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Abstract: The catalytic activity of nickel complexes in hydrophosphination involving secondary
phosphines is not a commonly studied transformation. Beyond a small number of stand-out examples,
many reports in the literature focus on the use of simple nickel salts. β-Diketiminates have been
proven to be incredibly effective ligands for catalysis using a range of metal centers. This synthetic
study investigates the catalytic ability of a Ni(II) β-diketiminate complex in the hydrophosphination
of alkenes and alkynes, with a serendipitous discovery of its ability to effect alkyne cyclotrimerization
and phosphine dehydrocoupling.
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1. Introduction

Transition metal catalyzed hydrophosphination is an economical route for atoms to access a
range of functionalized phosphines from alkenes and alkynes [1–3]. We have already demonstrated
the efficacy of β-diketiminate iron catalysts in hydrophosphination [4,5], and questioned whether,
given the ease with which these complexes can be synthesized, the reactivity could be extended
to other first row transition metal β-diketiminate complexes. Nickel is an ideal metal to choose
for this purpose: Holland has described an easy, scalable synthetic route to the N(SiMe3)2-ligated
complex (1) [6]. Accessing a nickel complex that is a low coordinate with a σ-bound co-ligand
should give high levels of reactivity via a σ-bond metathesis-type pathway. This hydrophosphination
catalyzed by nickel is surprisingly underexplored [7]. Arguably, the most elegant example came
from Togni’s group, where enantioselective hydrophosphination of methacrylonitrile was achieved
using [Ni(κ3-Pigiphos)(THF)](ClO4)2 [8]. The reaction provided the highest catalytic turnover
using HPtBu2 or HP(1-Ad)2 (where 1-Ad is 1-adamantyl). The authors subsequently explored
the effects of counterion, the full substrate scope and performed a detailed mechanistic study [9].
The earliest examples of nickel-catalyzed hydrophosphination came independently from Korolev
using a Ni(II) amine complex [10] and Pringle using [Ni{P(CH2OH)3}4] [11] to catalyze the reaction of
formaldehyde and PH3. Beletskaya has shown that 5 mol % [NiBr2(PPh2)2] can be used to effect the
hydrophosphination of a range of alkenyl–alkyl ethers using HPPh2 in 2 h at 80 ◦C [12]. Beletskaya has
also shown that the simplest nickel salts (i.e., [Ni{P(OEt)3}4], NiBr2 and Ni(acac)2) can be used
to hydrophosphinate styrenes [13] and terminal alkynes [14,15]. Taking phenyl acetylene as an
example, the authors showed that NiBr2 gives an 86:14 ratio of the Markovnikov:anti-Markovnikov
product (the latter forming the E isomer selectively), whereas a change to Ni(acac)2 generates 27:73
Markovnikov:anti-Markovnikov (the latter in a 67:33 mixture of E:Z). Interestingly, when HP(O)(OEt)2

was added to the Ni(acac)2-catalyzed reaction, a further shift in regioselectivity was observed and the
almost exclusive formation of the Markovnikov product was obtained. This was the first example of
Markovnikov-selective hydrophosphination. Gong and Song have undertaken the hydrophosphination
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of enones with diarylphosphines (isolating the phosphine oxide product) with a modest yield using a
Ni(II) pincer complex [16]. Beyond P(III) phosphines, Montchamp has formed vinyl-H-phosphinates
from alkynes and alkyl phosphinates using only 2–3 mol % NiCl2 [17]. Ananikov and Beletskaya have
undertaken the Markovnikov-selective phosphorylation of internal and terminal alkynes using a range
of phosphites in the presence of catalytic Ni(acac)2 and DPPE (1,2-bis(diphenylphosphino)ethane) [18].
In the interest of preparing products that would potentially be of use in coordination chemistry, the
P(III) phosphine, rather than phosphine oxide, was used in this catalysis study. Finally, it is worth
noting that catalyst-free, thermal hydrophosphination has been reported [19,20].

2. Results and Discussion

2.1. Reaction Optimization

The catalytic hydrophosphination reaction was optimized using 1, phenylacetylene and HPPh2

(Scheme 1, Table 1). When benzene was used as a solvent, dehydrocoupling was observed as a
competitive side reaction, therefore leading to a reduced yield of the Z anti-Markovnikov product,
3a (Entry 1). The dehydrocoupling product ((PPh2)2) was observed at a 19% spectroscopic yield and
9% E anti-Markovnikov product (2a) was also obtained. When the solvent was changed to CH2Cl2,
no reaction was observed, but a change in the MeCN resulted in an increased product yield (Table 1,
Entry 4). When the temperature was dropped to room temperature, a good yield of product was
obtained (Entry 5), but lowering the catalyst loading was detrimental to reactivity (Entry 6). A 1:1
ratio of phenylacetylene and HPPh2 still gave a good yield of anti-Markovnikov products with an
18 h reaction time (Entry 8). Increasing the ratio of phenylacetylene to phosphine increased the yield
further (Entry 9), but also allowed for good yield after only 4 h at room temperature (RT, Entry 7).
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3 5 CH2Cl2 80 °C No reaction 
4 5 CH3CN 80 °C 90 
5 5 CH3CN RT, 18 h 77  
6 2 CH3CN RT, 18 h 33 

7 b 5 CH3CN RT, 4 h 82 
8 c 5 CH3CN RT, 18 h 74 

9 b,d 5 CH3CN RT, 18 h 94 (81) {1:12 E:Z} 
Reaction conditions: phenylacetylene (0.6 mmol), HPPh2 (0.5 mmol), 1, solvent (300 μL). a Determined 
by 1H NMR using 1,2-DCE as an internal standard. b 1 mmol phenyl acetylene. c 0.5 mmol 
phenylacetylene. d (Isolated yield, %).  

  

Scheme 1. Hydrophosphination optimization process using phenylacetylene, HPPh2 and Ni(II)
pre-catalyst 1.

Table 1. Optimization of hydrophosphination.

Entry 1 (mol %) Solvent Conditions Spectroscopic Yield 2a + 3a (%) a

1 5 C6H6 80 ◦C 53
2 5 C6H6 RT 5
3 5 CH2Cl2 80 ◦C No reaction
4 5 CH3CN 80 ◦C 90
5 5 CH3CN RT, 18 h 77
6 2 CH3CN RT, 18 h 33

7 b 5 CH3CN RT, 4 h 82
8 c 5 CH3CN RT, 18 h 74

9 b,d 5 CH3CN RT, 18 h 94 (81) {1:12 E:Z}

Reaction conditions: phenylacetylene (0.6 mmol), HPPh2 (0.5 mmol), 1, solvent (300 µL). a Determined by 1H NMR
using 1,2-DCE as an internal standard. b 1 mmol phenyl acetylene. c 0.5 mmol phenylacetylene. d (Isolated yield, %).

2.2. Substrate Scope

With these optimized conditions in hand (Table 1, Entry 9), the substrate scope was investigated
using a range of sp and sp2 systems (Table 2).
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Table 2. Hydrophosphination substrate scope.

Entry Olefin Product Ratio E:Z
(2:3)

Spectroscopic
Yield, % a

(Isolated Yield, %)

1
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Reaction conditions: alkyne/alkene (1 mmol), HPPh2 (0.5 mmol), 1 (5 mol %), MeCN (300 µL), RT, 18 h. a Yield
derived from the limiting reagent (0.5 mmol HPPh2) and determined by 1H NMR using 0.5 mmol 1,2-DCE as an
internal standard. b 100 ◦C, 24 h. c 0.5 mmol acetylene.

In terms of the substrate scope for this reaction, arylacetylenes were tolerated and underwent
hydrophosphination readily at room temperature. It is interesting to note the change in selectivity
when the electronics of the acetylene were varied (compare entries 1, 2 and 3). Very high Z selectivity
was obtained with phenylacetylene, but when 4-fluorophenylacetylene was employed, the E product
dominated. Unfortunately, lower yields of products were also obtained with these electronically
diverse substrates. The same levels of selectivity that we obtained using the Fe congener (95:5 Z:E) [5]
was not achieved with this Ni system, nor was the same solvent-switching observed (refer to Table 1,
Entry 3). The reaction of phenylacetylene with phenylphosphine produced a complex mixture of
products, presumably including the products from the addition of one phosphine across two triple
bonds and the addition of more than one phosphine to a triple bond. When trimethylsilylacetylene
was employed, complete uptake of the starting material was observed and an intractable mixture
of products was obtained (Entry 5); this was in vast contrast to the selective reactivity we observed
using the iron analogue of the pre-catalyst [5] (albeit with a CH2TMS co-ligand, as opposed to
N(SiMe3)2). No reaction was observed when hepta-1,6-diyne and diphenylacetylene were used
(Entries 6 and 7). A reaction was not observed when 1-heptyne was used. A reaction with different
activated alkenes resulted in the anti-Markovnikov product (Entries 8 to 13). An intractable mixture of
products was obtained when cyclohexanone was used as a substrate. The mild reaction conditions
required for styrene hydrophosphination in this study were in vast contrast to the forcing conditions
needed when we employed our iron β-diketiminate system (70 ◦C, 24 h) [5]. The fact that more than
one alkene was observed for the reaction of acrylonitrile and n-butylacrylate hints at the reaction
mechanism [21]. The fact that telomerization was observed, particularly with n-butylacrylate, where
three acrylate moieties were observed in one of the products (which was isolable, 4f”), suggests that a
Michael-type reaction was taking place [22,23]. A postulated catalytic cycle was shown (Scheme 2),
which proceeds via a three-coordinate Ni(II) terminal-phosphido intermediate (5), akin to Stephan’s
report of Ni(I) β-diketiminate terminal phosphine complexes [24]. The 5 then undertook a Michael
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attack of the alkene, forming a zwitterion (6), which can undertake telomerization to produce, for
example, 4f’ and 4f”. However, the dominant process would be a protonolysis event, which liberates
the hydrophosphination product (e.g., 4f) and regenerates Ni–phosphido. It is presumed that the
process was completely redox neutral due to the nature of the pre-catalyst; protonolysis forming the
active catalysis through the loss of HN(SiMe3)2 should be favored simply because HN(SiMe3)2 is a
good leaving group. Accessing the higher oxidation state Ni via the oxidative addition of HPPh2 to
1 is unlikely and steric congestion around the Ni-center should also preclude higher coordination
numbers. With respect to the hydrophosphination of alkynes, we cannot rule out catalyst activation by
the alkyne to release SiMe4 and form an on-cycle nickel–alkynyl intermediate that is then attacked by
HPPh2 [5]. However, this should then result in the formation of a nickel–hydride intermediate that
would necessitate the loss of H2 to regenerate the nickel–alkynyl complex. There is no evidence of
gas being evolved during the reaction and thus this particular catalytic cycle seems unlikely. In our
previous studies of alkyne hydrophosphination we found that an iron–alkynyl complex was not a
good catalyst [5].
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When investigating the hydrophosphination reactivity of methylpropiolate it was interesting
to note that a highly exothermic reaction took place. NMR spectroscopic analysis showed that
the HPPh2 remained unreacted, but there was complete loss of the alkyne. Isolation of the new
organic product revealed that cyclotrimerization had taken place, with high levels of selectivity
for the 1,2,4-product (7a, Table 3, Entry 1). We did not observe cyclotrimerization with our iron
β-diketiminate congeners. In terms of the nickel-catalyzed cyclotrimerization of alkynes, there
are limited examples in the literature. Since the earliest reports from Reppe [25–27], Stuhl has
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described a Ni(II) pre-catalyst ((K·18-crown-6)2[(η2-PhCCPh)Ni(CN)2]) that produces a 40% yield of
1,2,4-triphenylbenzene at room temperature when phenylacetylene is added in a 300 eq. excess [28].
Eisch and co-workers have carried out a series of stoichiometric and catalytic studies that focus on the
use of nickelole complexes, which are themselves postulated to be intermediates in nickel catalyzed
cyclotrimerization reactions. For example, catalytic reactions of less than 1 mol % nickelole complex
with diphenylacetylene in refluxing toluene produced 78% hexaphenylbenzene [29]. Eisch followed
up this original study with a wide-ranging investigation into cyclotrimerization using a range of
nickel species [30]. Bennett investigated Ni(0)–benzyne complexes at the stoichiometric level, but also
provided catalytic cyclotrimerization results with a highly reactive 14-electron nickel species [31,32].
More recently, Lord and Groysman undertook a detailed study into cyclotrimerization catalyzed by
a dinuclear iminopyridine complex. Catalysis proceeded for a range of terminal alkynes including
ethyl propiolate, phenylacetylene and methyl propargyl ether. The former two reagents showed good
conversion at 1 to 5 mol % catalyst loading at room temperature or 50 ◦C. There was also a moderate
preference for the 1,2,4-regioisomer. Somewhat lower reactivity was observed in the ether substrate
where cyclotetraenes were also formed [33]. Beyond discrete homogeneous Ni catalysts, Blümel has
described silica supported complexes, which are efficient for cyclotrimerisation [34].

Table 3. Cyclotrimerization and the dehydrocoupling substrate scope.

Entry Olefin Product Ratio 1,2,4:1,3,5 Spectroscopic Yield, % a

(Isolated Yield, %)

1
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without the addition of phosphine or alkyne to the respective reactions. 

For the spectroscopic yield, the reaction solutions were exposed to air and 45 μL of 1,2-
dichloroethane was added as an integration standard. All reaction products were compared to 
isolated compounds in the literature. Products were then isolated by silica gel column 
chromatography (see individual products for column conditions). It is important to note that the 
products oxidize slowly over time. 

3.2. Analysis Data for Isolated Products 

2a/3a (Isolated using 5% EtOAc/pentane. White solid, 116 mg, 81%): 1H NMR (300 MHz, 298 K, 
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−15.0. Data comparable to that reported elsewhere [41]. 

4b (Isolated using 5% EtOAc/pentane, Rf = 0.24. white solid, 124 mg, 68%): 1H NMR (300 MHz, 298 K, 
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NMR (121.5 MHz, 298 K, CDCl3) δ −14.9. Data comparable to that reported elsewhere [41]. 
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8 - 56

Reaction conditions: alkyne or HPPh2 (1 mmol), 1 (5 mol %), MeCN (500 µL), RT, 1 h. a Determined by 1H NMR
using 1,2-DCE as an internal standard. b 80 ◦C, 18 h.

In the case of pre-catalyst 1, good reactivity and selectivity was also observed with ethylpropiolate
(Table 3, Entry 2), whereas heating to 80 ◦C was necessary to convert phenylacetylene. It should be
noted that when other phosphines such as HPCy2 and H2PCy were reacted with phenylacetylene,
only the cyclotrimerized product was observed.

Mechanistically, a nickelole intermediate cannot be ruled out. However, if the β-diketiminate
remains as an anionic ligand, this would mean the nickel center is in the +3 oxidation state.
Although not impossible [35,36], the non-innocent nature of the ligand [37] or the possibility of
hemi-lability or the role of non-ligated Ni(0) cannot be ignored, and this aspect of reactivity, along the
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wider area of first row transition metal catalyzed cyclotrimerization, is undergoing further investigation
in our laboratory.

The reaction of HPPh2 with catalytic 1 at 80 ◦C, without any olefin added, produced the
dehydrocoupled product 8 in good yield. When dehydrocoupling was attempted at room temperature,
only a trace amount of product was obtained, but a new peak at 8.8 ppm was observed in the 31P
NMR. This is postulated to be the three-coordinate nickel(II)–phosphido compound, because the
chemical shift observed was consistent with other nickel(II) phosphides reported in the literature [38].
Unfortunately, this phosphido intermediate could not be crystallized or fully characterized.

3. Materials and Methods

3.1. General Method for Hydrophosphination

1 (1.8 mg, 5 mol %) was weighed into a J-Young NMR tube. CD3CN (300 µL) was added to this,
followed by alkene/alkyne (1 mmol) and diphenylphosphine (87 µL, 0.5 mmol, 1 eq.). The reaction
was monitored by 1H and 31P NMR (Bruker (Avance), Coventry, UK). The same procedure was
followed for cyclotrimerization and dehydrocoupling, but in the absence of phosphine and alkyne,
respectively. The same procedure was followed for cyclotrimerization and dehydrocoupling, but
without the addition of phosphine or alkyne to the respective reactions.

For the spectroscopic yield, the reaction solutions were exposed to air and 45 µL of
1,2-dichloroethane was added as an integration standard. All reaction products were compared to
isolated compounds in the literature. Products were then isolated by silica gel column chromatography
(see individual products for column conditions). It is important to note that the products oxidize
slowly over time.

3.2. Analysis Data for Isolated Products

2a/3a (Isolated using 5% EtOAc/pentane. White solid, 116 mg, 81%): 1H NMR (300 MHz, 298 K,
CDCl3) δ 7.37–6.98 (m, 2a + 3a), 6.80 (d, J = 10.7 Hz, C=CH, 2a), 2.39–2.33 (dd, J = 12.6, 2.8 Hz, C=CH,
3a); 31P{1H} NMR (121.5 MHz, 298 K, CDCl3) δ−10.6 (2a), −23.9 (3a). Data comparable to that reported
elsewhere [39,40].

4a (Isolated using 5% EtOAc/pentane, Rf = 0.30. White solid, 133 mg, 92%): 1H NMR (300 MHz, 298 K,
CDCl3) δ 7.47–7.15 (m, 14H), 2.73–2.67 (m, 2H), 2.39–2.33 (m, 2H); 13C{1H} NMR (75 MHz, 298 K,
CDCl3) δ 142.7 (d, J = 12.7 Hz), 138.6 (d, J = 19.2 Hz), 132.8 (d, J = 13.2 Hz), 128.9, 128.6 (d, J = 6.2 Hz),
128.2, 128.0, 126.1, 32.3 (d, J = 3.3 Hz), 30.2 (d, J = 7.7 Hz); 31P{1H} NMR (121.5 MHz, 298 K, CDCl3)
δ −15.0. Data comparable to that reported elsewhere [41].

4b (Isolated using 5% EtOAc/pentane, Rf = 0.24. white solid, 124 mg, 68%): 1H NMR (300 MHz, 298 K,
CDCl3) δ 7.70–7.33 (m, 19H), 2.90–2.85 (m, 2H), 2.55–2.50 (m, 2H); 13C{1H} NMR (75 MHz, 298 K,
CDCl3) δ 141.7 (d, J = 13.0 Hz), 141.1, 139.0, 138.5 (d, J = 12.4 Hz), 132.7 (d, J = 18.6 Hz), 128.7, 128.62,
128.56, 128.50 (d, J = 6.5 Hz), 127.2, 127.03, 126.98, 31.9 (d, J = 17.7 Hz), 30.2 (d, J = 12.4 Hz); 31P{1H}
NMR (121.5 MHz, 298 K, CDCl3) δ −14.9. Data comparable to that reported elsewhere [41].

4c (Isolated using 5% EtOAc/pentane, Rf = 0.26. White solid, 85 mg, 49%): 1H NMR (300 MHz, 298 K,
CDCl3) δ 7.54–7.42 (m, 4H), 7.41–7.39 (m, 6H), 6.41 (d, 2H, J = 2.3 Hz), 6.37 (t, 1H, J = 2.3 Hz), 3.81
(s, 6H) 2.78–2.70 (m, 2H) 2.47–2.41 (m, 2H); 13C{1H} NMR (75 MHz, 298 K, CDCl3) δ 160.9, 145.1
(d, J = 13.4 Hz), 138.5, 133.0 (d, J = 18.6 Hz), 128.8, 128.6 (d, J = 6.5 Hz), 106.3, 98.0, 55.3, 32.6 (d,
J = 18.0 Hz), 30.0 (d, J = 12.4 Hz); 31P{1H} NMR (121.5 MHz, 298 K, CDCl3) δ −14.9. Data comparable
to that reported elsewhere [41].

4e (Isolated using 20% EtOAc/pentane, Rf = 0.74. Colourless oil, 62 mg, 52%): 1H NMR (300 MHz,
298 K, CDCl3) δ 7.46–7.38 (m, 10H), 2.42–2.37 (m, 4H); 13C{1H} NMR (75 MHz, 298 K, CDCl3) δ 136.3 (d,
J = 12.4 Hz), 132.6 (d, J = 19.2 Hz), 129.3, 128.8 (d, J = 6.8 Hz), 119.4 (d, J = 14.6 Hz), 24.1 (d, J = 15.5 Hz),
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14.1 (d, J = 23.9 Hz); 31P{1H} NMR (121.5 MHz, 298 K, CDCl3) δ −15.2. HRMS (EI) 239.0864 calc.;
239.0861 found. Data comparable to that reported elsewhere [23].

4e’ (Isolated using 20% EtOAc/pentane, Rf = 0.48. Colourless oil, 29 mg, 20%): 1H NMR (300 MHz,
298 K, CDCl3) δ 7.48–7.38 (m, 10H), 2.76–2.64 (m, 1H), 2.62–2.45 (m, 3H), 2.36–2.29 (m, 1H), 2.25–2.13
(m, 1H), 2.13–1.98 (m, 1H); 13C{1H} NMR (75 MHz, 298 K, CDCl3) δ 136.2 (d, J = 7.1 Hz), 136.1 (d,
J = 7.1 Hz), 132.8 (d, J = 2.2 Hz), 132.6 (d, J = 2.2 Hz), 129.5, 128.9 (d, J = 7.1 Hz), 119.9 (d, J = 6.5 Hz),
117.7, 31.3 (d, J = 17.4 Hz), 29.0 (d, J = 9.9 Hz), 28.4 (d, J = 21.1 Hz), 15.2; 31P{1H} NMR (121.5 MHz,
298 K, CDCl3) δ −20.3. HRMS (EI) 292.1129 calc.; 292.1131 found.

4f (Isolated using 5% EtOAc/pentane, Rf = 0.46. White solid, 67 mg, 43%): 1H NMR (300 MHz, 298 K,
CDCl3) δ 7.49–7.46 (m, 4H), 7.37–7.35 (m, 6H), 4.08 (t, 2H, J = 6.7 Hz), 2.44–2.39 (m, 4H), 1.61 (app. tt,
2H, J = 15.5, 6.7 Hz), 1.37 (app. tq, 2H, J = 15.5, 7.4 Hz), 0.95 (t, 3H, J = 7.4 Hz); 13C{1H} NMR (75 MHz,
298 K, CDCl3) δ 173.3 (d, J = 15.2 Hz), 137.8 (d, J = 18.6 Hz), 132.8 (d, J = 18.6 Hz), 128.9, 128.6 (d,
J = 6.8 Hz), 64.6, 30.9, 30.7, 23.0 (d, J = 11.5 Hz), 19.2, 13.8; 31P{1H} NMR (121.5 MHz, 298 K, CDCl3)
δ −14.9. Data comparable to that reported elsewhere [41].

4f’ (Isolated using 5% EtOAc/pentane, Rf = 0.26. White solid, 38 mg, 17%): 1H NMR (500 MHz, 298 K,
CDCl3) δ 7.45–7.41 (m, 4H), 7.34–7.33 (m, 6H), 4.08–3.98 (m, 4H), 2.49–2.44 (m, 2H), 2.37–2.24 (m, 2H),
2.21–2.16 (m, 1H), 2.06–2.01 (m, 2H), 1.58 (tt, 4H, J = 14.5, 7.3 Hz), 1.36 (dq, 4H, J = 15.1, 7.4 Hz), 0.94
(m, 6H); 13C{1H} NMR (63 MHz, 298 K, CDCl3) δ 174.8 (d, J = 4.6 Hz), 172.7, 138.1 (d, J = 13.3 Hz),
137.9 (d, J = 12.9 Hz), 132.9 (d, J = 8.7 Hz), 132.6 (d, J = 8.3 Hz), 128.7 (d, J = 6.0 Hz), 128.5 (d, J = 3.2 Hz),
128.4 (d, J = 3.2 Hz), 64.5, 64.3, 42.2 (d, J = 17.0 Hz), 31.8, 31.2 (d, J = 14.3 Hz), 30.6 (d, J = 1.4 Hz), 28.6
(d, J = 10.6 Hz), 19.1 (d, J = 3.2 Hz), 13.7; 31P{1H} NMR (202 MHz, 298 K, CDCl3) δ −20.0. HRMS (EI)
442.2273 calc.; 442.2278 found.

4f” (Isolated using 5% EtOAc/pentane, Rf = 0.15. White solid, 10 mg, 4%): 1H NMR (500 MHz, 298 K,
CDCl3) δ 7.49–7.39 (m, 4H), 7.34–7.33 (m, 6H), 4.04–3.94 (m, 6H), 2.48–2.35 (m, 3H), 2.30–2.20 (m, 3H),
2.16–2.09 (m, 1H), 1.87–1.75 (m, 3H), 1.62–1.54 (m, 6H), 1.39–1.32 (m, 6H), 0.95–0.89 (m, 9H); 31P{1H}
NMR (202 MHz, 298 K, CDCl3) δ −20.5. HRMS (EI) 570.3111 calc.; 570.3118 found.

7a (Isolated using 20% EtOAc/pentane. White solid, 166 mg, 66%): 1H NMR (300 MHz, 298 K, CDCl3)
δ 8.41 (d, 1H, J = 1.5 Hz), 8.19 (dd, 1H, J = 8.1, 1.5 Hz), 7.74 (d, 1H, J = 8.1 Hz), 3.95 (s, 3H), 3.92 (s, 6H).
Data comparable to that reported elsewhere [42].

7c (Isolated using 20% EtOAc/pentane. White solid, 125 mg, 41%): 1H NMR (300 MHz, 298 K, CDCl3)
δ 7.90–7.10 (m, 18H); 13C{1H} NMR (63 MHz, 298 K, CDCl3) δ 142.1, 141.6, 141.1, 139.3, 130.6, 130.3,
129.2, 129.1, 128.2, 127.8, 127.3, 127.1, 126.7, 125.8. Data comparable to that reported elsewhere [43].

4. Conclusions

In summary, the hydrophosphination of a range of alkenes and alkynes was described using
a three-coordinate Ni(II) β-diketiminate complex. The Ni complex is a proficient catalyst but, in
comparison to the previously reported Fe(II) β-diketiminate pre-catalyst, this group 10 congener
does not show the same levels of reaction selectivity. It appears that Fe is a more competent catalyst,
however, the effect of the co-ligand (N(SiMe3)2 for Ni and CH2TMS for Fe) is yet to be determined.
The Ni catalyst is effective for cyclotrimerization and this, along with other potential catalytic reactions,
warrant investigation in more detail.
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