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Abstract: The structural design of nanosized electrocatalysts is extremely important for cathodic
oxygen reduction reactions (ORR) and anodic oxidation reactions in small organic compounds
in direct fuel cells. While Pt is still the most commonly used electrode material for ORR, the Pd
electrocatalyst is a promising alternative to Pt, because it exhibits much higher electrocatalytic activity
towards formic acid electrooxidation, and the electrocatalytic activity of ORR on the Pd electrode is
the higher than that of all other precious metals, except for Pt. In addition, the mass activity of Pt in a
core–shell structure for ORR can be improved significantly by using Pd and Pd-based materials as
core materials. Herein, we review various nanoscale Pd-based bimetallic, trimetallic and core–shell
electrocatalysts for formic acid oxidation and ORR of polymer electrolyte fuel cells (PEFCs). This
review paper is separated into two major topics: the electrocatalytic activity towards formic acid
oxidation over various Pd-based electrocatalysts, and the activity of ORR on Pd-based materials and
Pd core–Pt shell structures.

Keywords: electrocatalyst; oxidation of formic acid; oxygen reduction reaction; Pd-based materials;
bimetallic compound; core–shell structure

1. Introduction

Owing to their high electrocatalytic activity, Pt-based electrocatalysts have been extensively
investigated as electrode materials for oxygen reduction reaction (ORR) and the electrooxidation of
small organic compounds in polymer electrolyte fuel cells (PEFCs), which are potential alternatives to
fossil fuel-based devices [1]. However, Pt-based electrocatalysts suffer from several limitations. Since
Pt is costly, rarely available and has high overpotential for ORR and the oxidation of small organic
molecules, it is imperative to develop an electrocatalyst with little or no Pt for the commercialization
of both PEFCs and direct methanol fuel cells (DMFCs).

In DMFCs, methanol in aqueous solution has an ideal energy density (4900 Wh L−1), however,
the open circuit potential (OCP) is lower than that in PEFCs, due to the higher standard oxidation
potential of methanol and the higher overpotential for electrocatalytic methanol oxidation. In addition,
formic acid as a fuel shows a smaller crossover than methanol when Nafion® is used as an ionomer,
indicating that formic acid allows the use of electrolytes with high concentrations. Moreover, the
standard oxidation potential for formic acid is approximately −0.25 V versus the reversible hydrogen
electrode (RHE) [2], which is lower than that of the oxidation of methanol and H2. The theoretical
electromotive force (emf) and OCP of direct formic acid fuel cells (~1.48 V versus RHE) is higher
than that of PEFCs (1.23 V versus RHE) [2–4]. Therefore, direct formic acid fuel cells are highly
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promising, and it is of great significance to develop an electrocatalyst with high activity towards the
electrooxidation of formic acid.

Pt shows lower catalytic activity towards ORR in the presence of methanol (mixed in the electrolyte
by methanol crossover) in acidic media. Therefore, various efforts have been made to develop
electrocatalysts with little or no Pt for the oxidation of small organic compounds and ORR in fuel
cells [5,6]. Pd-based electrocatalysts are potential alternatives to Pt for ORR under both acidic and
alkaline conditions because Pd has similar physicochemical characteristics (e.g., the crystal structure
and being a group 10 element in the periodic table) to those of Pt. With the exception of Pt, Pd
exhibits the highest electrocatalytic activity (among pure metals) towards hydrogen evolution reactions
and ORR. In addition, the ORR kinetics of Pd-based electrocatalysts are not significantly affected
by methanol because of their high tolerance to methanol under acidic conditions [7–9]. While Pd is
currently more expensive than Pt (Pd: 1232.5 USD/ozt and Pt: 796.66 USD/ozt on 5th December 2018),
the prices of precious metals fluctuate by nature. Historically, Pt has been more expensive than Pd,
therefore, we still believe that exploring Pt-free catalysts is valuable. In addition, to prepare metal
nanoparticles, metal sources should be used as precursors. Pt precursors are still more expensive than
their Pd analogues at most chemical vendors, such as Sigma-Aldrich. For example, the prices of Pd(II)
acetylacetonate (99%) and Pt(II) acetylacetonate (99.98%) are currently 85 and 170 USD/g, respectively,
at Sigma-Aldrich.

In the case of Pd electrocatalysts for ORR, under acidic conditions, the electrocatalytic activity of
ORR over Pd appear to be lower than that of Pt because of a non-ideal d-band center value, which
produces strongly absorbed oxygen during the initial ORR process (as mentioned in Section 3.1).
Therefore, to realize highly active Pd-based electrocatalysts for ORR, it is significant to control
their crystal structures and electronic conditions. On the other hand, in order to prepare Pt-based
electrocatalysts with lower d-band centers and hence higher ORR activity, three-dimensional transition
metals such as Fe, Co, Ni and Cu are used as alloying materials to modify the electronic state and
crystal structure of Pt [10–12]. This suggests that by modifying the electronic state and crystal structure
of Pd with transition metal electrocatalysts, with activity comparable to that of Pt, a possibility that
highly active Pd-based electrocatalysts may be achieved.

So far, there are several reviews on the activity of Pd- and Pt-based materials for PEFC
catalysts [5,6,13–20]. Antolini has reported on the ORR activity of alloys and so-called ordered
intermetallic compounds, which are atomically ordered stoichiometrically, unlike the random
structure of alloy compounds. Ordered intermetallic compounds can be expected to realize a
higher electrocatalytic activity when compared with random alloy compounds due to their long-term
chemical ordering, resulting in intermetallic compounds that can form homogeneously active sites. In
fact, most parts of ordered intermetallic compounds, such as PtxCoy, PtxFey, PtxNiy and PdxFey,
can exhibit a higher electrocatalytic activity towards ORR, compared with their random alloy
compounds [14]. Erikson has reviewed recent progress on the electrocatalytic activity towards ORR
over Pd-based materials. Size, substrate, morphology and the crystal structure effect have been
reviewed adequately [15].

In this review, we focus on the electrochemical oxidation of small organic compounds over Pt-
and Pd-based catalysts and compare the activities of Pd and various Pd-based electrocatalysts in terms
of the electrooxidation of formic acid in Section 2. In Section 3, the ORR activities of Pd and Pd-based
catalysts under both alkaline and acidic conditions are summarized. High-performance Pt-decorated
Pd and Pd bimetallic alloy electrocatalysts for ORR are also discussed in this section. Effective alloying
with intermetallic compounds and a core–shell structure can reduce Pd and Pt loading and increase
electrocatalytic activity.
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2. Electrocatalysts for Direct Fuel Cells

2.1. Electrocatalytic Activity for the Oxidation of Small Organic Compounds

Direct fuel cells, which use small organic compounds as fuel, have gained significant attention as
next-generation energy conversion systems, owing to their high energy density and use of low-toxicity
fuels. The electrochemical oxidation of small organic compounds can be catalyzed by Pt, Pd and their
bimetallic compounds. Pt is widely used to catalyze the electrooxidation of methanol and ethanol in
acidic media, owing to its strong adsorption and dissociation of methanol and ethanol [13,21]. Cai et al.,
Bianchini et al., Ma et al. and Xie et al. have reviewed the catalytic activities of Pt- and Pd-based
catalysts for the electrooxidation of ethanol in alkaline media and the electrooxidation of formic acid
and the corresponding reaction mechanisms [13,16,17,19]. The oxidation reaction proceeds via multiple
pathways with direct and indirect processes. However, the methanol and ethanol oxidation reactions
are kinetically limited because of the slow dissociative adsorption of methanol and ethanol and the
formation of a COad species on the surface of Pt [22]. Therefore, in the case of a Pt electrocatalyst, a high
overpotential is required for the oxidation of ethanol and methanol. The onset potential for methanol
oxidation over Pt is approximately 0.5 V versus RHE [21,23], because of which the effective voltage
for DMFCs is significantly lower than that of hydrogen fuel cells (FCs). Kodiyath and coworkers
showed that the electrocatalytic activity of intermetallic Pt3Ta towards ethanol oxidation is superior
to that of pure Pt. The reaction mechanism of ethanol oxidation over Pt3Ta has been elucidated
using potential-dependent in situ infrared reflection-absorption spectroscopy (IRRAS). It has been
reported that ordered intermetallic Pt3Ta nanocrystals can promote not only C–C cleavage, but also
the conversion of ethanol to CO2 [24].

Since formic acid can be easily oxidized to CO2 at low overpotentials, the oxidation of formic acid
over Pt has also been investigated extensively. The electrooxidation of formic acid can proceed via two
reaction pathways: The dehydrogenation and dehydration pathways. IRRAS studies have revealed
that carbon monoxide is formed as an intermediate during the electrodecomposition of formic acid
(because of its dehydration) [25–27]. The direct two-electron pathway for the conversion of formic acid
to CO2 proceeds as a minor pathway on the surface of Pt electrocatalysts [27,28]. Wang and coworkers
proposed a reaction pathway for the electrochemical oxidation of formic acid over Pt (111), based on
Vanderbilt-type ultra-soft pseudopotential calculations in both the gas and liquid phases [29,30].

2.2. Electrooxidation of Formic Acid on Pt-Based Electrocatalysts

Formic acid has gained immense attention as a fuel for direct fuel cells because the current density
for the electrooxidation of formic acid over Pd and Pd-based materials is much higher than that of
Pt-based electrocatalysts [6,31], because of their catalytically different pathways. The direct pathway
for the oxidation of formic acid produces CO2 (HCOOH→ CO2 + 2H+ + 2e−). In the CO pathway
(HCOOH→ CO + H2O), the dehydration of formic acid produces CO as an intermediate, which then
oxidizes to CO2 (CO + H2O→ CO2 + 2H+ + 2e−).

It is well-known that Pd and Pt are the main electrocatalysts for the oxidation of formic acid. The
electrooxidation of formic acid over Pt proceeds mainly via an indirect pathway, which involves the
formation of CO via the dehydration reaction of formic acid.

Pt + HCOOH→ Pt-CO + H2O (1)

Pt + H2O→ Pt-OH + H+ + e− (2)

Pt-CO + Pt-OH→ 2Pt + CO2 + H+ + e− (3)

The CO pathway proceeds preferentially when Pt is used as the electrocatalyst and the
intermediate CO formed by the CO pathway is adsorbed on the Pt surface. The water activation
reaction (2), which is necessary to remove CO from the surface of Pt, is difficult to proceed and hence
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reduces the electrocatalytic activity of Pt. An ideal formic acid oxidation electrocatalyst should function
via the dehydrogenation pathway (direct pathway) while avoiding its poisoning. Till date, several
efforts have been made to improve the direct pathway electrocatalytic oxidation of formic acid over
Pt-based compounds. For example, CO2 can be formed via the direct pathway by adding atomic Au to
the Pt lattice [32]. However, it is difficult to completely avoid the indirect pathway.

Abruña and coworkers have shown that ordered intermetallic PtBi and PtPb, which have a
NiAs-type structure, exhibit electrocatalytic formic acid oxidation superior to that shown by Pt–Ru,
Pd and Pt [33,34]. This can be attributed to the CO tolerance of intermetallic PtPb [35]. Moreover,
CO is not formed on the surface of intermetallic PtPb during the electrooxidation of formic acid and
methanol. This indicates that intermetallic PtPb electrooxidizes formic acid and methanol via the direct
pathway, in which CO is not formed [36]. These results indicate that the electrooxidation of formic
acid over Pt and intermetallic PtPb catalysts proceeds via different reaction mechanisms (i.e., the direct
pathway mainly proceeds on the intermetallic surface). In addition, ordered intermetallic PtPb and
PtBi show enhanced electrocatalytic activity towards the oxidation of small organic compounds in
alkaline media, and Pb and Bi in PtPb and PtBi can contribute to the electrooxidation of CO by forming
Bi-(OH)ad [37].

2.3. Electrooxidation of Formic Acid on Pd Electrocatalysts

Since the physicochemical characteristics of Pd (such as the electronic properties and crystal
structure) are similar to those of Pt, the electrooxidation of formic acid follows the same pathway on
the surface of both Pd and Pt. However, Pd and Pd-based electrocatalysts show significantly higher
catalytic activity towards the electrooxidation of formic acid than Pt electrocatalysts. This is because
the electrooxidation of formic acid over Pd proceeds mainly via the direct pathway, with the CO
pathway acting as the minor reaction [38,39]. The intermediate CO produced upon the dehydration
of formic acid reduces the electrocatalytic activity for formic acid oxidation due to CO poisoning
of the Pt and Pd surfaces. CO formation by dehydration of formic acid proceeded via the carboxyl
pathway (i.e., COOH*). Mavrikakis et al., calculated free-energy diagrams of formic acid oxidation
on Pt and Pd electrocatalysts, including the carboxyl pathway, formate pathway (i.e., HCOO*) and
indirect carboxyl-mediated mechanism [40]. According to their calculations, the reaction mechanisms
via formate and carboxyl have very similar onset potentials to Pd (111), in agreement with other
reported results [41]. On the other hand, the free-energy on Pt (111) is significantly higher for the
formate pathway than the carboxyl pathway. CO poisoning on the Pd surface is less than that on the Pt
surface because the HCOO* pathway can contribute to the overall activity. In addition, Melchionna has
reported on Pd-based core–shell catalysts, which underline the possibility of constructing reversible
catalysts for CO2 reduction/HCOOH oxidation [42]. Therefore, Pd is a promising catalyst for the
oxidation of formic acid. However, as discussed previously, a small amount of formic acid is still
oxidized via the indirect pathway [43].

Recently, Cai and coworkers proposed a novel reaction mechanism for the electrooxidation of
formic acid over Pd that is different from the pathways discussed above (direct and CO pathways).
They proposed (on the basis of high-sensitivity in situ surface-enhanced IR spectroscopy results) that
CO is formed by the electrochemical reduction of CO2, rather than the direct dehydration of formic
acid on the surface of Pd at potentials where adsorbed H species exist (Figure 1) [43–45]. The formation
of CO inactivates Pd catalysts, therefore, it is important to develop Pd-based electrocatalysts with a
high CO tolerance.
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2.4. Effect of Electronic State, Morphology and Structure on the Catalytic Activity of Pd towards Formic
Acid Oxidation

Since Pd exhibits the highest electrocatalytic activity (among metals) towards the electrooxidation
of formic acid, various efforts have been made to develop Pd-based compounds (Table 1). Co [47],
Ni [48,49], Cu [49,50], Pb [31] and HoOx [51] have been widely used to modify Pd in order to improve
its electrocatalytic activity towards formic acid oxidation (Table 1). Pd-based bi- and tri-metallic
compounds show higher electrocatalytic activity towards formic acid oxidation than pure Pd. The
electrocatalytic activity (towards formic acid oxidation) of Pd increases with a decrease in CO oxidation
potential. For example, the dealloying of ordered intermetallic Pd3Pb and Pd1.1/WO2.72, which exhibit
relatively high electrocatalytic activities towards formic acid oxidation, results in a lower peak potential
for CO stripping. On the other hand, in the case of Pt-based bimetallic compounds, if the d-band
center values are higher than those of pure Pt, the CO adsorption energies on their surface are lower
than that on the surface of pure Pt [49,52]. Hence, Au core–Pd shell (Au@Pd) structured nanoparticles
(core–shell structures, such as a T core–M shell structure, will hereinafter be denoted as “T@M”),
which have a high d-band center value [49], exhibit high CO tolerance, indicating that Au makes Pd
CO tolerant [49,53]. In fact, density functional theory (DFT) calculations have revealed that the CO
adsorption energy on Pd/Au (111) surfaces is significantly lower than that on pure Pd [54]. Therefore,
bimetallic Pd–Au shows high activity towards formic acid oxidation because of its high CO tolerance.
However, Au@Pd bimetallic compounds hardly show enhanced catalytic activity [49,53]. Therefore,
the d-band center values (i.e., CO adsorption energy on Pd) of Pd-based catalysts should be optimized.

Table 1. Mass activities (MA) at 0.3 V versus the reversible hydrogen electrode (RHE) of various
Pd-based catalysts for formic acid oxidation and CO stripping.

Catalyst MA (A mg−1
Pd) Concentration of

Formic Acid (mol L−1)
E for Peak Top of CO

Stripping (V versus RHE) References

Pd 0.35 0.1 1.00 [46]
Pd1.1/WO2.72 1.15 0.1 0.93 [46]

Pd@Au 0.52 3 0.872 [53]
8 nm Pd0.5Co0.5 0.18 a 2 - [47]
Pd nanosheets 0.3 a 0.25 - [55]
Pd@Ni1.6B0.02 0.21 a 0.5 0.939 [56]

Pd0.41Ag 1.7 a 0.5 - [57]
Pd–g-C3N4–rGO-2 1.02 0.5 0.96 [58]

Pd57Ni43 nanowires 0.62 0.5 - [48]
PdCu alloy multipods 0.15 1 0.96 [50]

PdAg/Ti0.5Cr0.5N 0.31 1 - [59]
Pd0.57Ni0.13Cu0.30 0.48 0.5 0.92 [49]

PdCu 0.38 0.5 0.909 [49]
PdNi 0.22 0.5 - [49]

UzCNT-Pd 0.71 - 1.01 [49]
Pd3Pb (dealloy) 1.00 0.5 0.906 [31]
a These electrocatalysts were measured by using Ag/AgCl as the reference electrode. The MAs in Ag/AgCl were
calibrated to RHE using the following equation: EAg/AgCl − ERHE = 0.0591pH + 0.21.
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Hu et al. prepared Pd-based bi- and tri-metallic compounds, such as Ru@Pd, PdNi, PdCu,
PdNiCu and Au@Pd, and evaluated their electrocatalytic activity towards the electrooxidation of
formic acid [49,60]. In addition, they also investigated the effect of the d-band center position (as
determined by X-ray photoelectron spectroscopy) on their activity towards the electrooxidation of
formic acid (Figure 2). The d-band center value of Pd-based materials can be tuned (for improving the
catalytic activity) by forming PdCuNi trimetallic compounds. This indicates that Pd-based materials
show electrocatalytic activity towards formic acid oxidation only at optimum d-band center values.
This can be explained by the following reaction mechanism:

HCOOH + Pd→ HCOO-Pd + H+ + e− (4)

HCOO-Pd→ Pd-H + CO2 (5)
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In order to proceed via the direct pathway, HCOOad should be formed on Pd (i.e., HCOO–Pd).
Therefore, the strength of the Pd–O bond is very important to realize the high catalytic activities of
Pd-based catalysts. When the d-band center of Pd is away from the Fermi level, the bond between Pd
and the intermediate becomes weak. On the other hand, when the d-band center is significantly close
to the Fermi level, the bond between Pd and the intermediate becomes strong. Therefore, Pd shows
electrochemical activity towards formic acid oxidation at the optimum d-band center position.

It is well-known that the electrocatalytic activities (towards ORR and the oxidation of organic
compounds) of Pd- and Pt-based materials are significantly affected not only by their electronic states
but also by their crystal structures. For example, Pt3Ni (111) shows a much higher electrocatalytic
activity towards ORR than Pt3Ni (100) and Pt3Ni (110). Interestingly, Pt3Ni (110), which has a d-band
center value is −2.70 eV, shows an ORR activity 2.5 times higher than that of Pt (111), which has a
similar d-band center value (−2.76 eV) [61]. This indicates that the electrochemical activities of Pd-
and Pt-based catalysts are affected more by their secondary material and surface structures than their
electronic states. Therefore, in order to develop Pd-based materials with high electrochemical activities,
it is very important to create ideal surfaces and morphologies.

Electrocatalysts with morphology-dependent activity have been developed as novel active
electrocatalysts. Yang and coworkers developed Cu–Pd alloy multipods and evaluated their
electrocatalytic activity towards formic acid oxidation [32]. These multipods showed high catalytic
activities, as illustrated in Figure 3, because of the presence of a large number of active edges/corner
atoms in their unique multipod structure. The Cu–Pd alloy multipods were prepared by the galvanic
replacement reaction between presynthesized Cu-template nanoparticles and Pd2+ ion precursors.
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The electrocatalytic activities and electronic states of these Cu–Pd alloy multipods were compared
with those of the Cu–Pd and Pd nanoparticles. The Cu–Pd alloy multipods showed a lower d-band
center than the Cu–Pd and Pd nanoparticles, indicating that they show a higher electrocatalytic activity
towards both the electrooxidation of formic acid and ORR, owing to their unique structure. The
procedure proposed by Yang and coworkers for the synthesis of these multipods can be a promising
approach to develop other bimetallic Pd- and Pt-based alloy multipods.Inorganics 2019, 7, x FOR PEER REVIEW 7 of 23 
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Over the past few years, electrochemically dealloyed Pt-based bimetallic compounds have gained
immense attention as ORR electrocatalysts. For example, the removal of Cu (by electrochemical
treatment) from Pt–Cu results in the formation of a Pt-rich core–shell nanostructure, which shows a
higher ORR activity than both nontreated Pt–Cu and Pt nanoparticles [52,54]. A three to five layered
Pt-rich shell, which can be obtained by a potential cycling of up to 5000 cycles, can enhance the
ORR activity of Pt-based core–shell nanostructures [62,63]. The electrochemical treatment used for
dealloying the secondary material in Pt-based bimetallic alloy catalysts plays an important role in
enhancing their electrocatalytic activities.

Catalysts for formic acid electrooxidation should possess a high electrocatalytic activity and CO
tolerance. In the case of Pt-based materials, structurally ordered intermetallic compounds, such as PtPb,
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PtBi, Pt3Ti, Pt3Hf and Pt3Ta, exhibit a high CO tolerance because of their electronic efficiency, including
the d-band center [52,64,65]. Herein, we have reviewed ordered intermetallic Pd3Pb electrocatalysts
for formic acid oxidation [31]. Figure 4 shows the electrocatalytic activity towards the formic acid
oxidation of dealloyed ordered intermetallic Pd3Pb. The electrochemical treatment of intermetallic
Pd3Pb results in the formation of an ordered intermetallic Pd3Pb core with a Pd-enriched surface
(i.e., Pd3Pb@Pd). The first and second oxidation peaks for Pt and Pd correspond to the direct and
CO oxidation pathways, respectively. On the other hand, no secondary oxidation peak was observed
in the case of ordered intermetallic Pd3Pb, indicating that CO2 is formed directly on the surface of
intermetallic Pd3Pb, without dehydration and CO adsorption. The CO binding energy of Pd3Pb (111)
(1.05 eV) is lower than that of Pd (111) (1.29 eV). This is consistent with the predictions made on the
basis of the measured and calculated d-band center values. This suggests that ordered intermetallic
Pd3Pb/CB is more tolerant to CO adsorption and hence shows a higher formic acid electrooxidation
than Pd NPs/CB. The higher electrocatalytic activity of intermetallic Pd3Pb can be attributed to the
electrochemical dealloying process.Inorganics 2019, 7, x FOR PEER REVIEW 8 of 23 
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Figure 4. (A) Linear sweep voltammograms for oxidation of formic acid on (a) intermetallic Pd3Pb
electrochemically treated for 50 cycles, (b) Pd, (c) Pt and (d) Pt–Ru alloy. (B) Cyclic voltammograms
for CO stripping over (a) Pd3Pb electrochemically treated for 50 cycles and (b) Pd. (C) Experimentally
measured (black square) and density functional theory (DFT) calculated (black circle) d-band centers
for Pd and intermetallic Pd3Pb structures. Reproduced with permission [31]. Copyright 2017, American
Chemical Society.

In order to improve the electrochemical activity and durability of Pt- and Pd-based catalysts,
electrochemically stable supporting materials, which modify the electronic structure of the catalysts, are
extensively used [66,67]. However, when carbon nanotubes (CNTs) are used as the supporting material
for Pd nanoparticles (Pd/CNT), no significant improvement is observed in formic acid electrooxidation
and CO stripping [68].

Recently, Raj et al., developed a novel electrocatalyst using unzipped (Uz) single-walled CNTs
(SWCNTs) as a support for Pd nanoparticles. The unzipped SWCNTs were prepared via a one-pot
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synthesis method [69] without using harsh oxidizing agents. The Uz-CNT-Pd catalyst that was
prepared showed a significantly higher formic acid electrochemical oxidation activity than the
SWCNT/Pd and unsupported Pd nanoparticles (Figure 5). The onset potential for CO electrooxidation
over Uz-CNT-Pd was −80 mV lower than that over Pd nanoparticles. This indicates that CO oxidation
was facile in the case of Uz-CNT-Pd. In addition, the electrochemical surface area (as calculated from
the magnitude of the peak area for CO oxidation) of Uz-CNT-Pd was approximately 2.5 times higher
than that of the Pd nanoparticles. The electronic interaction between the unzipped SWCNTs and Pd
nanoparticles facilitated the electron transfer required for the electrooxidation of the formic acid. We
believe that this approach can be used to develop graphitic carbon-coated electrocatalytically active
Pd- and Pt-based materials.Inorganics 2019, 7, x FOR PEER REVIEW 9 of 23 
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3. ORR

3.1. ORR on Metal Catalysts

ORR, which uses Pt as the cathode catalyst, are one of the key types of reactions in the field of
PEFCs. However, the slow reaction kinetics for ORR at the cathode and the use of the expensive Pt
electrocatalyst limit the widespread commercialization of PEFCs. In acidic solutions, Pt is the best ORR
electrocatalyst because of the optimal adsorption energy between molecular oxygen and Pt atoms.
However, in order to reduce the cost of PEFCs, it is imperative to develop low-cost alternatives
to Pt-based electrocatalysts. Hence, various efforts have been made to develop cost-effective
electrocatalysts (using relatively abundant elements) for PEFCs. In his review, Raj discussed
various Pt-free catalysts using non-precious transition metals, metal nitrides, carbides and nanoscale
carbon-based metal-free electrocatalysts [5]. According to Hammer and Stamenkovic et al. [70,71],
the ORR electrocatalytic activity of metal catalysts is strongly affected by their electronic states, in
particular, the position of the d-band center in the valence band, which is determined using DFT
calculations and ultraviolet photoemission spectroscopy. Figure 6 shows the relationship between
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the d-band center value of various metals and their ORR activities under alkaline conditions, as
reported by Lama and coworkers [72]. As can be observed from the figure, a volcano-type relationship
exists between the d-band center values of the pure metal catalysts and their electrocatalytic activities
towards ORR.Inorganics 2019, 7, x FOR PEER REVIEW 10 of 23 
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nanoparticles in a 0.1 mol L−1 NaOH solution as a function of the metal d-band center. Reproduced
with permission [72]. Copyright 2007, American Chemical Society.

3.2. ORR on Pd-Based Catalysts in Alkaline Media

Pd is a promising electrocatalyst that could act as an alternative for Pt for alkaline ORR because
its ORR activity is comparable to that of Pt in alkaline media (Table 2). Recently, we reported that
the ORR activity of Pd–M (M = Ni, Co, and Fe), prepared by electrochemical potential cycles, was
higher than that of Pd after 1500 cycles because the d-band center value of Pd–M was reduced relative
to pure Pd, based on hard X-ray photoemission spectroscopy and computational calculations [73].
Several researchers have also reported that ordered intermetallic Pd3Pb has significantly increased
electrocatalytic activity for ORR in alkaline media [8,74–77]. Electrocatalytic activity over intermetallic
Pd3Pb strongly depends on the nanoparticle morphology. For ORR in alkaline media, spherically
ordered intermetallic Pd3Pb nanoparticles were reported first by Cui et al. in 2016 [74]. The
electrocatalytic activities for ORR over ordered intermetallic Pd3Pb, having nanowire, tripod, and
nanoplate morphologies, reported by Shi et al., Huang et al. and Luo et al., respectively, were more
than three times higher than that of the spherical Pd3Pb nanoparticles [8,75–77]. Huang et al. proposed
that a coupled s-p-d exchange effect on the (110) facets of the Pd3Pb tripods improves the ORR catalytic
activity in alkaline media. According to their first-principle calculations, the charge exchange between
the Pd-4d and Pb-(sp) regions on the Pd3Pb tripods (110) facet results in a Pd–Pb local bonding
unit that has an orbital configuration similar to that of Pt [75]. This result indicates that the ordered
intermetallic Pd3Pb can be used as an alternative catalyst to Pt. Pd is an excellent electrocatalyst for
methanol oxidation in alkaline media, implying that methanol is easily adsorbed on the Pd surface,
resulting in reduced ORR activity in alkaline media. Therefore, Pd-based electrocatalysts with tolerance
for methanol adsorption must be developed. Recently, many researchers have developed Pd-based
electrocatalysts with no electrocatalytic activity towards methanol oxidation in alkaline media. Lin et al.
reported that ordered intermetallic Pd3Pb has high ORR selectivity in the presence of methanol in
alkaline electrolytes [8]. Chen et al. have demonstrated a novel approach for the preparation of
Au-nanowire-@Pd bimetallic nanohybrids, functionalized by polyethylenimine (PEI), which have
increased electrocatalytic activity towards ORR and increased methanol tolerance when compared with
Pt electrocatalysts in alkaline media [78]. According to their report, PEI exhibits a methanol-phobic
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behavior. Therefore, this result shows that highly active Pd-based materials for alkaline ORR can
exhibit a methanol tolerance because of PEI functionalization.

Table 2. MA at 0.9 V (versus RHE) and half-wave potentials (E1/2) for ORR by various Pd-based
catalysts in an O2-saturated 0.1 M KOH aqueous solution.

Catalyst MA at 0.90 V/A mg−1
Pd E1/2/V versus RHE References

Pd3Pb nanoparticles 0.17 0.92 [74]
Pd3Pb nanowires (NWs) 0.61 0.92 [8]

Pd3Pb tripods 0.56 0.91 [75]
Pd3Pb square nanoplates 0.62 0.91 [76]
Pd3Pb square nanoplates 0.78 0.88 [77]

Pd/W18O49 0.22 0.88 [79]
Pd-B 0.15 0.88 [80]

Pd@Pd-Ni MWCNTs 0.071 0.87 [78]
Au NWs@Pd@PEI 0.30 0.90 [81]

Pd3Fe 0.097 0.89 [82]

3.3. Electrocatalytic Activity of Pd-Based Materials towards ORR in Acidic Media

Metals with high d-band center values, such as Ru, Ir and Rh, show low electrocatalytic activities
because of the high adsorption strength of O2. These metals can easily dissociate the O–O bond.
However, this results in a high coverage by oxygenated intermediates, which are slowly desorbed. On
the other hand, in the case of metals with d-band centers away from the Fermi level (i.e., a low-band
center), such as Ag and Au, it is difficult for oxygen and the metal catalyst to react, which results in
poor electrocatalytic activity. Among all pure elements, Pt has the ideal d-band center for ORR under
acidic conditions. Since the electronic state of Pt can be easily modified by alloying, various efforts
have been made over the past few decades to develop Pt-based electrocatalysts. Stamenkovic and
coworkers have shown that a volcano-type relationship exists between the ORR activity and d-band
center values of Pt catalysts obtained by alloying with transition metals such as Co, Ni, Fe and Ti [10].
Mentus and coworkers investigated the relationship between the d-band centers of bulk alloys of Pt
with transition metals (M = Au, Pd, Cu, Bi and Pb) and the alloy composition. They reported that in
Pt-M bimetallic compounds with a 1:1 ratio, Pb and Bi contribute to the decrease in the d-band center
value [83]. Although significant progress has been made in the field of PEFCs, the high cost of Pt-based
catalysts is the major limitation to the widespread commercialization of PEFCs. Therefore, efficient
and low-cost alternatives to Pt-based catalysts should be developed. Various studies have been carried
out to develop ORR electrocatalysts using low-cost materials.

Pd-based catalysts have gained immense attention as potential alternatives to Pt for ORR. This is
because with the exception of Pt, Pd shows the highest electrocatalytic activity towards ORR. Therefore,
various Pd-based compounds with high electrocatalytic activity towards ORR in acidic media have
been developed (Table 3). In acidic media, ORR proceeds via the four- and two-electron pathways, as
shown below:

O2 + 4H+ + 4e− → 2H2O (6)

O2 + 2H+ + 2e− → H2O2 (7)

The reaction mechanism of ORR strongly depends on the electrode materials, electrolyte and
electrocatalyst. It is well known that Pt and Pd can induce a four-electron reduction in ORR. On the
other hand, the production of H2O2 by a two-electron reduction of oxygen also possesses a significant
advantage. So far, there are several reports on the synthesis of H2O2 through ORR. Pt polycrystalline
with ammonium ions [84], Pt–Hg [85], Pd–Hg [85,86] Pd–Au [87] and Au [88] have been used as
electrocatalysts for the synthesis of H2O2. In hydrogen-oxygen fuel cells, the four-electron transfer
from ORR to H2O is highly preferred because of its high-power generation.
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Table 3. MA at 0.9 (0.85) V versus RHE and E1/2 for ORR of various Pd-based catalysts in an
O2-saturated HClO4 aqueous solution.

Catalyst MA at 0.90 (0.85) V/A mg−1
Pt or Pd E1/2/V versus RHE References

Pt 0.21–0.23 about 0.826 [89–91]
Pd (0.03–0.025) about 0.78 [92]

PdNiCo NPs 0.047 (0.137) 0.86 [92]
PdCu 0.041 (0.156) 0.85 [93]

PdCu3 at 600 ◦C (0.10) a 0.82 [94]
PdCu3 dealloyed 0.047 0.88 [95]

Pd8CoZn 0.019 (0.141) 0.84 [96]
NP-Pd0.75Cr0.25 0.158 0.89 [97]

PdCu alloy multipods - 0.819 [50]
C-fct-Fe46Pd54 0.1 0.87 [98]

v-PdCuCo 0.175 0.91 [99]
Pd3Fe (0.12) 0.80 [100]
Pd3Fe (0.6) 0.85 [101]

a O2-saturated 0.6 M HClO4.

In the case of ORR in acidic conditions, the electrocatalytic activity of Pd has a significantly
lower electrocatalytic activity than that of pure Pt because Pd has a higher d-band center value than
Pt, which results in the strong adsorption of oxygen during the initial stage of the ORR. Thus, to
develop Pd-based electrocatalysts with high electrocatalytic activity towards ORR in acidic media, it
is necessary to control their electronic crystal structures and properties. Recently, bimetallic Pd alloy
compounds such as Pd–Fe, Pd–Co, Pd–Ni and Pd–Cu have gained immense attention as ORR catalysts
because their activities are comparable to those of Pt and Pt-based catalysts [92–101].

3.4. The Development of Electrocatalysts for ORR Based on Theoretical Calculations

Lihui proposed a criterion (based on the negative alloy formation energy, negative surface
segregation energy of Pd and oxygen binding ability) for screening Pd-based bimetallic electrocatalysts
for ORR. The values of alloy formation energy (∆Ealloy), surface segregation energy (∆Esegregation)
and oxygen binding energy (∆EO) of Pd-based bimetallic alloy catalysts, obtained via numerical
simulations, indicated that elements such as Fe, V, Zn, Nb, Mo, Ta and W enhance the ORR activity
of the catalysts [102], as shown in Figure 7. However, the formation energies of Pd–Mo and Pd–W
alloys are almost zero, indicating that the stability of these alloys is poor. Pd–Fe shows excellent
electrocatalytic activity towards ORR in terms of the three factors (mentioned above), as predicted by
DFT calculations. Although there are various reports on the effect of alloying elements such as Co,
Cu, Cr, Fe and Ni on the ORR activity of Pd-based catalysts, the effect of Zn, Nb and Ta should also
be investigated.
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Computational studies have shown that Pd–Cu catalysts show ORR activity comparable to that of
Pt. There are several possible structures for Pd–Cu electrocatalysts, such as B2, L12, L10, L11-nonlayered
and L11-layered [103]. The experimental results reported by various researchers have revealed that
Cu-doped Pd electrocatalysts exhibit high electrocatalytic activities [50,93–95]. Numerical simulations
have revealed that body-centered cubic structured Pd–Cu shows poor catalytic activity, while catalysts
with a layered L11 surface show significantly faster ORR kinetics than pure Pd. On the other hand,
Pd–Cu bimetallic catalysts with structurally dependent activities have been also been developed.
Ordered intermetallic B2-type structured Pd–Cu nanoparticles have been prepared by a seed-mediated
co-reduction method [93]. Ordered Pd–Cu B2 nanoparticles show higher ORR activity than disordered
Pd–Cu nanoparticles. However, since the surface structure of bimetallic compounds can change under
acidic conditions, it is necessary to consider a secondary material-free surface structure.

In one of our studies, we developed structurally ordered intermetallic electrocatalysts with
excellent ORR activity in acidic media. Figure 8 shows the binding energy strength between the
electrocatalyst surface and the dissociated O, as predicted by DFT calculations. The DFT calculations
revealed that Pd-based catalysts can show electrocatalytic activities higher than those of Pt and
Pt-based compounds. Interestingly, the binding energy between the dissociated O atoms and the Pd
sites in PdCu3 decreased significantly after electrochemical dealloying (i.e., the activity was increased
by the electrochemical treatment). The binding energy of the dissociated O atoms (4.36 eV) on
electrochemically dealloyed PdCu3 is similar to that of Pt3Ni (111) [104]. However, the measured
(on the basis of the onset and half-wave potentials) ORR electrocatalytic activity decreased in the
following order: Pt > dealloyed PdCu3 NPs/CB > Pd NPs/CB. The difference between the ORR
activities (measured using DFT calculations) of the dealloyed PdCu3 and Pt can be attributed to
the difference in the number of their active reaction sites [95]. This study demonstrated that by
carrying out electrochemical dealloying and modifying the electronic state of Pd-based electrocatalysts,
electrochemical activity comparable to that of Pt and Pt-based electrocatalysts can be achieved.
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It is well-known that the ORR activity of Pt- and Pd-based electrodes significantly depends on
their crystal structures. For example, Hoshi and coworkers evaluated the ORR activity of low-index
faceted Pd, such as Pd (100), Pd (110) and Pd (111). The ORR activity increased in the following order:
Pd (110) < Pd (111) < Pd (100). This trend is opposite to that shown by Pt [105]. In particular, the
ORR activity of Pd (100) is three times higher than that of Pt (110), which shows the highest activity
among the low-index facets of Pt. Meku and coworkers reported that ordered intermetallic Pd3Fe
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nanoparticles, in which Pd3Fe has a super lattice structure (Cu3Au type structure), show a much higher
electrocatalytic activity towards ORR and durability than pure Pd and atomically disordered Pd–Fe
(FCC type structure) [106]. The dissolution of Pd under acidic conditions reduces the electrode stability
of Pd and Pd-based compounds and consequently can decrease their ORR activities.

3.5. The Development of Electrocatalysts with Simultaneously Improved Activity and Durability

Wang and coworkers prepared Au-modified Pd-based ternary nanocatalysts (Au-Pd6CoCu)
using the spontaneous replacement method, as shown in Figure 9. These catalysts showed durability
comparable to that of Pt. The Au-modified Au-Pd6CoCu electrode showed higher ORR activity
(comparable to that of pure Pt) than pure Pd. In addition, during the durability test (in which the
catalysts were subjected to potential cycles), Au-Pd6CoCu showed a much lower MA loss (around
16%) [92] than the commercially available Pt (32%) [107]. Only a trace amount of Au (Pd:Au = 100:1)
is required to enhance the durability (for ORR) of Pd-based electrocatalysts. Wang et al. also
demonstrated that trimetallic PdCuAu nanothorn assemblies have a large durability in acidic media
because of their special morphology and the presence of Au [108]. Thus, this approach can be used
to develop Pd-based electrocatalysts with a durability higher than that of Pt and state-of-the-art
Pt-based compounds.
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Figure 9. (A) Schematic of the preparation of Au-doped ternary PdCoCu. (B) Comparison of ORR
polarization curves of various Pd-based catalysts in an O2-saturated 0.1 M HClO4 solution with a
sweep rate of 5 mV s−1. (C) Anodic sweep voltammograms for ORR on Pd6CoCu/C before and after
1000 potential cycles, and (D) the anodic sweep voltammograms for ORR on Au-Pd6CoCu/C before
and after 10,000 potential cycles [92].
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Electrocatalysts (for ORR) for DMFCs should also be methanol tolerant under acidic conditions, as
methanol is used as a common fuel for these fuel cells. Therefore, for the commercialization of DMFCs,
the ORR activity of the electrocatalyst should not be affected by the presence of methanol (which is
mixed by the methanol crossover process) in the electrolyte. In the case of Pt electrocatalysts, the
overpotential towards ORR under a methanol environment significantly increases to approximately
200 mV because methanol blocks hinder the ORR. The decrease in the ORR electrocatalytic activity of
Pt and Pt-based electrocatalysts in the presence of methanol is caused by the adsorption of methanol
molecules on the active sites for ORR. In contrast, the ORR half-wave and onset potentials of PdCu3

and PdFeIr are not significantly affected by the presence of methanol [95,109]. These results indicate
that Pd-based compounds are potential electrocatalysts for DMFCs.

3.6. Pt-Decorated Pd and Pd Bimetallic Alloy Catalysts for ORR Electrocatalysts in Acidic Media

Recently, several efforts have been made to develop Pd-based ORR electrocatalysts with small
amounts of Pt. The MA of Pt towards ORR can be improved by coating with Pt, as electrocatalytic
reactions proceed on the surface of electrocatalysts. In particular, electrocatalysts with a Pd@Pt
structure are both cost-effective and highly efficient. Wang and coworkers demonstrated that the
ORR activity of Pd@Pt catalysts strongly depends on the Pt–Pt distance on monolayer Pt on various
single crystal surfaces, which is measured by the extended X-ray absorption fine structure [110].
They obtained a linear relationship between the lattice strain and the ORR activity of the catalysts.
These results can be helpful for preparing highly active core–shell-type ORR electrocatalysts with
short Pt–Pt distances. Xia and coworkers investigated the relationship between the ORR activity
and thickness of Pt-shell-Pd nanocrystals [111]. The Pd@Ptn shell (n = 1–6 layers)-type structure can
enhance the electrocatalytic activity and durability during ORR in terms of the specific activity. A
volcano-shaped relationship was obtained between the ORR specific activity and the number of Pt
layers of the catalysts. Among all the Pd@Ptn catalysts, the Pd@Pt2 layer showed the best ORR specific
activity (even better than that of Pt). According to the DFT calculations, the enhanced ORR specific
activity of the Pd@Pt2 layer can be attributed to the weakening of OH bonds. This occurs because of the
ligand and strain effects, which increase the rate of OH hydrogenation. The experimental results were
consistent with those obtained computationally. These results suggest that Pd@Pt electrocatalysts show
better performance than carbon-supported Pt. The Pd@Pt structure is promising for achieving the US
Department of Energy specifications, which are as follows: A lifetime of 5000 h, a mass activity over
0.44 A mg−1 (per platinum group metal) and 10.1 A $−1 [112]. Indeed, the Adzic group has reported
that the electrocatalytic activities, normalized by the price of Pt group metals, of Pd@Pt-type structures
can surpass the standards specified by the US Department of Energy [113]. Various efforts have been
made to modify the Pt–Pt distance and electronic state of the surface of Pd-based compounds in Pd
(Pd–M)@Pt shell electrocatalysts (Table 4).

Table 4. MA and specific activity (SA) at 0.9 V versus RHE for the ORR of various Pd or Pd-based
core–Pt shell catalysts in an O2-saturated 0.1 M HClO4 aqueous solution.

Catalyst MA at 0.90 V/A mg−1
Pt SA at 0.90 V/A m−2 Ref

Pt 0.20–0.23 0.23–0.31 [89–91]
Pd@Pt 0.34, 0.8 - [111,114]

PdNR@PtML 1.81 0.93 [115]
Au60Pd40@Pt 1.82 2.2 [116]

Pt-enriched nanocage 1.12 2.48 [117]
Pd@Pt concave

decahedra 1.60 1.66 [118]

Pd8CoZn@Pt 2.62 4.76 [96]
Pd42Fe58@Pt 2.8 - [119]

Pd@PtNi 2.5 2.7 [120]
Pd@Pt3Ni(Pt-skin) 16.7 14.2 [121]
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Abruña et al. and Wang et al. prepared electrocatalysts with a Pt-decorated Pd-M@Pd
core–shell-type structure by the spontaneous displacement of Pd with Pt. This structure improved the
MA of the catalysts by more than 10 times [9,119]. The deposition of Pt on Pd and Pd-based compounds
in order to create core–shell structures is strongly affected by particle size and the secondary materials
used, such as Fe [119]. Markovic and coworkers demonstrated that in acidic media, the specific activity
towards ORR of Pt (111) is more than two times higher than that of Pt (100) [122]. Moreover, Xia and
coworkers also showed that Pt octahedral nanocages having Pt (111) facets have a higher activity
towards ORR than Pt cubic nanocages with (100) facets, indicating that Pt nanostructures with (111)
facets show good ORR electrocatalytic activity [102]. However, no significant improvement is observed
in the ORR activity of Pd nanostructures upon the incorporation of Pt (111) facets [123].

Li and coworkers developed ultra-thin icosahedral Pt-enriched nanocages through the selective
removal of icosahedral Pd from Pd@Pt using a nitric acid solution [117], as shown in Figure 10. Among
the nanocages with low-index facets, the icosahedral Pt-enriched nanocages with Pt (111) facets showed
the highest electrocatalytic activity towards ORR. The as-prepared Pt-enriched nanocages showed
between 7 and 10 times higher MA and specific activity, respectively, than JM Pt/C.
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Figure 10. (a) Linear sweep voltammograms for ORR over Pt nanoparticles, core–shell Pd–Pt and
Pt-enriched nanocages in an O2-saturated 0.1 M HClO4 solution with a sweep rate of 10 mV s−1 and
(b) the corresponding Tafel plots. (c) Cyclic voltammetry curves in an N2-saturated 0.1 M HClO4

solution with a sweep rate of 10 mV s−1 and (d) the MA for these three catalysts at 0.9 V versus RHE.
Reproduced with permission [117]. Copyright 2016, American Chemical Society.

Recently, it has been reported that Pt-decorated ternary nanoparticles show enhanced ORR
activity [96]. Wang and coworkers prepared ternary PdxCoZn (x = 0, 4, 8 and 12) and Pt-decorated
Pd8CoZn and evaluated their electrocatalytic activity and durability for ORR. They showed that a
composition of Pd:Co:Zn = 8:1:1 was optimum for enhanced ORR activity. The ORR MA of Pt-coated
Pd8CoZn nanoparticles at 0.9 V was about 27 times higher than that of the commercially available
Pt/C. This approach can be helpful for the development of Pt-coated Pd-based ternary catalysts with a
large number of active sites for ORR.

The use of Pd core materials in electrocatalysts can surpass conventional Pt-based electrocatalysts.
Among the Pt-based electrocatalysts for ORR, the Pt–Ni bimetallic electrocatalyst is the best
choice. For example, Stamenkovic et al. reported that the mass activity at 0.9 V versus RHE of
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a PtNi3 nanoframe is 5.7 A mg−1
Pt, much higher than that of state-of-the-art Pt nanoparticles [124].

Moreover, the electrocatalytic activity of Pt3Ni is significantly improved by transition metal doping.
In particular, Mo-doped Pt3Ni showed the best ORR electrocatalytic activity at that time (mass
activity = 6.98 A mg−1

Pt) [125]. Recently, Huang et al. presented Pd@Pt3Ni (Pt skin) nanoparticles
(mass activity = 14.2 A mg−1

Pt), which exhibited the highest electrocatalytic activity towards ORR
ever recorded, more than those of state-of-the-art Pt–Ni catalysts [121].

4. Conclusions

Electrocatalysts developed over recent years can be classified into three categories: (1) Pd-based
materials for formic acid oxidation, (2) Pd-based materials for ORR, and (3) Pd-core–Pt
shell-structured catalysts. Various advances made in the development of electronically modified and
morphology-controlled Pd-based electrocatalysts for formic acid oxidation have been discussed in this
review. Secondary materials such as Co, Ni, Cu, Pt and Au play an important role in the modification
of the electronic states (i.e., tuning the d-band center) of Pd-based electrocatalysts. The formic acid
oxidation activity of these catalysts depends on the downshift of the CO oxidation voltage. However,
since HCOOad should be formed on Pd sites in the initial stage of formic acid oxidation, the catalyst
should have an optimum d-band center value for high electrocatalytic activity. The d-band center
value can be tuned by the formation of Pd-based ternary materials. Electrochemical dealloying is
an effective approach to prepare electrocatalysts with high activities. For example, electrochemically
treated intermetallic Pd3Pb exhibits a significantly higher electrocatalytic activity than Pd NPs/CB.

Since Pd shows physicochemical characteristics similar to those of Pt and a higher methanol
tolerance than Pt, Pd-based materials are potential catalysts for ORR under acidic conditions. Although
Pd–Cu bimetallic compounds with electrocatalytic activity higher than that of Pt have not been realized
experimentally yet, theoretical calculations have shown that Pd-based compounds are promising
electrocatalysts. DFT calculations have revealed that the adsorption energy of dissociate O on Pd-based
electrocatalysts is similar to that of Pt. Further investigation of Pd-based bimetallic catalysts for
ORR is necessary. Although, the low stability of Pd during ORR under acidic conditions limits their
application for PEFCs. Only a trace amount of Au is required to improve the ORR durability of
Pd-based electrocatalysts. Intermetallic Pd3Pb has enhanced ORR activity in alkaline media when
compared with pure Pd and Pt. Pt-based materials have realized activities higher than 10 A mg−1

Pt

under acidic conditions, based on their mass activity. In contrast, the mass activities towards ORR in
alkaline media remain less than 1 A mg−1

Pd when Pd-based materials are used as electrocatalysts. No
published work has provided answers to the following two important questions: (i) Why can Pd-based
materials with higher ORR activities than Pt-based materials under acidic conditions not be developed,
although theoretical studies exhibit that Pd-based materials are promising electrocatalysts? Secondly,
what is the key factor for improving the electrocatalytic activity towards ORR in alkaline media (i.e.,
why does the pure Pd electrocatalyst have almost the same activity as pure Pt towards ORR in alkaline
media, despite Pd having a significantly higher d-band center and O adsorption energy than Pt)?
Extensive research efforts, both experimental and theoretical, are required to answer these questions.
We believe that these results will accelerate the development of novel electrocatalysts.
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