reaction temperature of 100 °C. 

Figure 2. Electron paramagnetic resonance (EPR) spectra of complex 4 in toluene under air at (a)
298 K, and (b) 353 K. EPR settings: microwave frequency, 9.879 GHz; microwave power, 10.080 mW;
number of scans, 1.

When the toluene solution of complexes 1–9 were heated up to 100 ◦C, after 2 h of reaction time, a
major product benzaldehyde was formed. This product was identified by HPLC, UV, IR, and GCMS.
The concentration of benzaldehyde increased very quickly in the reaction. When 0.1 mM of complex 4
was loaded to the reaction system, the concentration of benzaldehyde became 577 mM after 12 h of
reaction time and the turnover number (TON) reached 5779 (Figure 3), which implies that complexes
1–9 produced a high reactive species in solution and catalytically converted toluene to benzaldehyde.
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Figure 3. Reaction progress for the oxidation of neat toluene with 0.1 mM of complex 4 as catalyst at a
reaction temperature of 100 ◦C.

It is noticeable that an undesired reaction occurred when a higher concentration of complexes
1–9 was used. When 100 mM of complex 4 in toluene solution was heated to 100 ◦C, some precipitate
gradually formed, and one compound in the solution could also be found. The compound formed in
the solution was identified as pyridine, and the precipitate has also been isolated and characterized
as cyclometalated chloro-bridged iridium dimer (D2) (Figures S1b–S3b) by NMR (Figure S1a),
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IR (Figure S2a), and MS (Figure S3a). Therefore, in solution, complex 4 released the monodentate
ligand, pyridine, to generate coordinatively unsaturated structure [(CˆN)2Ir(Cl)] with a vacant site,
which combine with each other to form the iridium dimer when complex 4 was used in a high
concentration (Scheme 2).
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Scheme 2. The combination of two unsaturated structures [(dfpbo)2Ir(Cl)] to form a chloro-bridged
iridium dimer [(dfpbo)2Ir(µ-Cl)2Ir(dfpbo)2].

Although the iridium dimer can also form a coordinatively unsaturated structure [(CˆN)2Ir(Cl)]
in solution, the percentage of the [(CˆN)2Ir(Cl)] resulting from the dissociation of the iridium dimer is
minor, because the solubility of the iridium dimer is low, and the structure of the dimer is quite stable in
solution. Therefore, complexes 1–9 cannot be loaded to the reaction system by too high concentration.

On the basis of previous reports on oxyfunctionalization by metal oxo compounds [33–36],
a plausible catalytic cycle has been proposed (Scheme 3), including (a) complexes [(CˆN)2Ir(NR)(X)]
releasing monodentate ligand NR to form a coordinatively unsaturated structure [(CˆN)2Ir(Cl)]
with a vacant site [33]; (b) the nucleophilic addition reaction of O2 to [(CˆN)2Ir(Cl)] generating the
iridium dioxygen adduct, [(CˆN)2Ir(Cl)(O2)] [34]; (c) [(CˆN)2Ir(Cl)(O2)] then reacting with another
molecule of [(CˆN)2Ir(Cl)] to construct the µ-peroxo complex [(CˆN)2(Cl)Ir(µ-O2)Ir(Cl)(CˆN)2] [34–36];
(d) homogenous cleavage of the O–O bond in [(CˆN)2(Cl)Ir(µ-O2)Ir(Cl)(CˆN)2] resulting in two
oxo iridium complexes [(CˆN)2(Cl)Ir(O)] [34]; (e) coordination of a toluene to oxo iridium
complex [(CˆN)2(Cl)Ir(O)]; (f) β-hydrogen transfer and oxidative addition to form complex
[(CˆN)2(Cl)Ir(OH)(C6H5CH2)]; (g) reductive elimination to regenerate a coordinatively unsaturated
structure [(CˆN)2Ir(Cl)] and benzyl alcohol; (h) the geminal diol being unstable and able to easily
eliminate water to produce benzaldehyde.

2.4. Chemical Kinetics

To evaluate the catalytic ability of the complexes, complexes 1–9 were applied to the catalytic
oxidation of toluene under various experimental conditions. The reaction solution was stirred well
under air to keep the concentration of oxygen constant, and the calibration curve of the standard
solutions containing toluene and benzaldehyde was used to monitor the progress of the reactions
(Figures S4–S6). The reaction rates are summarized in Table S4, and the rate constants (k) and activation
energies (Ea) are summarized in Table S5. The reaction rates of those reactions are also shown in
Figure 4. The rate constants are shown in Figure 5.
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1.71 × 10−4, 1.53 × 10−4, and 1.68 × 10−4 s−1, respectively), we find that although the halide ligand affects 

catalytic ability, the influence resulting from dfpbo cannot be underestimated. Therefore, we can see 

that if there are electron-withdrawing groups (EWG) on the bidentate ligand (the phenylbenzoxazole 

group, C^N), the catalytic ability of the iridium complex is apparently improved (Figure 5), which 

can be attributed to two effects. The first effect is that the dfpbo ligand is less σ basic than the pbo 

ligand, because the EWG on the C^N ligand lowers the capability of electron donation from the 

monoanionic cyclometalating ligand to the central metal atom, and the other one is that the EWG on 

Figure 4. Reaction rate (µM/s) for the catalytic oxidation of (A) 0.1 mM of catalyst in neat toluene
([toluene] = 9.39 M); (B) 0.2 mM of catalyst in neat toluene ([toluene] = 9.39 M); (C) 0.1 mM of catalyst
in a reaction solution consisting of 80% of toluene and 20% of 1,2-dichlorobenzene (v/v) ([toluene]
= 7.51 M); and (D) 0.2 mM of catalyst in a reaction solution consisted of 80% of toluene and 20% of
1,2-dichlorobenzene.
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Figure 5. Rate constants of the catalytic oxidation for toluene.

According to the experimental data in Figures 4 and 5, it is realized that there is some relationship
between the CHA activity and the structural property. For example, at 80 ◦C, the rate constants of
1–6 (k353) are 1.44 × 10−4, 1.35 × 10−4, 1.26 × 10−4, 2.78 × 10−4, 2.73 × 10−4, and 2.55 × 10−4 s−1,
respectively, indicating that for complexes possessing the same monodentate ligands (halide and NR
ligands), the rate constants of the complexes containing the dfpbo ligand (4–6) are about two times of
those containing the pbo ligand (1–3).

Through comparing the rate constants of complexes 1–3 with those of complexes 7–9 (k353 are
1.71 × 10−4, 1.53 × 10−4, and 1.68 × 10−4 s−1, respectively), we find that although the halide ligand
affects catalytic ability, the influence resulting from dfpbo cannot be underestimated. Therefore,
we can see that if there are electron-withdrawing groups (EWG) on the bidentate ligand
(the phenylbenzoxazole group, CˆN), the catalytic ability of the iridium complex is apparently
improved (Figure 5), which can be attributed to two effects. The first effect is that the dfpbo ligand is
less σ basic than the pbo ligand, because the EWG on the CˆN ligand lowers the capability of electron
donation from the monoanionic cyclometalating ligand to the central metal atom, and the other one is
that the EWG on the CˆN ligand can promote the π acidity of the CˆN ligand and enhance the metal to
CˆN π* back bonding. Both effects can reduce the electron density on the iridium, and consequently,
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the complexes with a higher partial positive charge on the metal become better electrophiles, and can
attract the electron donor better, and hence promote nucleophilic addition reaction.

The normalized X-Ray absorption near-edge structure (XANES) spectra at the Ir L3-edge (Figure 6)
also shows that the complexes with dfpbo ligands (Figure 6b,c) have a higher partial positive charge
on the iridium atom than the complexes with pbo ligands do (Figure 6a).
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Figure 6. Ir L3-edge X-ray absorption near-edge structure (XANES) of crystalline (a) (�)
[(pbo)2IrIII(Cl)(4mpy)] (2); (b) ( ) [(dfpbo)2IrIII(Cl)(4mpy)] (5), and (c) (N) [ (dfpbo)2IrIII(I)(4mpy)] (8).

Complexes 7–9 have the same bidentate ligands as complexes 4–6, but their rate constants are
only about 60% of those of 4–6, indicating that the chloroiridium complexes have a better catalytic
activity than the iodoiridium ones. Two factors involving the electronegativity (EN) and the size of the
halide ligands are in charge of the difference. The electronegativity of iodine (2.7) is less than that of
chlorine (3.0), such that the partial positive charges on the iridium atoms of complexes 7–9 are smaller
than those of complexes 4–6, which led to a decrease in the reactivity of complexes 7–9. Moreover,
the atomic size of iodine is greater than that of chlorine, and the bulkier group near the active site of
the intermediates encumbers the approach of reactants.

As shown in Table S5, for complexes composed of the same kind of CˆN and halogen ligands,
the complexes with a lower activation energy (EA) have a higher rate constant. The activation
energies that are needed for the catalytic oxidation of toluene by using complexes 1–9 as catalysts are
summarized in Figure 7.

In general, the dissociation energy of a C–H in the benzylic position of toluene is 88 kcal/mol,
which is a robust chemical bond. To functionalize hydrocarbons, some active reactants should be
used to supply the chemical energy in most cases, and some stoichiometric amounts of materials
should be supplied to the systems. However, by using cyclometalated iridium complexes as catalysts,
an environmentally-friendly process can be used to produce benzaldehyde with a low activation
energy (~30 kcal/mol).
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Figure 7. Activation energy (EA, kcal/mol) for the catalytic oxidation of neat toluene by using 0.1 mM 

of complexes 1–9 as catalysts at 100 °C of reaction temperature. 
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Figure 7. Activation energy (EA, kcal/mol) for the catalytic oxidation of neat toluene by using 0.1 mM
of complexes 1–9 as catalysts at 100 ◦C of reaction temperature.

2.5. Performance on Catalytic Oxidation

By using the complexes as catalysts, the activation energy that is needed for the catalytic oxidation
of toluene is lowered, and the reaction rates increase rapidly when the reaction temperature is raised.
The reaction progress for the catalytic oxidation of toluene with complexes 1–9 as catalysts at various
reaction temperatures is represented in Figure 8, which shows that the catalytic rates of the complexes at
100 ◦C are about seven times those at 80 ◦C. When 0.1 mM of complexes 1–3 was used for the reactions
at 100 ◦C, the catalytic rates of the catalytic oxidation are 7.50, 7.28, and 6.77 µM s−1, respectively,
and the concentrations of the product after 6 h (CP6) are 162, 157, and 146 mM, respectively.
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reaction time (CP6, mM) for the catalytic oxidation of neat toluene: 0.1 mM of complexes 1–9 were 
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Figure 8. Reaction rate (µM/s) and the concentration of benzaldehyde accumulated after 6 h of reaction
time (CP6, mM) for the catalytic oxidation of neat toluene: 0.1 mM of complexes 1–9 were used as
catalysts in various reaction temperatures.

For complexes 4–6, the catalytic rates are 19.4, 15.4, and 13.0 µM s−1, respectively, and the
CP6 are 419, 332, and 281 mM, respectively. For complexes 7–9, the catalytic rates are 9.67, 8.56,
and 8.46 µM s−1, respectively and the CP6 are 209, 185, and 183 mM, respectively. The results show
that all of the complexes reported here are powerful catalysts for the catalytic oxidation of toluene.
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After 6 h, the concentration of product resulting from catalytic oxidation reaches 4000 times the
concentration of the catalyst applied. The turnover frequency (TOF) of the complexes for catalytic
oxidation reached 698 h−1, which are quite good performances for the transformation of toluene,
and much better than previous reports [37–40]. The performances of complexes 7–9 for the catalytic
oxidation of toluene are shown in Table 3, and compared with some previous reports.

Table 3. Reaction Conditions of Catalytic Oxidation for Toluene.

Entry Conversion d (%) Selectivity e (%) TON f TOF (h−1) g Quantum Yield h

g-C3N4
a 2.6 24 4.7 0.29 -

mpg130 a 2.6 99 23.1 1.44 -
[UO2

2+] b <1 30 - - 0.01
NaBr c 10 40 <1 <0.25 -

Complex 1 1.73 90 1620 270 -
Complex 2 1.67 90 1580 262 -
Complex 3 1.55 90 1460 244 -
Complex 4 4.46 96 4180 698 -
Complex 5 4.66 97 3320 553 -
Complex 6 3.44 96 2810 468 -
Complex 7 2.23 95 2090 349 -
Complex 8 1.97 94 1850 308 -
Complex 9 1.95 93 1830 304 -

a Li et al. [37]; b Mao et al. [39]; c Borgaonkar et al. [40]; d conversion of toluene to benzaldehyde; e the
chemoselectivity to benzaldehyde; f the turnover number after 6 h of reaction time; g catalytic frequencies of the
complexes (h−1); h for the photocatalytic oxidation of toluene to benzaldehyde.

To investigate the concentration effect of the catalysts on the catalytic oxidation of toluene,
complexes 1–9 were loaded to the reaction system in various concentrations between 1.0 × 101 and
1.0 × 10−3 mM, and the experimental data are summarized in Table S6. The reaction temperature
was 100 ◦C, and the reaction time was 6 h. The catalytic rate of complexes, catalytic frequencies,
the concentration of the product after 6 h of reaction time, and the chemoselectivity to benzaldehyde
are also shown in Figure 9.

For complexes 1–3 and 7–9, the maximum reaction rate for catalytic oxidation appeared when
0.1 mM of the complex was used. The maximum catalytic rates for 0.1 mM of complexes 1–3
are between 6.77 and 7.50 µM s−1, and those of 0.1 mM of complexes 7–9 are between 8.46 and
9.67 µM s−1, which show that complexes 7–9 have higher catalytic rates than complexes 1–3 by
~28%. The effect of the bidentate ligand on catalytic oxidation is thus more important than that of the
halide ligand. When complexes 1–3 and 7–9 were loaded to the reaction system with a concentration
lower than 0.1 mM, the reaction rates decreased, but the turnover frequency (TOF) and the turnover
number (TON6) increased, which imply that when a lower concentration of the complexes was
used, the formation rate of benzaldehyde become lower, but the ratio of catalytically active species
became higher in solution. For these complexes, the maximum catalytic frequency and the turnover
number reached 4880 h−1 and 29,220, respectively, which showed that these catalysts are very active.
Moreover, when complexes 1–3 and 7–9 were loaded to the reaction system with a concentration
higher than 0.1 mM, all of the reaction rates, catalytic frequencies, and the turnover number decreased,
which is because the combination of [(CˆN)2Ir(Cl)] to form the iridium dimers became obvious, and the
combination of [(CˆN)2Ir(Cl)] gradually dominated the reaction.
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Figure 9. Catalytic oxidation of toluene, complexes 1–9 were loaded to the reaction system in various
concentrations between 1.0 × 101 and 1.0 × 10−3 mM. (A) The catalytic rate of complexes for the
catalytic oxidation of toluene (µM s−1); (B) the catalytic frequencies; (C) the concentration of the
product after 6 h of reaction time (mM); and (D) the chemoselectivity to benzaldehyde.

For complexes 4–6, the maximum reaction rate for catalytic oxidation appeared when 0.1 ~1.0 mM
of the complex was used. This concentration is higher than that of complexes 1–3 and 7–9 due to two
factors. The first is that the combination of the coordinatively unsaturated structure [(CˆN)2Ir(Cl)]
to form an iridium dimer [(CˆN)2Ir(Cl)]2 for complexes 1–3 and 7–9 is much easier than that for
complexes 4–6, while the other is that the reactive species resulting from complexes 4–6 are much
more active than those from complexes 1–3 and 7–9. Overall, the effect resulting from the activation of
complexes 4–6 can override the effect resulting from the combination of [(CˆN)2Ir(Cl)], which allow
complexes 4–6 to be applied to the reaction system at a higher concentration. For complexes 4–6,
the maximum catalytic rate, catalytic frequency, and the turnover number reach 20.3 µM s−1, 9940 h−1,
and 59,600, respectively.

The chemoselectivity to benzaldehyde is slightly dependent upon the concentrations of the
catalysts that are used, but it is obviously affected by the structure of bidentate cyclometalating ligands
(CˆN), and among them, 97% of selectivity could be achieved. The chemoselectivity of the complexes,
due to the different coordination ability to benzyl alcohol and benzaldehyde, can easily oxidize
benzyl alcohol to benzaldehyde, but can hardly transform benzaldehyde into benzoic acid; therefore,
the catalytic cycle stops at the step forming benzaldehyde. A comparison of the conversions by using
complex 4 as the catalyst (Figure 10) reveals that the conversion of benzyl alcohol to benzaldehyde is
much faster than the transformation of benzaldehyde into benzoic acid.
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Figure 10. Reaction progress for the catalytic oxidation of (a) benzyl alcohol and (b) benzaldehyde
at 100 ◦C of reaction temperature. The concentration of benzyl alcohol and benzaldehyde is 5 M in
toluene. First, 5 mM of complex 4 was applied to the reactions. The conversion was measured by HPLC
for the transformation of benzyl alcohol into benzaldehyde and for benzaldehyde into benzoic acid.

3. Experimental Section

3.1. Materials and Methods

Solvents were dried and deoxygenated by refluxing over the appropriate reagents before
use. 3,5-Difluorobenzoic acid was purchased from Matrix (Sevelen, Switzerland), and IrCl3·nH2O
was obtained from the Seedchem Co. (Melbourne, Australia). All other chemicals, including
2-phenylpyridine, were purchased from Acros (Geel, Belgium) and used as received. NMR spectra were
measured on a Bruker AVIIIHD-600 MHz or a Mercury 300 MHz NMR spectrometer (Varian, Palo Alto,
CA, USA). UV-vis spectra were obtained using a Hitachi U-3900 Spectrophotometer (Hitachi, Tokyo,
Japan). The infrared spectra were recorded on Agilent Technologies Model Cary 630 FTIR instruments
(Agilent Technologies, Santa Clara, CA, USA). Mass spectra were taken with a Finnigan/Thermo Quest
MAT 95XL instrument (Scientific Instrument Service Inc., Ringoes, NJ, USA) with electron impact
ionization for organic compounds or fast atom bombardment for metal complexes.

3.2. Synthetic Procedures

3.2.1. Synthesis of Ligands and Cyclometalated Ir(III) Chloro-Bridged Dimers (D1 and D2)

Ligands including 2-phenylbenzoxazol and 2-(3,5-difluorophenyl)benzoxazole (dfpbo)
were prepared by Phillips condensation, as described in our previously reported
procedure. The cyclometalated Ir(III) chloro-bridged dimers, [(pbo)2Ir(µ-Cl)2Ir(pbo)2] (D1),
and [(dfpbo)2Ir(µ-Cl)2Ir(dfpbo)2] (D2) were synthesized by the method shown in our previous reports.

3.2.2. Synthesis of Cyclometalated Ir(III) Chloro-Bridged Dimer [(dfpbo)2Ir(µ-I)2)Ir(dfpbo)2] (D3)

A cyclometalated Ir(III) Iodo-bridged dimer, D3, was synthesized according to the Finkelstein
method. A flask was charged with 2 g (1.6 mmole) of dimer D2 and 2.18 g (24 mmole) of sodium
iodide, and 100 mL of acetone was added. The solution was stirred and warmed to 100 ◦C for 24 h
under nitrogen. After cooling to room temperature, the mixture was poured into 500 mL of pure
water. The precipitate of cyclometalated iridium dimer was collected, washed with deionized water,
and dried at 60 ◦C in a vacuum oven. The product was used as a precursor for complexes 7–9 without
further purifying. The yield of dimer D3 was 1.5568 g (62%) of a yellow solid. 1H NMR (300 MHz,
CDCl3, 298 K; δ (ppm)): 9.07–9.10 (m, 2H), 7.99–8.77 (m, 2H), 7.92–7.99 (m, 4H), 7.55–7.65 (m, 12H),
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6.72–6.83 (m, 4H). Anal. Calcd for C52H24N4I2O4F8Ir2 (MW = 1559.60): C, 40.01; H, 1.53; N, 3.59. Found:
C, 40.36; H, 1.64; N, 3.67. MS (FAB; m/z): 1559.6098.

3.2.3. Synthesis of Bis(2-phenylbenzoxazolato-N,C2′ )-pyridinato Chloroiridium(III)
[Ir(pbo)2(Cl)(py)] (1)

A flask was charged with 0.5 g (0.41 mmol) of D1, 0.48 g (0.61 mmol) of pyridine, and 30 mL of
toluene. The solution was stirred under N2 and warmed to 130 ◦C. After 1 h, the solution was cooled
to room temperature; the reaction mixture was purified by column chromatography on silica gel with
dichloromethane/n-hexane as the eluent. The yield of complex 1 was 0.4438 g (80%) of yellow crystals.
1H NMR (300 MHz, CDCl3, 298 K; δ (ppm)): 8.96 (d, J = 4.8 Hz, 2H), 8.76 (d, J = 8.1 Hz, 1H), 7.66–7.72
(m, 3H), 7.29–7.45 (m, 3H), 7.13–7.20 (m, 5H), 6.97 (t, J = 7.5, 7.5 Hz 1H), 6.78–6.84 (m, 3H), 6.49–6.51
(m, 2H), 5.26–5.28 (m, 1H). 13C NMR (75 MHz, CDCl3, 298 K; δ (ppm)): 179.4, 176.3, 154.3, 152.9,
152.8, 151.0, 150.2, 145.8, 140.2, 138.5, 138.0, 137.8, 137.1, 137.0, 135.0, 134.9, 132.9, 131.8, 131.6, 129.2,
126.1, 125.9, 125.8, 125.2, 125.0, 121.8, 121.6, 116.7, 114.5, 111.9, 104.8. Anal. Calcd for C31H21N3O2ClIr
(MW = 695.10): C, 53.51; H, 3.02; N, 6.04. Found: C, 53.62; H, 2.94; N, 5.96. MS (FAB; m/z): 694.0955.

3.2.4. Synthesis of Bis(2-phenylbenzoxazolato-N,C2′ )-(4-methylpyridinato) Chloroiridium(III)
[Ir(pbo)2(Cl)(4mpy)] (2)

A flask was charged with 0.5 g (0.41 mmol) of D1, 0.571 g (6.15 mmol) of methylpyridine,
and 30 mL of toluene. The solution was stirred under N2 and warmed to 130 ◦C. After 2.5 h, the solution
was cooled to room temperature; the reaction mixture was purified by column chromatography on
silica gel with dichloromethane/n-hexane as the eluent. The yield of complex 2 was 0.4075 g (70%) of
yellow crystals. 1H NMR (300 MHz, CDCl3, 298 K; δ (ppm)): 8.77 (d, J = 5.1 Hz, 2H), 8.56 (d, J = 7.8 Hz,
1H), 7.66–7.73 (m, 3H), 7.23–7.45 (m, 4H), 7.12–7.17 (m, 3H), 6.97–7.12 (m, 3H), 6.88–6.94 (m, 1H),
6.77–6.82 (m, 2H), 6.43–6.51 (m, 1H), 2.28 (s, 3H). 13C NMR (75 MHz, CDCl3, 298 K; δ (ppm)): 179.7,
176.6, 154.9, 152.5, 151.3, 150.5, 149.1, 146.7, 140.6, 138.9, 135.3, 133.1, 132.2, 131.9, 129.5, 126.3, 125.2,
122.0, 121.9, 117.2, 112.3, 53.9, 21.5. Anal. Calcd for C32H23N3O2ClIr (MW = 709.11): C, 54.20; H, 3.27;
N, 5.93. Found: C, 53.95; H, 3.28; N, 5.76. MS (FAB; m/z): 708.11.

3.2.5. Synthesis of Bis(2-phenylbenzoxazolato-N,C2′ )-(4-cyanopyridinato) Chloroiridium(III)
[Ir(pbo)2(Cl)(4cnpy)] (3)

A flask was charged with 0.5 g (0.41 mmol) of D1, 0.638 g (6.15 mmol) of 4-cyanopyridine,
and 30 mL of toluene. The solution was stirred under N2 and warmed to 130 ◦C. After 3 h, the solution
was cooled to room temperature; the reaction mixture was purified by column chromatography on
silica gel with dichloromethane/n-hexane as the eluent. The yield of complex 3 was 0.4596 g (78%) of
orange crystals. 1H NMR (300 MHz, CDCl3, 298 K; δ (ppm)): 9.20 (d, J = 5.4 Hz, 2H), 8.48 (d, J = 7.8 Hz,
1H), 7.67–7.7 (m, 3H), 7.41–7.49 (m, 4H), 7.27–7.36 (m, 3H), 7.15–7.21 (m, 1H), 7.00 (t, J = 7.8, 8.1 Hz,
1H), 6.77–6.83 (m, 3H), 6.40–6.46 (m, 2H). 13C NMR (75 MHz, CDCl3, 298 K; δ (ppm)): 179.3, 176.1,
154.1, 153.1, 151.0, 150.2, 144.1, 140.1, 138.3, 137.7, 134.7, 131.9, 131.5, 129.1, 127.0, 126.8, 126.1, 125.3,
122.3, 121.0, 116.2, 115.9, 112.3. Anal. Calcd for C32H20N4O2ClIr (MW = 720.09): C, 53.27; H, 2.80; N,
7.78. Found: C, 53.19; H, 2.70; N, 7.76. MS (FAB; m/z): 719.0903.

3.2.6. Synthesis of Bis(2-(3,5-difluorophenyl)benzoxazolato-N,C2′ )-pyridinato Chloroiridium(III)
[Ir(dfpbo)2(Cl)(py)] (4)

A flask was charged with 0.5 g (0.36 mmol) of D2, 0.38 g (5.45 mmol) of pyridine, and 30 mL of
toluene. The solution was stirred under N2 and warmed to 130 ◦C. After 2.5 h, the solution was cooled
to room temperature; the reaction mixture was purified by column chromatography on silica gel with
dichloromethane/n-hexane as the eluent. The yield of complex 4 was 0.4064 g (74%) of yellow crystals.
1H NMR (300 MHz, CDCl3, 298 K; δ (ppm)): 9.11–9.14 (m, 1H), 7.75–7.81 (m, 1H), 7.54–7.64 (m, 2H),
7.41–7.48 (m, 2H), 7.26–7.38 (m, 7H), 7.08 (t, J = 8.1, 7.8Hz 1H), 6.35–6.42 (m, 1H), 6.25–6.32 (m, 1H), 6.18
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(d, J = 8.1 Hz, 1H). 13C NMR (75 MHz, CDCl3, 298 K; δ (ppm)): 167.1, 157.9, 150.1, 149.7, 140.9, 138.8,
137.7, 137.6, 133.3, 133.1, 132.9, 125.7, 122.3, 116.9, 112.2, 108.8, 53.5. Anal. Calcd for C31H17N3O2ClF4Ir
(MW = 767.06): C, 48.49; H, 2.36; N, 5.47. Found: C, 47.96; H, 2.43; N, 5.43. MS (FAB; m/z): 767.0576.

3.2.7. Synthesis of Bis(2-(3,5-difluorophenyl)benzoxazolato-N,C2′ )-(4-methylpyridinato)
Chloroiridium(III) [Ir(dfpbo)2(Cl)(4mpy)] (5)

A flask was charged with 0.5 g (0.36 mmol) of D2, 0.5076 g (5.4 mmol) of methylpyridine,
and 30 mL of toluene. The solution was stirred under N2 and warmed to 130 ◦C. After 1 h, the solution
was cooled to room temperature; the reaction mixture was purified by column chromatography on
silica gel with dichloromethane/n-hexane as the eluent. The yield of complex 5 was 0.3980 g (71%)
of orange crystals. 1H NMR (300 MHz, CDCl3, 298 K; δ (ppm)): 9.10–9.13 (m, 1H), 7.54–7.63 (m, 2H),
7.38–7.47 (m, 2H), 7.23–7.35 (m, 5H), 7.05–7.13 (m, 3H), 6.24–6.40 (m, 3H), 2.34 (s, 3H). 13C NMR
(75 MHz, CDCl3, 298 K; δ (ppm)): 176.3, 170.6, 170.0, 167.5, 166.9, 161.2, 158.0, 153.5, 150.2, 150.1, 150.0,
140.5, 139.1, 133.9, 133.8, 133.6, 133.5, 126.5, 125.8, 122.7, 121.6, 120.4, 119.8, 119.3, 116.7, 116.4, 112.2,
111.3, 109.5, 109.0, 108.7, 107.9. Anal. Calcd for C32H19ClF4IrN3O2 (MW = 781.18): C, 49.15; H, 2.58; N,
5.37. Found: C, 49.15; H, 2.58; N, 5.37. MS (FAB; m/z): 781.0732.

3.2.8. Synthesis of Bis(2-(3,5-difluorophenyl)benzoxazolato-N,C2′ )-(4-cyanopyridinato)
Chloroiridium(III) [Ir(dfpbo)2(Cl)(4cnpy)] (6)

A flask was charged with 0.5 g (0.36 mmol) of D2, 0.5674 g (5.4 mmol) of 4-cyanopyridine,
and 30 mL of toluene. The solution was stirred under N2 and warmed to 130 ◦C. After 1 h, the solution
was cooled to room temperature; the reaction mixture was purified by column chromatography on
silica gel with dichloromethane/n-hexane as the eluent. The yield of complex 6 was 0.4893 g (86%) of
yellow crystals. 1H NMR (300 MHz, CDCl3, 298 K; δ (ppm)): 9.03–9.07 (m, 2H), 7.66 (d, J = 8.4 Hz, 1H),
7.58–7.62 (m, H), 7.43–7.56 (m, 4H), 7.28–7.42 (m, 3H), 7.12–7.18(m, 2H), 6.38–6.45 (m, H), 6.26–6.33
(m, H), 6.16 (d, J = 8.4 Hz, H). 13C NMR (75 MHz, CDCl3, 298 K; δ (ppm)): 155.4, 150.1, 140.1, 138.9,
127.2, 126.6, 125.8, 122.1, 120.1, 115.4, 112.5, 111.4, 109.6, 104.9. Anal. Calcd for C32H16N4O2ClF4Ir
(MW = 791.16): C, 48.52; H, 2.39; N, 7.07. Found: C, 48.27; H, 2.50; N, 6.90. MS (FAB; m/z): 791.0609.

3.2.9. Synthesis of Bis(2-(3,5-difluorophenyl)benzoxazolato-N,C2′ )-pyridinato Iodoiridium(III)
[Ir(dfpbo)2(I)(py)] (7)

A flask was charged with 0.15 g (0.096 mmol) of D3, 0.11 g (1.44 mmol) of pyridine, and 30 mL of
toluene. The solution was stirred under N2 and warmed to 130 ◦C. After 3.5 h, the solution was cooled
to room temperature; the reaction mixture was purified by column chromatography on silica gel with
dichloromethane/n-hexane as the eluent. The yield of complex 7 was 0.1404 g (85%) of yellow crystals.
1H NMR (300 MHz, CDCl3, 298 K; δ (ppm)): 9.55 (d, J = 9.55 Hz, H), 7.75 (t, J = 7.8, 8.1 Hz, H), 7.64 (d,
J = 8.4 Hz, H), 7.47–7.59 (m, 3H), 7.33–7.44 (m, 2H), 7.12–7.24 (m, 6H), 6.49 (d, J = 8.4 Hz, H), 6.28–6.41
(m, 2H). 13C NMR (75 MHz, CDCl3, 298 K; δ (ppm)): 157.9, 150.1, 149.7, 140.9, 138.8, 137.7, 137.6,
133.3, 133.1, 132.9, 125.7, 124.4, 122.3, 118.9, 116.9, 112.1, 108.8, 107.3. Anal. Calcd for C31H17N3O2IF4Ir
(MW = 859.99): C, 43.30; H, 1.97; N, 4.88. Found: C, 43.53; H, 2.09; N, 4.59. MS (FAB; m/z): 859.0011.

3.2.10. Synthesis of Bis(2-(3,5-difluorophenyl)benzoxazolato-N,C2′ )-(4-methylpyridinato)
Iodoiridium(III) [Ir(dfpbo)2(I)(4mpy)] (8)

A flask was charged with 0.3 g (0.19 mmol) of D3, 0.27 g (2.87 mmol) of 4-methylpyridine,
and 40 mL of toluene. The solution was stirred under N2 and warmed to 130 ◦C. After 4 h, the solution
was cooled to room temperature; the reaction mixture was purified by column chromatography on
silica gel with dichloromethane/n-hexane as the eluent. The yield of complex 8 was 0.2871 g (87%)
of yellow crystals. 1H NMR (300 MHz, CDCl3, 298 K; δ (ppm)): 9.53–9.55 (m, 1H), 7.26–7.65 (m, 7H),
7.14–7.24 (m, 3H), 7.14 (S, 2H), 6.59–7.00 (m, 1H), 6.27–6.57 (m, 2H) 2.32 (S, 3H). 13C NMR (75 MHz,
CDCl3, 298 K; δ (ppm)): 176.8, 175.5, 170.4, 169.3, 167.0, 166.0, 161.1, 157.9, 156.2, 150.1, 149.6, 140.9,
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138.9, 133.0, 126.3, 126.0, 125.8, 124.0, 123.4, 122.3, 119.5, 119.0, 116.9, 111.9, 111.2, 109.3, 108.7, 108.5,
21.1. Anal. Calcd for C32H19N3O2IF4Ir (MW = 873.01): C, 43.98; H, 2.17; N, 5.04. Found: C, 43.92; H,
2.33; N, 4.91. MS (FAB; m/z): 873.0170.

3.2.11. Synthesis of Bis(2-(3,5-difluorophenyl)benzoxazolato-N,C2′ )-(4-cyanopyridinato)
Iodoiridium(III) [Ir(dfpbo)2(I)(4cnpy)] (9)

A flask was charged with 0.3 g (0.19 mmol) of D3, 0.3 g (2.87 mmol) of 4-cyanopyridine, and 40 mL
of toluene. The solution was stirred under N2 and warmed to 130 ◦C. After 3 h, the solution was
cooled to room temperature; the reaction mixture was purified by column chromatography on silica
gel with dichloromethane/n-hexane as the eluent. The yield of complex 9 was 0.2341 g (70%) of yellow
crystals. 1H NMR (300 MHz, CDCl3, 298 K; δ (ppm)): 9.51 (d, J = 8.1 Hz, 1H), 7.67 (d, J = 8.4 Hz, 1H),
7.40–7.61 (m, 6H), 7.33–7.36 (m, 1H), 7.18–7.21 (m, 4H), 6.28–6.48 (m, 3H). 13C NMR (75 MHz, CDCl3,
298 K; δ (ppm)): 176.9, 175.2, 170.1, 169.2, 166.9, 166.0, 161.3, 158.0, 150.1, 149.7, 140.6, 138.7, 132.9,
127.3, 126.4, 125.9, 125.7, 123.3, 122.8, 122.0, 121.8, 116.9, 116.2, 1125, 111.6, 109.4, 108.9, 53.5. Anal.
Calcd for C32H16N4O2IF4Ir (MW = 883.61): C, 43.45; H, 1.81; N, 6.33. Found: C, 42.39; H, 2.03; N, 5.77.
MS (FAB; m/z): 883.9958.

3.3. X-ray Absorption Near-Edge Spectroscopy (XANES)

XANES was measured on equipment from the National Synchrotron Radiation Research Center
(NSRRC, Hsinchu, Taiwan). A Si (111) double crystal monochromator was employed for energy
scanning (Horiba, Kyoto, Japan). Fluorescence data were obtained at room temperature using an
Ar-filled ionization chamber detector, where each sample was scanned three times for averaging.

3.4. Thermogravimetric Analysis (TGA)

The experiments were performed with a Perkin-Elmer thermal gravimetric analyzer (Perkin-Elmer,
Waltham, MA, USA). The samples were heated up under nitrogen at a pressure of 1 atm with a heating
rate of 10 ◦C min−1 and finished at 670 ◦C.

3.5. Electron Paramagnetic Resonance (EPR)

EPR was measured with a Bruker EMX-10/12 spectrometer (Bruker, Billerica, MA, USA).
The samples were dissolved in toluene. EPR settings: field, center field 3520.000 G, sweep width
100.000 G, resolution 2048 points; microwave frequency, 9.879 GHz; microwave power, 10.080 mW;
number of scans, 1.

3.6. Single Crystal X-ray Diffraction

All of the crystals were obtained from a mixed solution of dichloromethane and n-hexane.
The diffraction data for complexes 1–3 were collected on a Bruker SMART APEX CCD diffractometer
(Bruker, Billerica, MA, USA) with a graphite-monochromatized Mo Kα X-ray radiation (λ = 0.71073 Å)
at 110 K. All of the calculations for the structural determination were carried out using a SHELXS-97
package (Bruker). The positions of the heavy atoms, including the iridium atoms, were located by the
direct method. The remaining atoms were found in a series of alternating difference Fourier maps
and least-square refinement. The crystallographic data for all of the structures reported here have
been deposited in the Cambridge Data Centre as supplementary publication numbers 953386, 953387,
1511643, and 1511645–1511648, respectively.

3.7. Catalytic Activity of Catalysts

The reaction temperature was well controlled in a silicon oil bath under a constant temperature
(±1 ◦C). To evaluate the catalytic activity of complexes 1–9, the oxidation of toluene was done by
the following procedure. A flask was charged with 5 mL of toluene containing complexes 1–9 with
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various concentrations between 1 × 10−6 and 1 × 10−2 M. The reaction temperature was gradually
increased to 100 ◦C and kept constant during the oxidation experiments. During the reactions,
the concentrations of the reactant and product were monitored with an instrument of high performance
liquid chromatography (HPLC).

4. Conclusions

A series of cyclometalated iridium(III) complexes composed of various cyclometalating ligands
were synthesized and fully characterized. These complexes are quite stable, and can be stored in air at
room temperature for a year without obvious decomposition. All of the complexes exhibited activity
for the catalytic oxidation of toluene with a green process for the production of benzaldehyde without
requiring a base, halogen, or other environmentally-unfriendly materials [41–44].

A plausible catalytic cycle is proposed for this kind of reaction. The coordinatively unsaturated
structure [(CˆN)2Ir(Cl)] with a vacant site is an important structure for the catalytic system, and the
catalytic ability of the complexes are mainly governed by the characteristics of the CˆN ligand. By using
these complexes for the catalytic oxidation of benzyl alcohol, the maximum catalytic rate can reach
20.3 µM s−1, and the catalytic frequency can be up to 9940 h−1. The chemoselectivity for the catalytic
oxidation of benzyl alcohol to benzaldehyde is quite high (up to 97%), which is obviously affected by
the structure of bidentate cyclometalating ligands (CˆN).

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-6740/6/4/118/s1,
Basic information pertaining to the crystal parameters and structure refinement, and calculation detail (PDF),
Crystallographic data for 1, 2, 4–6, 8, 9 (TXT). Figures S1–S3: NMR, IR, MS spectra of D2 and that of the precipitate
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