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Abstract: Magnetic resonance imaging (MRI) is a powerful non-invasive diagnostic tool that can
provide important insights for medical treatment monitoring and optimization. Photodynamic
therapy (PDT), a minimally invasive treatment for various types of tumors, is drawing increasing
interest thanks to its temporal and spatial selectivity. The combination of MRI and PDT offers real-time
monitoring of treatment and can give significant information for drug-uptake and light-delivery
parameters optimization. In this review we will give an overview of molecular theranostic agents
that have been designed for their potential application in MRI and PDT.
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1. Introduction to the Theranostic Approach

Theranostics is an innovative medical treatment research field which incorporates the functions of
therapy and diagnostics by imaging and paves a way for personalized medicine [1–4]. The emergence
of this research field has been made possible by tremendous progress in the development of instruments
for imaging and treatment. Theranostic agents combine an imaging agent and a therapeutic agent
within the same scaffold, both agents being thus delivered at the same time and with the same
biodistribution. They give important information for pre-treatment planning, therapy monitoring, and
treatment outcome assessment, and, moreover, for the development of new therapeutic agents. Various
imaging and therapeutic modalities may be combined, with different assembly strategies, to generate
theranostic agents. Here, we review molecular theranostic agents combining magnetic resonance
imaging (MRI) and photodynamic therapy (PDT) applications. These multifunctional molecules can
be described as low and medium molecular weight compounds that do not self-assemble into bigger
systems. Theranostic agents based on nanoparticles belong to another promising and active field and
have recently been reviewed [5–7].

1.1. PDT Treatment: Strengths and Limitations

PDT is a light-activated treatment modality and has been clinically approved in the treatment
of dermatological and ocular disorders and of various cancers. It is a localized treatment which has
minimal invasiveness and side effects [8–10]. PDT requires the administration of a drug called a
photosensitizer (PS) that is usually a porphyrin-type compound (Scheme 1). Light of an appropriate
wavelength is then applied on the affected tissue and is absorbed by the photosensitizer. The latter is
thus activated and reacts with surrounding oxygen and/or with surrounding molecules to generate
cytotoxic species, which induce cellular damage, vascular occlusion, and/or antitumor immune
response [11].
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Most clinical PSs are activated with excitation wavelengths between 630 and 690 nm, which have
limited tissue penetration depth mainly due to light scattering and absorption by endogenous
molecules. The weak tissue penetration of light is a major concern for PDT development. Therefore,
PSs that can be activated in the optical transparency window of tissues (from 700 nm up to 1000 nm with
a two-photon absorption process) are very appealing [8]. In addition to the wavelength range, strong
absorption capacity (characterized by a high absorption coefficient value ε for one-photon absorption
and by a high two-photon absorption cross-section value σ2 for two-photon absorption) increases
the production of cytotoxic species and enhances the treatment efficacy. New PSs are designed and
studied in order to respond to these criteria. Two porphyrin-based photosensitizers (Scheme 1c,d), with
strong one-photon absorption in the near infrared (NIR), have recently been designed. Padeliporfin
(Tookad®WST11), with an excitation wavelength at 763 nm (ε = 100,000 M−1·cm−1), has been approved
for the treatment of prostate cancer [12]. Redaporfin (LUZ11), which can be activated at 749 nm
(ε = 140,000 M−1·cm−1) has been approved for biliary tract cancer and is also progressing to other
clinical trials [13,14].
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1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate) or linear (GdDTPA with DTPA = 
diethylenetriamine pentaacetate) structures (Scheme 2). The efficiency of a contrast agent is measured 
by its relaxivity, which corresponds to the ability to decrease the relaxation time T1 of water protons 
in the presence of a paramagnetic gadolinium complex at a concentration of 1 mM.  

PDT-induced changes in the tumoral area alter proton behaviors and these changes can be 
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(c) padeliporfin (Tookad®WST11), and (d) redaporfin (LUZ11).

Some PSs are able to preferentially accumulate in tumor cells. However, the mechanisms of
this behavior are not fully understood and tumor selectivity needs to be improved. There is also a
request for identifying precisely the time period of maximum drug accumulation in the tumor. Light
irradiation during this time period should generate many reactive oxygen species and lead to best PDT
efficiency [5]. Drug accumulation and light delivery are specific to each PS and to tumor characteristics.
Thus, the optimization of treatment planning is difficult to achieve. With these limitations, it has become
evident that there is a need for treatment guidance via imaging that can pilot pre- and post-treatment
evaluation [6,15–17].

1.2. MRI Guidance of PDT

MRI is a non-invasive visualization tool of soft tissues with both high spatial and time
resolution [18]. It has already proven to be powerful for therapy monitoring in oncology and
for drug development [19]. The magnetic resonance (MR) signal contrast arises from differences
in proton properties such as relaxation times (T1 and T2) or the density of water molecules [20].
These properties are acquired using appropriate MR pulse sequences; they highlight different proton
behaviors and allow tissue discrimination. In some cases, the contrast between healthy and diseased
tissue is weak and the use of a contrast agent is necessary. Clinically used contrast agents are
small gadolinium-based complexes containing octadentate chelators based on macrocyclic (GdDOTA
with DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate) or linear (GdDTPA with DTPA =
diethylenetriamine pentaacetate) structures (Scheme 2). The efficiency of a contrast agent is measured
by its relaxivity, which corresponds to the ability to decrease the relaxation time T1 of water protons in
the presence of a paramagnetic gadolinium complex at a concentration of 1 mM.

PDT-induced changes in the tumoral area alter proton behaviors and these changes can be
strongly emphasized by the presence of a contrast agent. The image modification can supply essential
information in order to estimate the PDT effect. It is then possible to establish relations between this
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effect and the drug concentration and light application. The drug and light parameters can then be
finely tuned in order to increase the efficiency of the treatment [21].
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MRI-guided PDT can be realized with repeated contrast agent injection at different time points
after PS injection. Depending on the choice of MRI methodology, PDT response can be followed at
different time points after the treatment and give different information. Contrast-enhanced MRI has
been shown to be very sensitive to PDT-induced vascular occlusion [22,23]. It has been used for the
assessment of tumor response to PDT several days and even shortly after treatment [24–26].

The optimization of PDT treatment can be further improved using theranostic agents. With this
approach, both the imaging and the therapeutic agents have the same biodistribution and
bioelimination behaviors. Gadolinium-based contrast agents linked to a porphyrin-based PS are
expected to confer increased tumoral residence time; they thus provide a longer time window to
monitor the treatment. They also have increased relaxivities compared to classical MRI contrast agents.
Therefore, they can be administered at much lower doses than current clinical contrast agents and offer
enhanced safety. Different approaches to developing nanoparticules for MRI and PDT applications
have attracted increasing attention during the past decade [5–7,27]. In spite of the efficient targeting
and high payload of some nanotheranostic agents, clinical translation has not yet been possible [6,7,27].
Molecular theranostic agents for PDT and MRI have been developed to a lesser extent, particularly due
to their more elaborated and time-consuming synthesis. Nevertheless, these small or medium-sized
molecular agents have their own advantages, such as high reproducibility, stability, purity, and good
biocompatibility, and this approach continues to draw attention for cancer treatment [28].

2. Porphyrin-Gd-Complexes Conjugates with Potential MRI and PDT Applications

Several porphyrin analogues have been associated with Gd(III) complexes, and their ability to
accumulate in cancer cells and/or their relaxivity have been studied. Although their ability to behave
as PDT PSs has not been explored, these compounds are potential bifunctional compounds for MRI
and PDT applications. At an early stage, two compounds, gadophrin-2 and gadophrin-3 (composed
respectively of a free-base and a copper(II) porphyrin linked to two GdDTPA complexes) have been
investigated. Studies in mice have shown comparable pharmacological properties and these PSs have
been found to accumulate in necrotic areas [29–33]. A 5,10,15,20-tetraphenylporphyrin (TPP) core
has been linked to one and four GdDTPA complexes through amide bond formation [34]. Increased
relaxivity values have been found. Free-base and copper(II) porphyrins linked to one, two, and four
GdDO3A-amide complexes have been developed for potential multimodal MRI/positron emission
tomography (PET) applications. Preliminary relaxivity studies have indicated promising contrast
enhancement [35,36]. Zinc(II) and copper(II) porphyrazine have been linked to two GdDO3A-amide
complexes. The copper-containing compound showed the highest relaxivity and very good cellular
internalization, and tumor-bearing mice images indicated necrotic localization [37].
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3. Molecular Theranostic Agents with Combined PDT and MRI Studies

In 1993, a pioneering study was realized with two bifunctional compounds containing porphyrin
derivatives linked to one or two GdDTPA complexes [38]. The compound TPP-Gd2(DTPA)4, consisting
of a tetra-p-aminophenylporphyrin core coupled through amide bonds to four DTPA ligands, and two
of which being metalated by Gd(III) ions, was the most promising. The relaxivity value per Gd(III)
was found to be twice as high as that of GdDTPA at 20 MHz and the substantial image contrast
enhancement of the tumor compared to adjacent normal tissue in tumor-bearing mice evidenced the
affinity of the compound for tumor tissue. The photoinduced toxicity studies, realized with irradiation
using a multiwavelength laser beam at 488 and 514 nm on two cell lines (HT29 and L1210), showed
phototoxicities comparable to that induced by a commercial hematoporphyrin derivative (HPD) PS.
This porphyrin-Gd complex conjugate was the first prototype built for MRI and PDT.

More than a decade later, Pandey and collaborators extensively investigated several theranostic
agents that combine diagnostic imaging (MR and fluorescence imaging) and PDT treatment properties.
The agents investigated are based on different photosensitizers (pyropheophorbide analogues with
different lipophilic/hydrophilic chains) linked to one, two, three, or six GdDTPA complexes [39–42].
In these compounds, the linkage is realized through the C-functionalization of the diethylenetriamine
backbone and the stability of the GdDTPA core is preserved by the five anionic carboxylate groups.
The theranostic compounds containing one and two Gd complexes required liposomal formulation to
resolve the poor water-solubility problem. With the presence of three and six GdDTPA units, the water
solubility improved. The compound HPPH-3GdDTPA, which bears three GdDTPA complexes
(Figure 1a) was found to be the best candidate with respect to its imaging and treatment results.
It showed remarkable MR contrast enhancement of tumors in mice 24 h after injection, with a 10-fold
lower dose than the clinical dose used with Magnevist and preferential uptake in tumors compared to
muscle (Figure 1b). This important result shows that, with the presence of three Gd(III) complexes
appended to one photosensitizer, it is possible to perform MR imaging and PDT treatment at the same
low concentration. Fluorescence imaging, resulting from the light emission of the HPPH derivative,
also showed maximum intensity 24 h after injection. Finally, this compound also showed an efficient
PDT effect after one instance of irradiation at 665 nm (70 J/cm2) 24 h after injection.
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Figure 1. (a) Chemical structure of the theranostic compound HPPH-3GdDTPA; (b) magnetic resonance
(MR) images of a rat (Fischer) bearing Ward colon tumors before (left) and 24 h after (right) injection of
HPPH–3-GdDTPA conjugate (dose: 10 µmol/kg). Adapted with permission from [41]. Copyright 2010
American Chemical Society.

Phthalocyanine and porphyrazine are tetrapyrrolic compounds known for their intense electronic
absorption in the NIR region; they require addition of peripheric substitution groups to avoid
aggregation and favor water solubilization. They have been linked to GdDO3A-amide complexes that
are GdDOTA derivatives where one carboxylate arm is replaced by an acetamide group. The amide-
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bond formation allows rapid access to Gd(III) complex functionalization but it strongly induces reduced
thermodynamic stability while maintaining the same kinetic inertness as the GdDOTA complex [43].
The phthalocyanine-based PS has been linked to one particular GdDO3A-amide complex, ZnPht-1Gd
(Figure 2a) [44]. This complex has exhibited low relaxivity (1.43 mM−1·s−1 at 128 MHz) and the
authors have proposed that this weak value could be due to the presence of the amide function
on the arm that could block water access to the metallic center. The compound has shown good
ability to produce cytotoxic singlet oxygen under irradiation with a quantum yield of 0.67 (in DMSO).
The porphyrazine-based PS has been linked to one, four, and eight GdDO3A-amide complexes to give
the bifunctional compounds ZnPz-nGd, with n = 1, 4, 8 (Figure 2b) [45]. These compounds have shown
strong relaxivity increases (up to 12.8 mM−1·s−1 for ZnPz-8Gd at 60 MHz and 37 ◦C) with the number
of Gd-complexes attached to the PS. Cellular uptake has been observed only with compounds bearing
one Gd complex (ZnPz-1Gd) and a notable phototoxic effect (with 50% cell killing) has been observed
after 10 min irradiation with white light (Figure 2c).
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Figure 2. Chemical structure of (a) ZnPht-1Gd [44] and (b) ZnPz-1Gd [45]; (c) phototoxic effect in
WI-38 VA13 cells incubated with Zn-Pz-nGd (n = 1, 4, 8; 50 µM, 24 h) and irradiated by white light
for 0 or 10 min. The same protocol was realized with Photofrin as a positive control. Adapted with
permission from [45]. Copyright 2010 American Chemical Society.

Porphyrin derivatives incorporating a Gd(III) ion are at first sight appealing agents due to their
simplified structure and synthesis, and to their promising in vitro properties as phosphorescence- based
oxygen sensors, PDT photosensitizers, and MRI contrast agents. However, in vivo studies have resulted
in disparate conclusions. Koenig [46] and Furmanski [47] have studied gadolinium-incorporated
porphyrins as MRI contrast agents and have observed stability problems with ion dissociation from the
porphyrin during their studies in plasma and in mice. Recently, two porphyrazine-based compounds
incorporating a Gd(III) ion, GdPz1, and GdPz2, which differ in the nature of their peripheral groups,
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have been obtained (Figure 3a) [48]. A good relaxivity value was obtained at a very high magnetic
field (4.67 mM−1·s−1 at 9.4 T) for GdPz1 once solubilized in polymer polyimide brushes. Cellular
uptake, dual in vivo fluorescence and MR imaging, and in vivo PDT activity were studied. Significant
in vivo tumor accumulation was demonstrated by fluorescence and MR images for both compounds.
PDT activity was assessed in cancerous CT26 cells with light irradiation performed at 615–635 nm
(10–20 J/cm2, 10−7 to 10−4 M incubation concentration). PDT treatment of CT26 tumor-bearing Balb/c
mice (Figure 3b) was realized three hours post-injection by irradiation at 593 nm (30 min, 120 J/cm2).
Moderate tumor death was observed and this study indicated the need to optimize different parameters
such as drug dose and light application.
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time. Intravenous injection of the theranostic agent and photodynamic therapy (PDT) treatment three
hours after this injection were realized on day 10 after tumor inoculation. Adapted with permission
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A porphyrin-based PS linked to chemotoxic platinum(II) complexes and incorporating a
gadolinium(III) ion has been reported for tumor treatment by PDT and chemotherapy and for MR
imaging [49]. It has been obtained from a 5,10,15,20-tetra(4-pyridyl)-porphyrin (P1) that is coordinated
to four Pt(II) complexes (Pt-P1) and to one Gd(III) ion (Gd/Pt-P1) (Figure 4a). The compound showed
nearly doubled relaxivity at 3 T compared to GdDTPA. A phototoxic effect was observed in C6 cells
after 10 min irradiation at 630 nm (Figure 4b). A synergetic chemo-photodynamic antitumor effect was
observed in cells and in C6 tumor-bearing mice.
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In order to obtain contrast agents with high relaxivity at high magnetic fields, the strategy of
increasing the number of coordinated water molecules at the Gd(III) center is particularly appealing as
this allows for the almost doubling of the r1 relaxivity value independently of the magnetic field. In this
case, careful design of hepta- or hexadentate ligands is necessary in order to obtain Gd(III) complexes
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with good thermodynamic stability and kinetic inertness, and to avoid ternary complex formation
with endogenous molecules. Chen et al. have developed a potential theranostic agent (Scheme 3a)
consisting of a tetraphenylporphyrin core linked to four GdDTTA complexes [50]. High relaxivity has
been measured (14.1 mM−1·s−1 at 0.55 T in Hepes (4-(2-hydroxyethyl)-1-piperazine ethanesulfonic
acid) buffer) and this value doubled in the presence of human serum albumin, indicating strong
binding of the conjugate to this blood pool protein. The fluorescence of the PS has been evidenced in
H1299 lung cancer cells and has shown harmless cellular uptake. Singlet oxygen has been efficiently
produced upon irradiation at 650 nm in deuterated water. These studies show the potential of this
compound to behave as a contrast agent for multimodal (MR and luminescence) imaging and as a PS
for PDT.
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The development of a theranostic agent gathering four GdDTTA complexes and a TPP core has
also been realized with a design which differs with regards to the nature of the linkers separating
the two agents (Scheme 3b). Short and relatively rigid benzyl linkers have been used, which allow
for the minimization of rotational flexibility and thus for the optimization of the relaxivity gain
brought about by the increase in molecular weight [51]. This water-soluble bifunctional system has the
highest relaxivity reported for a medium-sized system with a maximum of 43.7 mM−1·s−1 (per Gd(III)
ion at 20 MHz). A 27% relaxivity increase has also been observed in the presence of bovine serum
albumin (BSA). Phantom images of cell pellets (Figure 5a) obtained at a high magnetic field (7 T) have
evidenced cellular uptake. Inductively coupled plasma mass spectrometry (ICP-MS) measurements
have shown that cellular uptake of Gd ions is 60 times more effective with the theranostic agent than
with the commercial GdDTPA contrast agent at 10 µM Gd incubation concentration. This result can be
explained by the amphiphillic character of the theranostic compound which favors cell internalization.
A good PDT effect has been observed in HeLa cells (Figure 5b) upon irradiation at 636 nm (1 h) and
this effect was found to increase with light intensity and with the incubation concentration of the
theranostic agent.
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Figure 5. (a) T1 maps of HeLa cell pellets at 7 T which were incubated for 24 h with different
concentrations of the theranostic compound; (b) phototoxicity of the theranostic compound following
1 h irradiation at 636 nm after 24 h incubation at 2.5 µM (dark gray) and 6 µM (light gray). Adapted
with permission from [51]. Copyright 2016 American Chemical Society.

The theranostic agents reported so far are activated by one-photon absorption with excitation
wavelengths below 700 nm. The two-photon excitation process allows for the use of excitation
wavelengths in the NIR region [52,53]. This process allows deep treatment and minimal photodamage
to healthy tissues. Two-photon irradiation is possible only in a very small area and high spatial
treatment precision can be obtained, but the application to bulky tumors is currently limited. The design
of new PSs with high two-photon absorption capability requires large pi-electronic delocalization.
A one- and two-photon activatable PS based on a diketopyrrolopyrrole-zinc-porphyrin component
(DPP-ZnP) and linked to a GdDOTA complex as an imaging probe has been studied (Scheme 4) [54].
The GdDOTA attachment to the PS has been realized with the use of the commercial DOTAGA
(1,4,7,10-tetraazacyclododecane-1-glutaric-4,7,10-triacetic acid) ligand which brings local flexibility
but keeps the GdDOTA stability intact. Remarkable relaxivity values (r1 = 19.9 mM−1·s−1 at 20 MHz)
for a monohydrated and medium-sized system have been obtained. A 20% relaxivity increase in the
presence of BSA has also been observed. The compound has strong one-photon absorption ability
(εmax = 41,000 M−1·cm−1 at 667 nm in water). Large two-photon absorption capacity quantified by
large σ2 values has been evidenced in solution over a broad range of wavelengths with a maximum
of 1000 GM between 910 and 940 nm. A high PDT effect evaluated in HeLa cells was observed by
one-photon excitation at 660 nm (1 h, 1 µM incubation concentration) and a moderate two-photon PDT
effect was observed at 930 nm (300 scans, 1 µM incubation concentration).
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A theranostic agent containing a PS with high one- and two-photon absorption capacity in the near
infrared region and two stable contrast agents for MR imaging has been studied [55]. The structure of
this agent consists of a Zn-porphyrin dimer (ZnP–ZnP) linked to two GdDOTA complexes (Figure 6a).
High relaxivity values have been obtained with a maximum of r1 = 14.4 mM−1·s−1 (at 40 MHz in
water containing 2% of pyridine to ensure complete water solubility). Due to the presence of the two
Gd(III) complexes, the corresponding molecular relaxivities are doubled; this trait is important to
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realize the imaging and therapeutic studies at the same low concentration required for PDT treatment.
It is also interesting to note that the relaxivity value was seen to double in presence of BSA at 20
MHz. This compound has shown strong one-photon absorption capacity in the near infrared region
(with a maximum at 746 nm with ε = 105 M−1·cm−1 in DMSO). It has also shown very strong
two-photon absorption ability with a maximum between 880 and 930 nm (σ2 ≈ 8000 GM in DMSO).
An efficient PDT effect was observed in HeLa cells after one-photon irradiation at 740 nm (30 min, 1
µM incubation concentration). A two-photon PDT effect was observed at 910 nm (300 scans, 2 µM
incubation concentration) as a function of light power, and 100% cell death was observed with an
average power of 108 mW at the back pupil of the objective (Figure 6b).
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4. Conclusions

In this review, the design and study of molecular theranostic agents for potential applications in
MR imaging and PDT treatment has been highlighted and discussed.

Compared to the MR imaging properties of small commercial contrast agents, the properties of
theranostic agents are superior, due to the presence of the lipophilic PS. Increased cellular uptake
and/or tumor accumulation have been observed, and together with the increased relaxivity brought
about by the large size of these compounds, the use of such theranostic agents requires much lower
doses than those used with clinical contrast agents. To further improve the imaging efficiency of
the theranostic agent, the same criteria as those for classical contrast agents need to be considered.
In particular, local rigidity and stability are two important parameters to take into account. In addition
to MR imaging, the fluorescence properties of the tetrapyrrolic core have also been explored in some
cases. They provide a second imaging modality with high sensitivity.

Tetrapyrrolic PSs are often weakly soluble in aqueous media, the presence of hydrophilic Gd(III)
complexes brings increased water solubility; it also modulates the in vivo distribution and elimination.
A good ratio between the number of Gd(III) complexes and the PS has to be found in order to
maintain the cellular uptake ability. The design of PDT sensitizers with strong absorption in the
biological transparency window is necessary for increased tissue penetration depth and high cytotoxic
species production.

Cellular and animal studies require strong and long experimentation efforts. Studies showing the
influence of drug concentration and light application on PDT efficiency should be developed. Finally,
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a chemical design that allows for better tumoral selectivity will undoubtedly greatly enhance the
capacity of these theranostic agents.
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