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Abstract: This mini-review focuses on the 2015–2019 literature survey of thiazole- and
thiadiazole-containing Metal–Organic Frameworks (MOFs) and Coordination Polymers (CPs)
exploited in the applicative field of luminescent sensing.
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1. Introduction

Chemical sensors, i.e., analytical tools that provide information about the chemical composition of
the environment in which they are introduced, are based on a variety of transduction mechanisms (e.g.,
optic, electronic, optoelectronic). Luminescent materials release energy in the form of electromagnetic
radiation in the visible region in response to external stimuli [1]. Recently, luminescent materials have
gained the stage as chemical sensors [2], as luminescence is among the most desirable transduction
mechanisms for its relative easiness of use, technical simplicity and broad adaptability [3].

Metal–organic frameworks (MOFs) are hybrid organic/inorganic 3D coordination polymers with
open structures deriving from the self-assembly of poly(topic) ligands and metal ions or metal-based
clusters [4]. In the past fifteen years, MOFs have emerged as a promising alternative to all inorganic
materials (e.g., activated carbons and zeolites) in industrially and technologically relevant applications
requiring porous compounds. As chemical sensors, luminescent MOFs possess a number of advantages
over other luminescent materials. Analyte adsorption within MOF pores allows for its pre-concentration,
increasing sensor sensitivity. Selectivity in MOFs can be achieved by tuning pore dimension and/or
by proper functionalization of the linkers. Porosity allows for adsorption of chromophores which
can be luminescent themselves or act as antennas, this enlarging the number of mechanisms beyond
luminescence [5]. MOFs structure flexibility may lead to changes in the local coordination environment,
hence in the emissive properties, upon guest adsorption [6]. Compared to amorphous luminescent
compounds, MOFs possess well-defined crystal structures, which allows theoretical and experimental
study of the sensing mechanisms at the molecular level. Finally, they are less expensive than other
detection methods.

MOFs luminescence may have different origins [7–10]: ligand-based, metal-based, charge-transfer,
or guest-induced (Figure 1). Linker-based luminescence is commonly found in MOFs containing
conjugated ligands with extended π-delocalized carbo- or heterocycles that absorb in the visible or UV
region, combined with metallic nodes made of metal ions in a d10 or d0 electronic configuration, such as
Zn(II), Cd(II) or Zr(IV) (i.e., largely electronically inert ions) [10–12]. Metal-centered luminescence
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(phosphorescence) requires the presence of open-shell configuration metal ions. Therefore, it is mostly
seen in MOFs containing f-elements as nodes [13], although some examples with d10 metal ions are also
present in the literature [14]. Fluorescent ligands typically bear π-conjugated electrons which can give
emissions upon irradiation. Signal transduction in luminescent MOFs normally takes place through
emission quenching (more occasionally enhancement) after a guest adsorption. The strength of these
effects depend on the nature of the host–guest interactions. In the most interesting cases, adsorbates
induce a shift in the emission wavelength of the MOF emission. This type of signal transduction is
inherently more attractive than simple quenching. If the emission band falls in the visible region,
the marked evidence of the occurred guest capture is immediately observable as a color change at the
naked eye.
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(VOCs) [30–32], explosives (nitroarenes) [33–35], bioactive compounds [36,37] and dyes [6]. Finally, 
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More recently, the discovery and development of MIXMOFs (also known as Multivariate
MOFs) [15–17] has opened new horizons in chemical sensing. The simultaneous presence of different
linkers within a unique solid phase is useful for multiple sensing capability (multiplexing), i.e.,
the detection of different analytes with the same material combined with an extremely high sensitivity
(low detection limits, Figure 2).
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As for the target analytes of interest, MOFs have been proven to be efficient chemical sensors
for gases [18–23], small molecules like solvents [24–27], amines [28,29], volatile organic compounds
(VOCs) [30–32], explosives (nitroarenes) [33–35], bioactive compounds [36,37] and dyes [6]. Finally,
detection of polluting metal ions (both cations and anions) in aqueous solutions is also a widely
exploited application field [38–46].

The typical MOFs ligands belong to the classes of (aliphatic or aromatic) polycarboxylic acids
and polydentate N-heterocyclic bases (such as pyridines, imidazoles, pyrazoles and tetrazoles) [47,48].
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The presence in the heterocycle of atoms different from nitrogen is relatively rare. In fact, there are
much fewer examples of MOFs or CPs built with heterocycles containing oxygen, sulfur or selenium in
their skeleton. Heteroatoms with pronounced differences in their relative Lewis basicity modify the
electron density distribution within the linker and may show different coordination ability for metal
ions used in the MOF synthesis when seen as alternative coordination sites. In addition, the abundance
of electron-rich atoms in the linkers increases the number of weak non-covalent interactions (like
hydrogen bonds or π–π stacking) in the solid state, providing more thermally/chemically stable
materials and generating fascinating crystalline scaffolds. Within the applicative context of luminescent
sensing, organic light emitting diodes (OLEDs) and organic optoelectronics, π-conjugated heterocyclic
compounds containing a sulfur atom like thiophene exhibit an extensive variety of optical, electrical
and photoelectric applications. The introduction of an additional nitrogen atom in the linker should
improve these features considerably. Consequently, in recent years there has been a growing interest in
(N,S) containing heterocycles. Among the simplest and most naturally occurring (N,S) heterocycles
there are thiazoles and thiadiazoles (Scheme 1). Thiazoles are intrinsically fluorescent [49,50] and they
can be found in several naturally occurring biomolecules like vitamin B1 (thiamine) or luciferin (the
active component generating luminescence in fireflies). They have been exploited for the preparation of
synthetic fungicides like thiabendazole, anti-inflammatory drugs like Meloxicam or in the fabrication
of OLEDs and semiconductors [51,52]. More recently, their application as fully organic sensitizers in
solar cells (DSSC) for energy applications has also started to appear in the literature [53,54].
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The preparation of thiazole-based MOFs/CPs (from ligand design to the polymer construction) is
one of our main research activities [55–59]. In the last five years, there has been a significant boost in
the interest on this specific topic. Following this interest and as an extension of a Highlight article
published by our group in 2015 [60], in here we would like to present a 2015–2019 survey of thiazole-
and thiadiazole-containing MOFs and CPs for applications in luminescence. The mini-review will be
divided into two chapters: thiazole-based MOFs/CPs (Section 2) and thiadiazole-based MOFs/CPs
(Section 3). We believe that this collection may be useful for other research groups who are actively
working on the same research field worldwide as a reference work to find new inspiration and ideas
for a better development of this intriguing and promising applicative field.

2. Thiazole-Based MOFs and CPs as Luminescent Materials

In the following Sections the literature survey is presented and classified according to both ligand
type and publication year, moving from the oldest (2015) to the most recent (2019) examples within
each category. A collective thiazole-based ligands scheme (Scheme 2) is reported here for the sake
of clarity.

Thiazole, as such, has been exploited as a solvent in the synthesis of a series of lanthanide
CPs from anhydrous LnCl3 and 1,2-bis(4-pyridyl)ethylene (dpe) under solvothermal conditions by
the group of Müller-Buschbaum (Wurzburg, DEU) [61]. The obtained polymers of general formula
[LnCl3(dpe)(thiazole)2]∞ are 1D or 2D, and the connections between adjacent metal ions in the crystal
structures are guaranteed by the dpe bridging linker. Thiazole always acts as an end-on (terminal)
N-bound ligand. Dpe was proved to be a suitable sensitizer for the photoluminescence of lanthanides
in the near-infrared region (NIR) only: ligand-sensitized 4f –4f NIR emission is dominating for Nd(III),
Er(III) and Yb(III). The same group has subsequently prepared the analogues containing the “saturated
counterpart” of dpe, namely 1,2-bis(4-pyridyl)ethane (bpe), using the same synthetic approach [62].
Depending on the ligand content, assorted structures from 3D frameworks {[LnCl3(bpe)2]·thiazole}∞
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(Ln = Ce–Lu), to the 1D-strand [La2Cl6(bpe)2(thiazole)6]∞ were obtained. The compounds exhibit
a variety of luminescence properties and different phenomena. These included ligand-centered
fluorescence, metal-centered 5d–4f /4f –4f emission in the visible and the NIR range, and antenna effects
via Dexter and Förster (FRET) energy transfer mechanisms (non-radiative processes with electron
exchange). The obtained results proved that the linker bpe is also an excellent sensitizer for lanthanide
emission, as observed for dpe. Finally, in 2017 the same research team replaced the pyridyl-based
linkers with other N-containing heterocycles: pyrazine (pyz) and pyrimidine (pym) [63], forming the
compounds [Ln2Cl6(pyz)(thiazole)6]∞ and [Ln2Cl6(pym)2(thiazole)4]∞ (Ln = Tb, Er). The polymers
with Tb and Er show intense luminescence with a strong sensitizer effect of the ligands that can be
observed by dominant ligand excitation and exclusive metal emission for VIS and NIR.Inorganics 2020, 8, x FOR PEER REVIEW 4 of 16 
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The group of Tang, Wang and co-workers (Kumming, CHN) prepared a novel
red-emitting cationic iridium(III) coordination polymer using the thiazole-based ligand
2-(9-(2-ethylhexyl)-9H-carbazol-3-yl)benzo [d]thiazole (Scheme 2) and 4,4′-bipyridine (bipy). It can
be efficiently excited by blue light of GaN chips when blended in YAG:Ce-GaN-based cold white
LEDs at 0.1 wt % and 0.2 wt %. The emission became neutral white light, and the collected results
suggested that the coordination polymer is a promising red-emitting phosphor candidate for warm
white LEDs [64].

Artem’ev and collaborators (Novosibirsk, RUS) exploited 2-(methylthio)thiazole (MTT) and
2-(methylthio)benzothiazole (MTBT) (Scheme 2) to prepare the corresponding copper(I) 1D CPs
[CuI(MTT)]∞ and [Cu2I2(MTBT)2]∞, respectively [65]. The former consists of (–Cu–I–Cu–I–)∞ zigzag
chains wherein the adjacent Cu atoms are bridged by the MTT ligand through the thiazole N and
sulfide S atoms. In the latter, a planar [Cu(µ-I)]2 dimeric core is supported by the two ligands in
a N-monodentate manner. At ambient temperature, the former exhibits a weak yellow luminescence
(λmax = 570 nm), while the latter emits in the deep-red region (λmax = 705 nm), thus representing
a rare example of a Cu(I) coordination compound showing an emission in this color range. One year
later, the same group started from the same ligands to prepare the Ag(I) analogues [Ag(MTT)(NO3)]∞
and [Ag2(MTBT)2(NO3)2(MeCN)2]∞ as layered 2D CPs exhibiting Ag···Ag interactions in the solid
state [66]. The latter demonstrates dual emission behavior associated with simultaneous presence of
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high-energy and low-energy emission bands originated by Ag(I)-perturbed singlet and triplet π–π*
and n–π* intraligand transitions, respectively.

In recent years, our group has reported the preparation of Zn(II) CPs with different isomeric
forms of (thiazolyl)benzoic acid. Four 1D coordination polymers have been prepared, starting from
the organic linker m-(2-thiazolyl)benzoic acid (HL, Scheme 2), also combined with auxiliary ligands:
[Zn2(L)4(H2O)·2(MeCN)]∞, [Zn2(L)3(NO3)(bipy)]∞, [Zn2(L)4(bipy)]∞, and [Zn2(L)4(bpe)]∞. In all
species, the Zn2(carboxylate)4 “paddle-wheel” dimer is the constituting inorganic node, where the
carboxylate groups from L− are bridging two adjacent metal centers [56]. The polymeric nature stems
from the auxiliary N-donors that are shared by adjacent Zn2 dimers. The luminescent properties
in aqueous solutions of [Zn2(L)4(bipy)]∞ and [Zn2(L)4(bpe)]∞ have been examined. The N and S
donors dangling from the thiazole rings in these polymers can engage into further supramolecular
interactions with (acidic) metal cations, inducing a luminescence quenching after complexation.
Their photophysical properties have been studied, in the presence and in the absence of Hg(II)
ions. As expected, the electronic transitions observed are mainly ligand-centered, given the “closed
shell” electronic configuration of the Zn(II) ion (d10) that bans any metal-to-ligand or ligand-to-metal
charge transfer transitions. The complexation of an acidic cation like Hg(II) to the basic sites (N)
dangling from the ligand side-arms induces a luminescence quenching in both absorption and emission
(Figure 3), along with a partial polymer aggregation in solution (as judged from the Dynamic Light
Scattering results).
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One year later, we moved to the home-made isomers p-(2-thiazolyl)benzoic acid (HL2Th) and
p-(5-thiazolyl)benzoic acid (HL5Th, Scheme 2). Two coordination polymers of assorted dimensionality
(1D, 2D) have been prepared, namely [Zn3(L2Th)4(OH)2·2(HL2Th)]∞ and [Zn(L5Th)(OAc)]∞,
respectively [55]. The luminescent properties of both polymers have been analyzed in the solid
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state; they feature ligand-centered emissions at λ = 434 nm and λ = 427 nm. These electronic transitions
fall in the visible region, giving the samples a characteristic blue color under an ordinary UV lamp.
The theoretical analysis of the electronic features of the ligands and related molecular orbitals reveals
that the observed transitions are mainly of π→π* nature, involving π orbitals delocalized on both
aromatic cycles. A significant (reversible) blue-shift of the emission maximum of ca. 60 nm from the
visible to the UV region was observed for the 1D polymer (where the N-thiazole donors are dangling
from the polymeric chain) when suspended in water (Figure 4).
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Starting from 2018, the investigation on this field focused on a highly luminescent structural core:
thiazolo [5,4-d]thiazole (H2TTDC), made of two fused 1,3-thiazole rings along the C(4)–C(5) bond
(Scheme 2). This chemical motif is planar, rigid and conjugated, thus representing an optimal fluorescent
molecule. Indeed, it has been widely exploited in applications dealing with organic electronics and
solar cells because of its appealing features [67–69]. Thiazolo [5,4-d]thiazole can be easily functionalized
on C(2) and C(7) with coordinating groups suitable for the construction of MOFs and CPs. The group
of Falcao et al. (Pernambuco, BRA) exploited thiazolo [5,4-d]thiazole-2,7-dicarboxylate (TTDC2−,
Scheme 2) for the construction of lanthanide two-dimensional CPs of general formula [Ln2(TTDC)3

8H2O]∞ (Ln = La, Ce, Nd, Sm, Eu, Gd) [70]. In these polymers, the rare Earths possess coordination
number 9, and the TTDC2− ligand adopts different coordination modes, either terminal monodentate or
(N,O)-chelating bidentate through one N atom from the thiazole ring. This kind of behavior is frequently
found in derivatives of thiazole-2- and thiazole-4-carboxylic acids [60]. Luminescence spectra for the
Nd(III), Sm(III) and Eu(III) structures show the typical transitions of these ions, through the antenna
effect promoted by the ligand. Since the simple thiazolo [5,4-d]thiazole-2,7-dicarboxylate is thermally
labile, losing the carboxylic groups as CO2 at temperatures as low as 70 ◦C, TTDC2− is not an ideal
linker for solvothermal MOFs/CPs syntheses. Thus, alternative coordinating groups have been later
attached to the end-carbon atoms of thiazolo [5,4-d]thiazole. The most widely exploited molecule so far
is 2,7-bis(4-pyridyl)thiazolo [5,4-d]thiazole (Py2TTz, Scheme 2). Du, Zang and co-workers (Zhengzhou,
CHN) prepared mixed-ligand MOFs (MIXMOFs) combining Zn(II) or Cd(II) with Py2TTz and terephtalic
acid, obtaining pillared cubic structures of pcu topology: [M(Py2TTz)(BDC)·2(DMF)]∞, where M = Zn,
Cd; DMF = N,N-dimethylformamide and BDC2− = terephtalate[71]. The pillar-layered frameworks
consist of 2D sheets [constructed by ligand BDC2− and “paddlewheel” secondary building units
M2(COO)4] and Py2TTz that pillars neighboring sheets. The frameworks are twofold-interpenetrated
because of the long linker. Their fluorescence properties were investigated systematically. The results
show that both MOFs display good fluorescent properties, which can be efficiently quenched by
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a trace amount of nitroaromatics 2,4,6-trinitrophenol and antibiotic nitrofurazone in water. The small
limit of detection demonstrates that they can serve as good fluorescent sensors for trinitrophenol
and nitrofurazone in aqueous environment. One year later, the same group has reported on the
preparation of structural analogues containing variously substituted terephtalates and also with
naphthalene-2,6-dicarboxylic acid (H2NDC) [72]. The presence of a linear dicarboxylate linker like
BDC2− (with the coordinating groups at 180◦ with respect to each other) favors the formation of
a multi-fold interpenetrated crystal lattice, while a V-shaped ligand like NDC2− affords a 2D layered
structure. All the synthesized compounds demonstrate structure-dependent luminescence in the solid
state at room temperature, which are different from those of the pristine ligands. Compared to the
emission peaks of the free ligands, the emission spectra of the MOF samples demonstrate different
degrees of red shift. The nine MOFs prepared display structure-dependent emissions ranging from
blue to blue-white and blue-green (Figure 5).
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The group of Saha and co-workers (Clemson, USA) has studied the luminescent behavior of
[Zn2(Py2TTz)(NDC)2]∞ as such and in the presence of assorted transition metal cations [73]. NDC2−

struts serve as antenna chromophores and energy donors, while Py2TTz pillars act as complementary
energy acceptors and light emitters. The highly ordered crystalline arrangement and the good overlap
between their emission and absorption spectra enabled ligand-to-ligand Förster resonance energy
transfer, allowing the MOF to display exclusively Py2TTz-centric blue emission at λ = 410 nm. In the
presence of Hg(II), the photoluminescence of the MOF underwent a significant red shift to 450 nm
followed by quenching, whereas other transition metal ions [Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and
Cd(II)] caused only fluorescence quenching but no shift. Consequently, [Zn2(Py2TTz)(NDC)2]∞ can be
considered an efficient Hg(II) luminescent sensor.

The group of Arici et al. (Eskiseir, TUR) prepared three novel Co(II) coordination
polymers, formulated as {[Co(µ3-ipa)(Py2TTz)]·DMF}∞, {[Co(µ3-fdc)(Py2TTz)(H2O)]·DMF}∞
and {[Co(µ3-tdc)(Py2TTz)]·G}∞ (ipa2− = isophtalate, fdc2− = furan-2,5-dicarboxylate, tdc2− =

thiophene-2,5-dicarboxylate, G = guest solvent molecule) [74]. When the angles between the two
carboxylate groups increase, the dimensionality of the compounds increases. Indeed, compound
{[Co(µ3-ipa)(Py2TTz)]·DMF}∞ (where the –COO− groups lie at 120◦ with respect to each other) has
a 2D layered structure, while the others (where the angle between the two carboxylates is around 145◦)



Inorganics 2019, 7, 144 8 of 16

are 3D frameworks with pcu topology. The absorption bands of the polymers are similar to those of
the corresponding organic constituents, mainly of π–π* nature.

In an intriguing variation on the theme, Gao et al. (Shanghai, CHN) designed an “extended
viologen” organic linker through quaternization of the pyridine N atoms in Py2TTz, forming the new
tetracarboxylic acid 2,7-bis(1-(3,5-dicarboxylatobenzyl)pyridin-1-ium-4-yl)-thiazolo [5,4-d]thiazole
(TTVTC2−, Scheme 2) [75]. Its incorporation into the Zn(II) MOF {[Zn(TTVTC)]·4H2O}∞ produced
a highly water-stable material that acts as an efficient and recyclable sensor for the detection of Cr(VI)
in aqueous solutions. Extended viologen compounds have been shown to be strongly fluorescent;
indeed, [H4TTVTC]Cl2 shows strong cyan emission under UV light (365 nm), and the solid-state
fluorescence spectrum shows an emission band centered at 485 nm. The related Zn-MOF also shows
strong fluorescence, the color becoming yellow-green and the emission maximum shifting to 524 nm.
The fluorescence of the aqueous dispersions was almost completely quenched by K2CrO4 and K2Cr2O7.
By contrast, many other anions at the same concentration did not have significant effects (Figure 6).
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3. Thiadiazole-Based MOFs and CPs as Luminescent Sensors

For thiadiazole, the two different isomers 1,3,4-thiadiazole and 1,2,5-thiadiazole will be discussed
together within this Section. As for thiazole, Scheme 3 collects the chemical structures of the
thiadiazole-based organic ligands of this paragraph.

In 2015, Wang and collaborators (Urumqi, CHN) reported on the synthesis of Cu(II) and Cd(II) CPs
with different dimensionality (either 1D chains or 2D sheets) built with the 1,3,4-thiadiazole-containing
isomeric linkers L1, L2 and L3 (Scheme 3) [76]. The emission spectra of L3 and its Cd(II) 2D polymer
[Cd2(L3)3(NO3)4(H2O)2]∞ in the solid state at room temperature were investigated. L3 exhibits a weak
blue fluorescent emission band around 410 nm upon excitation at 350 nm, while the Cd(II) polymer
exhibits an intense blue fluorescent emission band around 465 nm.
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The insertion of two 4-pyridyl units on C(2) and C(5) of 1,3,4-thiadiazole gives the neutral
bridging linker bpt = 2,5-bis(4-pyridyl)-1,3,4-thiadiazole (Scheme 3). This spacer has been exploited
in 2016 by Ma and co-workers (Luoyang, CHN) for the construction of a Cd(II) MOF with general
formula [Cd2(pam)2(bpt)2(H2O)]∞·(pam2− = pamoic acid, a dimer of naphthalenecarboxylic acid) [77].
Its fluorescent properties in the solid state indicate that this MOF may be a potential green-light-emitting
material. In fact, the MOF gives a sharp fluorescent emission peak in the green region with a maximum
at λ= 517 nm, displaying a large red shift relative to those of free ligands (472 nm and 385 nm for pamoic
acid and bpt, respectively). More recently, the same bpt spacer combined with 5-aminoisophtalic acid
(H2aiph) has been used by the team of Bi, Fan and co-workers (Qingdao, CHN) to build a Ni(II) MOF
with general formula [Ni(aiph)(bpt)(H2O)]∞ [78]. Rhodamine B, methylene violet and methylene
blue are the most common organic dyes in waste water. In this work, the nickel MOF was used to
degrade aqueous solution containing these dyes under UV irradiation. After 90 min of irradiation,
89.5% of methylene blue, 84.7% of methylene violet and 76.4% of rhodamine B were decomposed in
the presence of the MOF, showing an excellent photocatalytic performance in pollutants degradation,
even if it has been found that the initial concentration and the catalysts loading both significantly
influenced the degradation efficiency.

A new, strongly luminescent Zr(IV)-based metal–organic framework (MOF)
material having a UiO-68 (UiO = University of Oslo) framework topology and
incorporating the π-conjugated, thiadiazole-functionalized H2BTDB ligand (H2BTDB =

4,4′-(benzo[c][1,2,5]thiadiazole-4,7-diyl)dibenzoic acid, Scheme 3) was synthesized under solvothermal
conditions in DMF by the group of Biswas (Assam, IND) [79]. The MOF has minimal formula
[Zr6O4(OH)4(BTDB)6]·8H2O·6DMF. It showed an emission band centred at 510 nm upon excitation at
370 nm, assigned to a π–π* intraligand transition. Its emission band is slightly blue-shifted and the
fluorescence intensity enhanced by 69%, as compared to the pristine organic ligand. The thermally
activated form of the compound (after crystallization solvent removal) showed a selective sensing
behavior towards 2,4,6-trinitrophenol (commonly known as picric acid), even in the presence of other
potentially competing nitroaromatic explosive compounds. The highest fluorescence quenching
ability of trinitrophenol can be attributed to both energy and electron transfer processes as well as
electrostatic interactions between the hydroxyl group of trinitrophenol and the Lewis basic N-donor
sites of the thidiazole-based ligand. In 2019, the same MOF has also been exploited by Eddaoudi
and co-workers (KAUST, SAU) for the detection of amines in ultra-low traces (via fluorescence
turn-on) in aqueous solutions [80]. This extremely powerful action is driven by hydrogen bonding
interactions between the linker and the hosted amines. This observation is supported by density
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functional theory (DFT) calculations, which clearly corroborate the suppression of the twisting motion
of the benzo[c][1,2,5]thiadiazole core in the presence of the amine guest, reducing significantly the
non-radiative recombination pathways and subsequently, enhancing the emission intensity (Figure 7).
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Reference [80]. Copyright 2019. American Chemical Society.

The same benzo[c][1,2,5]thiadiazole central motif decorated by different coordinating side-arms
has been prepared by Yang and Zhao (Tianjin, CHN). The coordinating ends are now 4-pyridyl
groups, in the tailor-made linker 4,7-bis((E)-2-(pyridin-4-yl)vinyl)benzo [2,1,3]thiadiazole (bptda,
Scheme 3) [81]. This ligand, in diverse stereochemical conformations around the C=C double bonds
present on its side-arms, has been combined with assorted dicarboxylic acids of variable bend angles to
create four different Zn(II) MOFs. The main emission peak of the ligand, and also of the related MOFs,
fall around λ = 560 nm. The functionalization effect of thiadiazole groups on the optical absorption
and visible-light-driven photocatalytic degradation of rhodamine B, methylene blue and crystal violet
has been investigated, showing promising applications as dye degradation materials.

A 2D Cd(II) coordination polymer containing the 2,5-(s-acetic
acid)dimercapto-1,3,4-thiadiazole (H2ADTZ, Scheme 3) ligand has been published by
the group of Wang (Jinzhou, CHN): [Cd(bmbpd)0.5(ADTZ)(H2O)]∞, where bmbpd =

N,N′-bis(4-methylenepyridin-4-yl)-1,4-benzenedicarboxamide [82]. Its photoluminescent behavior in
the presence of assorted organic solvents showed that it can be a good luminescent sensor (through
emission quenching) for ethanol; furthermore, among the scrutinized samples it showed the best
catalytic activity in methylene blue photodegradation (60%).

The heterocyclic fluorogenic linker 1,2,5-thiadiazole-3,4-dicarboxylate (H2tdz, Scheme 3) offering
diverse coordination modes has been utilized to synthesize two 3D metal organic frameworks,
[Cd(tdz)(bipy)]∞ and [Cu(tdz)(bipy)]∞, by the research team of Mandal (Mohali, IND) [83]. Owing to
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its excellent stability in water, the photoluminescence spectrum of the Cd(II) polymer was studied
in water. It exhibits a very strong emission intensity and is therefore considered a suitable material
for sensing studies. The exposed nitrogen atoms in the tdz2− linker are the preferential interaction
sites with the hydroxy-containing nitro-aromatic explosives 2,4,6-trinitrophenol, 2,4-dinitrophenol and
4-nitrophenol. Indeed, the trend of increasing quenching efficiency (96% for the trinitrophenol and
~90% for the others) is observed in accordance with the increase in the acidity of the hydroxyl proton
of the nitro-explosives (in turn related to the increase in the number of electron-withdrawing nitro
groups).

4. Conclusions and Perspectives

It is well known that luminescent MOFs show great promise as various types of sensors owing to
their remarkable structural diversity and tunable luminescent properties. This field of investigation is
still open to new contributions in terms of ligand design and MOF construction. Generally speaking,
linkers containing multiple exposed basic sites (N atoms of heterocycles in particular) are particularly
useful to prepare porous luminescent MOFs with high sensing capability towards guests with protic
groups, through the switch of N···H hydrogen bonding interactions. In the specific case of thiazoles and
thiadiazoles, the presence of the sulfur atom is also useful to promote soft acid-soft base interactions
with heavy metal polluting cations like Hg(II), Cd(II), Pb(II), thus creating optimal luminescent
sensors for these pollutants in aqueous solutions. A future research direction in this area may be
represented by the tailored synthesis of polycyclic rigid aromatic linkers containing more than one
thiazole and/or thiadiazole rings. Subsequently, the preparation of highly porous and water-stable
MOFs with these linkers is mandatory, representing the second step towards the obtainment of
an optimal solid-state sensor. The main hurdle in this synthetic step is represented by the very
low linker solubility in the solvent used for the MOF synthesis (normally polar and high-boiling
solvents like DMF or N,N-diethylformamde (DEF)). The higher the linker conjugation degree and
molecular weight, the lower the solubility. A promising approach to solve this problem is represented
by mechanochemical (solvent-free) synthesis, through ball milling of the neat reagents. To save
experimental efforts, preliminary theoretical screening of the sensor-substrate ensemble can help
in predicting host–guest interactions in silico and improve the design of the final MOF structure,
as already observed in the field of CO2 storage and utilization [84]. As for the metal type, the best
candidate is surely zirconium, since the octahedral [Zr6] metallic node present in all members of the
“UiO family” generates MOF structures featured by high chemical and thermal stability. At present,
our research group is proceeding in this direction for the obtainment of well-performing MOFs in the
exciting field of luminescent sensing.
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