Supplementary information

Anti-proliferative and anti-migration activity of arene-ruthenium(II) complexes with azole therapeutic agents

Legna Colina-Vegas, Katia M. de Oliveira, Beatriz N. Cunha, Marcia Cominetti, Maribel Navarro^{*}, Alzir Azevedo Batista^{*}

Table of contents

Fig S1. Spectrofluorometric titration spectra of HSA with the ruthenium compounds **2-4**.

Fig S2. ¹H NMR spectrum of guanosine and complex **3** at different times (only resonances of H_8 , NH and NH₂ are assignments).

Fig S3. Hoechst 33258 (H33258) displacement assay for metal complexes 2-4.

Fig S4. ${}^{31}P{}^{1}H{}$ NMR spectrum in the mixture 70:30 DMSO: Culture medium (DMEM) of complex **3** at different times.

Equation description:

Classical Stern–Volmer equation (1) was used to determine the Stern–Volmer quenching constant (Ksv):

$$F_0/F = 1 + Kq\tau_0[Q] = 1 + Ksv[Q]$$
 (1)

where F_0 and F are the fluorescence intensities in the absence and presence of quencher, respectively, [Q] is the quencher concentration.

Binding constant (Kb) and number of binding sites (n) were determined by plotting the double log graph of the fluorescence data using the equation (2):

 $\log [(F_0-F)/F] = \log Kb + n\log[Q]$ (2)

The thermodynamic parameters were calculated from equations (3) and (4):

$$\ln (K_2/K_1) = [(1/T_1) - (1/T_2)]\Delta H/R (3)$$

where K_1 and K_2 are the binding constants at temperatures T_1 and T_2 , respectively, and enthalpy (ΔH) and R is the gas constant.

Additionally, the change in free energy (ΔG) and entropy (ΔS) were calculated from the following equation:

$$\Delta G = -RT \ln K = \Delta H - T\Delta S (4)$$

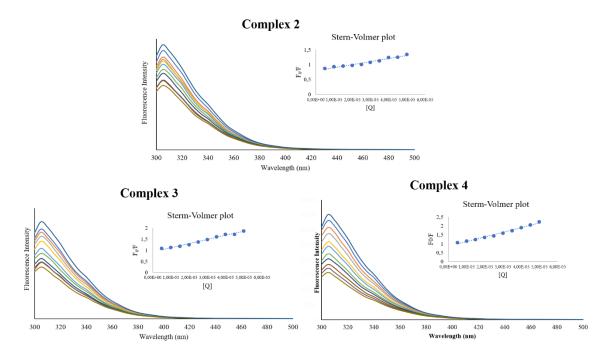


Fig S1. Spectrofluorometric titration spectra of HSA with the ruthenium compounds 2-4

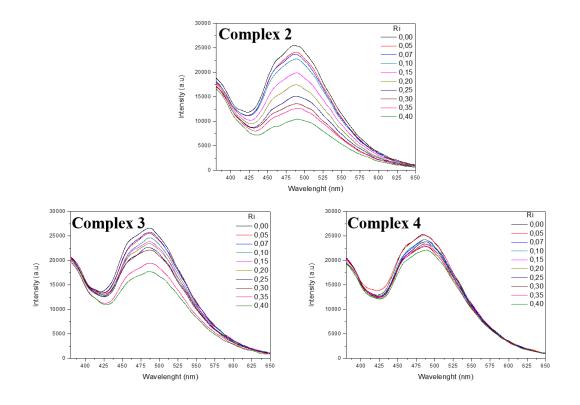


Fig S2. Hoechst 33258 (H33258) displacement assay for metal complexes 2-4

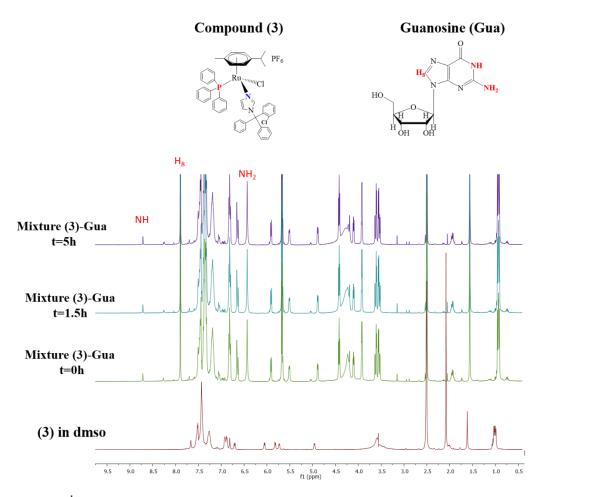


Fig S3. ¹H NMR spectrum of guanosine and complex **3** at different times (only resonances of H_8 , NH and NH₂ are assignments)

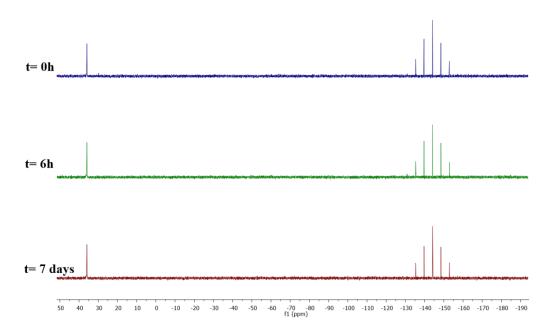


Fig S4. ${}^{31}P{}^{1}H$ NMR spectrum in the mixture 70:30 DMSO:Culture medium (DMEM) of complex **3** at different times