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Abstract: 9-Dimethyloxonium, 10-dimethyloxonium, 9-methoxy and 10-methoxy derivatives
of nido-carborane (9-Me2O-7,8-C2B9H11, 10-Me2O-7,8-C2B9H11, [9-MeO-7,8-C2B9H11]−, and
[10-MeO-7,8-C2B9H11]−, respectively) were prepared by the reaction of the parent nido-carborane
[7,8-C2B9H12]− with mercury(II) chloride in a mixture of benzene and dimethoxymethane.
Reactions of the 9 and 10-dimethyloxonium derivatives with triethylamine, pyridine,
and 3-methyl-6-nitro-1H-indazole result in their N-methylation with the formation of the
corresponding salts with 9 and 10-methoxy-nido-carborane anions. The reaction of the symmetrical
methoxy derivative [10-MeO-7,8-C2B9H11]− with anhydrous FeCl2 in tetrahydrofuran in the
presence of t-BuOK results in the corresponding paramagnetic iron bis(dicarbollide) complex
[8,8′-(MeO)2-3,3′-Fe(1,2-C2B9H10)2]−, whereas the similar reactions of the asymmetrical methoxy
derivative [9-MeO-7,8-C2B9H11]− with FeCl2 and CoCl2 presumably produce the 4,7′-isomers
[4,7′-(MeO)2-3,3′-M(1,2-C2B9H10)2]− (M = Fe, Co) rather than a mixture of rac-4,7′- and
meso-4,4′-isomers.

Keywords: nido-carborane; iron bis(dicarbollide); cobalt bis(dicarbollide); dimethyloxonium
derivatives; methoxy derivatives; synthesis; properties

1. Introduction

Cyclic oxonium derivatives of polyhedral boron hydrides are well studied due to their use
as convenient starting compounds for the preparation of various functional derivatives [1,2].
In particular, this approach was used for synthesis of various derivatives of nido-carborane, including
boron-containing biomolecules [3–5] and crown ethers [6,7]. At the same time, in the literature there
are only a few examples of acyclic oxonium derivatives of polyhedral boron hydrides [8–14], and to
the best of our knowledge, there are no examples of dimethyloxonium derivatives.

In this contribution we describe synthesis of dimethyloxonium derivatives of nido-carborane
[9-Me2O-7,8-C2B9H11] and [10-Me2O-7,8-C2B9H11], their demethylation reactions to the corresponding
methoxy derivatives [9-MeO-7,8-C2B9H11]− and [10-MeO-7,8-C2B9H11]− as well as the formation of
ferra- and cobaltacarborane complexes thereof.
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2. Results and Discussion

Electrophile-induced nucleophilic substitution (EINS) reactions of nido-carboranes with a various
nucleophiles are well known and widely used for their modification. Typical are HgCl2-mediated
reactions of nido-carborane with nucleophilic solvents resulting in the [10-L-7,8-C2B9H11]
(L = 1,4-dioxane [15], tetrahydrofuran [15,16], tetrahydropyran [17], alkylnitriles [18], and pyridine [16])
derivatives. It is assumed that initially formed mercuric derivatives [19,20] decompose at elevated
temperatures to form quasi-borinium cations, which acts as the potent Lewis acids [21] react with
nucleophilic solvent molecules. The corresponding acyclic oxonium derivatives of polyhedral boron
hydrides are much less studied and limited mainly by diethoxy derivatives [8–14]. Since dimethyl ether
is gaseous under normal conditions, working with it at elevated temperatures is possible only with the
use of high-pressure vessels that is normally unacceptable in common laboratories.

The comparative analysis of 1H NMR spectral data of a series of polyhedral boron hydride
derivatives BL (L = SMe2, 1,4-dioxane) and the corresponding MX5L complexes (M = Nb, Ta; X = F, Cl)
demonstrated their very close similarity that could be explained by comparable electronic effects of
the metal and boron moieties in these compounds [22]. It is known that NbCl5 is effective reagent for
removal of the methoxy methyl ether protecting group in organic synthesis [23]. More detailed study of
reactions of MX5 (M = Nb, Ta; X = F, Cl) with acetals/ketals (1,1-dialkoxyalkanes) or trimethylformate
revealed that the ethereal bonds can be broken by the MX5 Lewis acids and the rate of the process is
enhanced by the presence of the further vicinal ether function. The reaction pathway was found to
include formation of the MX5(OMe2) complexes, which were identified by NMR spectroscopy [24,25].
It prompted us to study reaction of nido-carborane with dimethoxymethane MeOCH2OMe in the
presence of HgCl2.

We found that the reaction of potassium 7,8-dicarba-nido-undecaborate K[7,8-C2B9H12] with
mercury(II) chloride in a mixture of dimethoxymethane and benzene results in the formation of
mixture of symmetrically and asymmetrically substituted dimethyloxonium derivatives 1 and 2, as
well as the corresponding methoxy derivatives K[3] and K[4] (Scheme 1), that was separated by column
chromatography on silica.
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Scheme 1. Preparation of dimethyloxonium and methoxy derivatives of nido-carborane. 
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−12.4, −16.9, −21.8, −22.3 and −39.5 ppm, respectively, that agree well with the planar symmetry of 
B(10)-substituted nido-carborane cage. The signal corresponding to the B(10) atom is observed at 
−8.8 ppm that is close to the corresponding signals in other oxonium derivatives of nido-carborane 
[10-R2O-7,8-C2B9H11] [11,15,17]. The 1H NMR spectrum of 1 contains signal of the dimethyloxonium 
group at 4.17 ppm, signal of the carborane CH groups at 1.94 ppm, broad signal of the BH groups in 
the range 2.6–0.1 ppm and signal of the endo-BH hydrogen at −2.6 ppm. The 13C NMR spectrum of 1 
contains signals of the dimethyloxonium group and the carborane CH groups at 73.4 ppm and 43.1 
ppm, respectively. Taking into account the strong electron-donating effect of the boron cage, the 

Scheme 1. Preparation of dimethyloxonium and methoxy derivatives of nido-carborane.

The 11B{1H} NMR spectrum of 1 displays characteristic 1:2:2:2:1:1 pattern with signals at −8.8,
−12.4, −16.9, −21.8, −22.3 and −39.5 ppm, respectively, that agree well with the planar symmetry
of B(10)-substituted nido-carborane cage. The signal corresponding to the B(10) atom is observed at
−8.8 ppm that is close to the corresponding signals in other oxonium derivatives of nido-carborane
[10-R2O-7,8-C2B9H11] [11,15,17]. The 1H NMR spectrum of 1 contains signal of the dimethyloxonium
group at 4.17 ppm, signal of the carborane CH groups at 1.94 ppm, broad signal of the BH groups
in the range 2.6–0.1 ppm and signal of the endo-BH hydrogen at −2.6 ppm. The 13C NMR spectrum
of 1 contains signals of the dimethyloxonium group and the carborane CH groups at 73.4 ppm and
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43.1 ppm, respectively. Taking into account the strong electron-donating effect of the boron cage, the
signals of the dimethyloxonum group are very close to those of the trimethyloxonium cation Me3O+

(4.68 and 78.8 ppm, respectively) [26].
The 11B{1H} NMR spectrum of 2 contains nine non-equivalent signals at 8.3, −12.9, −13.8, −19.1,

−21.9, −22.8, −25.3, −34.0, and −39.9 ppm, which is consistent with asymmetry of B(9)-substituted
nido-carborane cage. The signal corresponding to the B(9) is observed at 8.3 ppm, which is close to
the corresponding signal in the diethyloxonium derivative [9-Et2O-7,8-C2B9H11] [11]. The 1H NMR
spectrum of 2 contains signal of the dimethyloxonium group at 4.12 ppm, signals of the carborane CH
groups at 1.94 and 2.02 ppm, broad signal of the BH groups in the range 2.6–0.1 ppm and signal of the
bridging BHB hydrogen at −2.5 ppm. It is worth noting that, unlike the analogous dimethylsulfonium
derivative [9-Me2S-7,8-C2B9H11] where the methyl groups are not equivalent [27] due to interaction
of a sulfur lone pair with the B9-B10 antibonding orbital of the nido-carborane cage [28], both methyl
groups in 2 are equivalent indicating free rotation around the B-O bond and low inversion barrier
at the oxygen atom. The 13C NMR spectrum of 2 contains signals of the dimethyloxonium group at
72.0 ppm and the carborane CH groups at 41.5 and 34.4 ppm.

In the 1H NMR spectra of K[3] and K[4] the signals of methoxy groups are shifted to high field
in comparison with 1 and 2 up to 3.22 and 3.17 ppm, respectively, and appear as 1:1:1:1 quartets due
to long-range B–H coupling (3JB,H = 3.7–3.8 Hz). Such coupling has also been previously observed
for some organoboron compounds [29–32], methylsulfanyl derivatives of the closo-dodecaborate
anion [33,34] and B-methysulfanyl derivatives of cobalt bis(dicarbollide) anion [35].

The dimethyloxonium derivatives of nido-carborane can be easily demethylated to the
corresponding methoxy derivatives with triethylamine or pyridine within 30 min at ambient
temperature (Scheme 2). These results demonstrated that the dimethyloxonium derivatives 1 and 2 are
active methylating agents.
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2,3-dimethyl-6-nitro-2H-indazole (5) is always contaminated with isomeric 
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This prompted us to study reactions of 1 and 2 with 3-methyl-6-nitro-1H-indazole. This compound is
a starting material for the manufacture of pazopanib hydrochloride (Figure 1). Pazopanib hydrochloride
is tyrosine kinase inhibitor and is used clinically as angiogenesis modulating and antineoplastic agent [36].
The first stage of its manufacture includes N-methylation of 3-methyl-6-nitro-1H-indazole. This process is
critical stage since desirable 2,3-dimethyl-6-nitro-2H-indazole (5) is always contaminated with isomeric
1,3-dimethyl-6-nitro-1H-indazole (6). Several papers have reported optional reagents and conditions for
preparation of 5 [37–39], however, laborious recrystallizations have been still required to purify 5 from
isomeric 6.
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Indeed, the both dimethyloxonium derivatives of nido-carborane were found to N-methylate
3-methyl-6-nitro-1H-indazole, however, the results of these reactions were different (Scheme 3).
The reaction of 3-methyl-6-nitro-1H-indazole with 2 in acetonitrile at room temperature followed
by aqueous alkaline treatment led to a 1:1 mixture of 5 and 6 which were resolved by column
chromatography on silica. To our best knowledge, indazole 6 was not described previously.
Surprisingly, the reaction of 3-methyl-6-nitro-1H-indazole with 1 resulting in the regioselective
formation of desired compound 5 with almost a quantitative yield.
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Transition metal complexes with carborane ligands, or metallacarboranes, found application
in a wide variety of fields including nuclear fuel reprocessing [40,41], catalysis [42], new material
design [43–46], medicine [4,5,47–52], etc. Therefore the obtained methoxy derivatives of nido-carborane
K[3] and K[4] were used for synthesis the corresponding iron and cobalt bis(dicarbollide) complexes.
Earlier we described the synthesis of symmetric 8,8′-dimethoxy derivative of cobalt bis(dicarbollide)
[8,8′-(MeO)2-3,3′-Co(1,2-C2B9H10)2]− by alkylation of the corresponding dihydroxy derivative [53].
In this contribution we report synthesis of analogous paramagnetic 8,8′-dimethoxy derivative of iron
bis(dicarbollide) K[8,8′-(MeO)2-3,3′-Fe(1,2-C2B9H10)2] (K[7]) by the reaction of K[3] with anhydrous
FeCl2 in tetrahydrofuran in the presence of potassium tert-butoxide (Scheme 4). The 11B NMR spectrum
of [7]− contains signals at 114.6, 6.2, −8.0 and −69.1 ppm corresponding to boron atoms, which are
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the most distant from the metal atom, and the wide high-field signal at −443.2 ppm due to the boron
atoms, which are directly connected to the metal with a general relative integral ratio 2:4:4:2:6.
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Unlike the 9-methylsulfide derivative [9-MeS-7,8-C2B9H11]−, the reaction of asymmetric K[4] with
anhydrous FeCl2 unexpectedly gave a single isomer [8]− instead of mixture of rac- and meso-diastereomers
(Scheme 5). The 11B NMR spectrum of [8]− contains signals at 109.5, 9.7, 7.5, 1.1, −21.8 and −40.7 ppm
corresponding to boron atoms which are the most distant from the metal atom, and the wide high-field
signals at −403.4, −431.7, and −461.1 ppm due to the boron atoms, which are directly connected to the
metal with general relative integral ratio 2:2:2:2:2:2:2:2:2. Based on the comparison of this spectrum
with the 11B NMR spectra of the methylsulfide derivatives rac-[4,7′-(MeS)2-3,3′-Fe(1,2-C2B9H10)2]−

and meso-[4,4′-(MeS)2-3,3′-Fe(1,2-C2B9H10)2]− [54], we tentatively identified the compound obtained
as the 4,7′-isomer rac-[4,7′-(MeO)2-3,3′-Fe(1,2-C2B9H10)2]−. In a similar way, the reaction of K[4] with
anhydrous CoCl2 in tetrahydrofuran in the presence of potassium tert-butoxide gave diamagnetic
rac-[4,7′-(MeO)2-3,3′-Co(1,2-C2B9H10)2]− as the single isomer (Scheme 5). The 11B NMR spectrum of [9]−

contains singlets at 13.9 ppm and doublets at 5.2,−0.8,−7.9,−9.0,−19.8, and−24.6 ppm with an integral
intensity ratio 2:2:2:4:2:4:2. The 1H NMR spectrum of [9]− contains the 1:1:1:1 quartet of the methoxy
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and cobalt bis(dicarbollides) is not very clear, but it probably caused by a lower stability of the
corresponding 4,4′-isomers.
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3. Materials and Methods

3.1. General Procedures and Instrumentation

The potassium salt of 7,8-dicarba-nido-caborane was prepared according to the literature
procedure [55]. Dimethoxymethane, tetrahydrofuran and iron(II) chloride were purchased
from Sigma-Aldrich and used without further purification. Triethylamine, pyridine,
3-Methyl-6-nitro-1H-indazole, ethyl acetate and benzene were commercially analytical grade
reagents and used without further treatment. Acetonitrile was dried by distillation over CaH2 using
the standard procedure [56]. Anhydrous CoCl2 was prepared by dehydration of CoCl2.6H2O using
the standard procedure [57]. The reaction progress was monitored by a TLC (Merck F254 silica gel on
aluminum plates) and visualized using 0.5% PdCl2 in 1% HCl in aq. MeOH (1:10). Acros Organics
silica gel (0.060–0.200 mm) was used for column chromatography. The NMR spectra at 400.1 MHz
(1H), 128.4 MHz (11B) and 100.0 MHz (13C) were recorded with a Bruker Avance-400 spectrometer
(Bruker, Zurich, Switzerland) (See Supplementary Materials). The residual signal of the NMR solvent
relative to tetramethylsilane was taken as the internal reference standard for 1H and 13C NMR spectra.
11B NMR spectra were referenced using BF3·Et2O as the external standard. Infrared spectra were
recorded on an IR Prestige-21 (SHIMADZU) instrument (Shimadzu Corporation, Duisburg, Germany).
High resolution mass spectra (HRMS) were measured on a Bruker micrOTOF II instrument (Bruker,
Bremen, Germany) using electrospray ionization (ESI). The measurements were done in a negative
ion mode (3200 V); mass range from m/z 50 to m/z 3000; external or internal calibration was done
with ESI Tuning Mix, Agilent (Santa Clara, CA, USA). A syringe injection was used for solutions in
acetonitrile (flow rate 3 mL/min). Nitrogen was applied as a dry gas; interface temperature was set at
180 ◦C. The electron ionization mass spectra were obtained with a Kratos MS 890 instrument (Kratos
Analytical Ltd, Manchester, UK) operating in a mass range of m/z 50–800.

3.2. Synthesis

3.2.1. Preparation of 10-Me2O-7,8-C2B9H11 (1), 9-Me2O-7,8-C2B9H11 (2), K[10-MeO-7,8-C2B9H11]
(K[3]), and K[9-MeO-7,8-C2B9H11] (K[4])

The potassium salt of 7,8-dicarba-nido-undecaborate (1.00 g, 5.80 mmol) and mercury(II) chloride
(1.60 g, 5.80 mmol) in a mixture of benzene (20 mL) and dimethoxymethane (20 mL) was heated under
reflux for about 4 h. After cooling to room temperature, the solution was decanted, and the residue was
washed with benzene. The washings were combined with the solution and evaporated under reduced
pressure. The column chromatography on silica gel was used for the separation of the substances with
ethyl acetate as an eluent to give white crystalline products 1–4. The first fraction (TLC RF = 0.88)
contained 2, the second (TLC RF = 0.81) contained 1, the third (TLC RF = 0.62) was identified as 4, and
the fourth (TLC RF = 0.17) contained 3.

1. Yield 0.23 g (22%). 1H NMR (CDCl3, ppm): δ 4.17 (s, 6H, OCH3), 2.03 (s, 2H, CHcarb), 2.9–0.1 (br s,
8H, BH), −2.6 (br s, 1H, BHB). 13C NMR (CDCl3, ppm): δ 73.4 (OCH3), 43.1 (CHcarb). 11B NMR (CDCl3,
ppm): δ −8.8 (s, 1B), −12.4 (d, J = 144 Hz, 2B), −16.9 (d, J = 137 Hz, 2B), −21.8 (d, J = 150 Hz, 2B),
−22.3 (d, J = 126 Hz, 1B), −39.5 (d, J = 145 Hz, 1B). IR (film, cm−1): 3035 (br, νC–H), 2963 (br, νC–H),
2918 (br, νC–H), 2849 (br, νC–H), 2545 (br, νB–H), 1464, 1447, 1425, 1260. MS (EI) for C4H17B9O: calcd.
m/z 178 [M]+, obsd. m/z 178 [M]+.

2. Yield 0.21 g (20%). 1H NMR (CDCl3, ppm): δ 4.12 (s, 6H, OCH3), 2.02 (s, 1H, CHcarb), 1.94 (s,
1H, CHcarb), 2.6–0.1 (br s, 8H, BH), −2.5 (br s, 1H, BHB). 13C NMR (CDCl3, ppm): δ 72.0 (OCH3),
41.5 (CHcarb), 34.4 (CHcarb). 11B NMR (CDCl3, ppm): δ 8.3 (s, 1B), −12.9 (d, J = 128 Hz, 1B), −13.8 (d,
J = 131 Hz, 1B), −19.1 (d, J = 166 Hz, 1B), −21.9 (d, J = 135 Hz, 1B), −22.8 (d, J = 126 Hz, 1B), −25.3 (d,
J = 151 Hz, 1B), −34.0 (dd, J = 137 Hz, J = 54 Hz, 1B), −39.9 (d, J = 144 Hz, 1B). IR (film, cm−1): 3031 (br,
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νC–H), 2963 (br, νC–H), 2925 (br, νC–H), 2863 (br, νC–H), 2524 (br, νB–H), 1464, 1448, 1423, 1260. MS (EI)
for C4H17B9O: calcd. m/z 178 [M]+, obsd. m/z 178 [M]+.

K[3]. Yield 0.33 g (28%). 1H NMR (acetone-d6, ppm): δ 3.22 (q (1:1:1:1), 3JB,H = 3.7 Hz, 3H, OCH3),
1.47 (s, 2H, CHcarb), 2.7–0.0 (br s, 8H, BH), −0.6 (br s, 1H, BHB). 13C NMR (acetone-d6, ppm): δ 56.8
(OCH3), 38.3 (CHcarb). 11B NMR (acetone-d6, ppm): δ −8.7 (s, 1B), −12.4 (d, J = 137 Hz, 2B), −17.5 (d,
J = 136 Hz, 2B), −24.1 (d, J = 156 Hz, 2B), −25.4 (d, J = 167 Hz, 1B), −40.6 (d, J = 143 Hz, 1B). IR (film,
cm−1): 3031 (br, νC–H), 2983 (br, νC–H), 2931 (br, νC–H), 2885 (br, νC–H), 2526 (br, νB–H), 1458, 1394, 1206.
ESI HRMS for C3H14B9O−: calcd. m/z 164.1926, obsd. m/z 164.1926.

K[4]. Yield 0.18 g (15%). 1H NMR (acetone-d6, ppm): δ 3.17 (q (1:1:1:1), 3JB,H = 3.8 Hz, 3H, OCH3),
1.53 (s, 1H, CHcarb), 1.34 (s, 1H, CHcarb), 2.5–0.0) (br s, 8H, BH), −3.0 (br s, 1H, BHB). 13C NMR
(acetone-d6, ppm): δ 55.1 (OCH3), 39.6 (CHcarb), 25.8 (CHcarb). 11B NMR (acetone-d6, ppm): δ 11.2 (s,
1B), −12.3 (d, J = 132 Hz, 1B), −16.2 (d, J = 136 Hz, 1B), −19.7 (d, J = 157 Hz, 1B), −21.7 (d, J = 151 Hz,
1B), −25.5 (d, J = 135 Hz, 2B), −31.3 (dd, J = 138 Hz, J = 55 Hz, 1B), −38.7 (d, J = 136 Hz, 1B). IR (film,
cm−1): 3035 (br, νC–H), 2986 (br, νC–H), 2948 (br, νC–H), 2930 (br, νC–H), 2525 (br, νB–H), 1483, 1451, 1209.
ESI HRMS for C3H14B9O−: calcd. m/z 164.1926, obsd. m/z 164.1927.

3.2.2. Reactions of 10-Me2O-7,8-C2B9H11 and 9-Me2O-7,8-C2B9H11 with Triethylamine

To a solution of 1 (0.10 g, 0.49 mmol) or 2 (0.10 g, 0.49 mmol) in acetonitrile (1 mL), trimethylamine
(0.68 mL, 4.90 mmol) was added. The mixture was stirred at room temperature for about 1 h and the
solution was evaporated under reduced pressure to give yellow crystalline products (Et3NMe)[3] or
(Et3NMe)[4], respectively.

(Et3NMe)[3]. Yield 0.13 g (97%). 1H NMR (acetone-d6, ppm): δ 3.57 (q, J = 7.2 Hz, 6H, Et3NMe+),
3.22 (q (1:1:1:1), 3JB,H = 3.7 Hz, 3H, OCH3), 3.19 (s, 3H, Et3NMe+), 1.45 (tt, J = 7.2 Hz, J = 1.9 Hz, 11H,
Et3NMe+ + CHcarb), 2.7–0.0 (br s, 8H, BH), −0.6 (br s, 1H, BHB). 13C NMR (acetone-d6, ppm): δ 56.2
(OCH3), 55.9 (t, Et3NMe+), 46.4 (t, Et3NMe+), 38.3 (CHcarb), 7.2 (Et3NMe+). 11B NMR (acetone-d6,
ppm): δ −8.7 (s, 1B), −12.4 (d, J = 132 Hz, 2B), −17.5 (d, J = 135 Hz, 2B), −24.2 (d, J = 155 Hz, 2B),
−25.5 (d, J = 171 Hz, 1B), −40.5 (d, J = 140 Hz, 1B). IR (film, cm−1): 3030 (br, νC–H), 2982 (br, νC–H),
2929 (br, νC–H), 2886 (br, νC–H), 2819, 2524 (br, νB–H), 1456, 1391, 1376, 1303, 1260, 1205. ESI HRMS for
C3H14B9O−: calcd. m/z 164.1926, obsd. m/z 164.1925.

(Et3NMe)[4]. Yield 0.14 g (98%). 1H NMR (acetone-d6, ppm): δ 3.55 (q, J = 7.2 Hz, 6H, Et3NMe+), 3.17 (s,
6H, OCH3 + Et3NMe+), 1.53 (s, 1H, CHcarb), 1.44 (tt, J = 7.2 Hz, J = 1.9 Hz, 9H, Et3NMe+), 1.34 (s, 1H,
CHcarb), 2.5–0.0 (br s, 8H, BH), −2.9 (br s, 1H, BHB). 13C NMR (acetone-d6, ppm): δ 55.9 (t, Et3NMe+),
55.2 (OCH3), 46.4 (t, Et3NMe+), 39.3 (CHcarb), 25.9 (CHcarb), 7.2 (Et3NMe+). 11B NMR (acetone-d6,
ppm): δ 11.0 (s, 1B), −12.4 (d, J = 131 Hz, 1B), −16.2 (d, J = 137 Hz, 1B), −19.7 (d, J = 156 Hz, 1B),
−21.6 (d, J = 151 Hz, 1B), −25.5 (d, J = 139 Hz, 2B), −31.2 (dd, J = 139 Hz, J = 55 Hz, 1B), −38.7 (d,
J = 135 Hz, 1B). IR (film, cm−1): 3395, 3214, 3034 (br, νC–H), 2987 (br, νC–H), 2949 (br, νC–H), 2931 (br,
νC–H), 2821, 2520 (br, νB–H), 1486, 1456, 1396 1208. ESI HRMS for C3H14B9O−: calcd. m/z 164.1926,
obsd. m/z 164.1944.

3.2.3. Reaction of 9-Me2O-7,8-C2B9H11 with Pyridine

Compound 2 (0.10 g, 0.49 mmol) and pyridine (4.90 mmol, 0.4 mL) were stirred at room
temperature for about 1 h and the solution was evaporated under reduced pressure to give yellow
crystalline product (N-MePy)[4]. Yield 0.12 g (98%). 1H NMR (acetone-d6, ppm): δ 9.16 (d, J = 5.9 Hz,
2H, o-HAr), 8.75 (t, J = 7.8 Hz, 1H, p-HAr), 8.29 (m, 2H, m-HAr), 4.66 (s, 3H, NCH3), 3.16 (q (1:1:1:1),
3JB,H = 3.8 Hz, 3H, OCH3), 1.53 (s, 1H, CHcarb), 1.34 (s, 1H, CHcarb), 2.5–0.0 (br s, 8H, BH), −3.0 (br s,
1H, BHB). 13C NMR (acetone-d6, ppm): δ 145.8 (t, o-CAr), 145.5 (p-CAr), 128.2 (m-CAr), 55.0 (OCH3), 48.3
(t, NCH3), 39.6 (CHcarb), 25.9 (CHcarb). 11B NMR (acetone-d6, ppm): δ 11.2 (s, 1B), −12.3 (d, J = 131 Hz,
1B), −16.2 (d, J = 137 Hz, 1B), −19.7 (d, J = 158 Hz, 1B), −21.7 (d, J = 147 Hz, 1B), −25.5 (d, J = 136 Hz,
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2B), −31.1 (dd, J = 139 Hz, J = 55 Hz, 1B), −38.7 (d, J = 135 Hz, 1B). IR (film, cm−1): 3139, 3133, 3074,
2955 (br, νC–H), 2930 (br, νC–H), 2917 (br, νC–H), 2890 (br, νC–H), 2848, 2823, 2516 (br, νB–H), 1636, 1498,
1490, 1287, 1259, 1207. ESI HRMS for C3H14B9O−: calcd. m/z 164.1926, obsd. m/z 164.1943.

3.2.4. Reactions of 10-Me2O-7,8-C2B9H11 and 9-Me2O-7,8-C2B9H11 with 3-Methyl-6-nitro-1H-indazole

a. To a solution of 1 (30 mg, 0.17 mmol) in dried acetonitrile (1 mL) under an Ar atmosphere
3-methyl-6-nitro-1H-indazole (20 mg, 0.11 mmol) was added. The mixture was stirred at room
temperature for about 5 days and the solution was evaporated under reduced pressure. An aqueous
solution of 30% KOH (5 mL) was added. The solution was dropped off and the formed yellow residue
was washed with water and extracted with AcOEt. The residue was purified form the remained
nido-carborane by column chromatography with 1:3 n-hexane/AcOEt to give the only product 5 as a
yellow solid (20 mg, 98%). This product has been described previously and our obtained NMR data
perfectly matched with data represented in the literature [36–38].

b. The procedure was analogous to that described for 3.2.4(a) using 2 (30 mg, 0.17 mmol) and
3-methyl-6-nitro-1H-indazole (20 mg, 0.11 mmol) to give the mixture 1:1 of 5 and 6. Products were
separated by column chromatography with 1:3 n-hexane/AcOEt. The first band (TLC RF = 0.35)
contained 5 (10 mg, 49%), the second (TLC RF = 0.20) was identified as 6 (10 mg, 49%).

NMR data for 5. 1H NMR (DMSO-d6, ppm): δ 8.52 (d, J = 1.6 Hz, 1H, H-7), 7.94 (d, J = 9.1 Hz, 1H,
H-5), 7.74 (dd, J = 9.1 Hz, J = 1.9 Hz, 1H, H-6), 4.16 (s, 3H, 2-CH3), 2.68 (s, 3H, 3-CH3).

NMR data for 6. 1H NMR (DMSO-d6, ppm): δ 8.63 (d, J = 1.4 Hz, 1H, H-7), 7.95 (d, J = 8.8 Hz,
1H, H-5), 7.90 (dd, J = 8.8 Hz, J = 1.7 Hz, 1H, H-6), 4.10 (s, 3H, 2-CH3), 2.54 (s, 3H, 3-CH3). 13C NMR
(DMSO-d6, ppm): δ 146.2, 141.5, 139.4, 126.0, 121.8, 114.2, 107.0, 36.0, 11.8.

3.2.5. Synthesis of K[8,8′-(MeO)2-3,3′-Fe(1,2-C2B9H10)2] (K[7])

To a solution of K[3] (0.20 g, 0.98 mmol) in dried tetrahydrofuran under argon atmosphere
potassium tert-butoxide (0.55 g, 4.92 mmol) and anhydrous FeCl2 (0.62 g, 4.92 mmol) were added.
The reaction mixture was refluxed for 12 h and left overnight in the air. The solid was filtered off and
the filtrate was evaporated under reduced pressure. The residue was dissolved in acidified water (1 mL
of HCl in 30 mL of H2O) and extracted by diethyl ether (2 × 30 mL). Organic fractions were collected
and evaporated under reduced pressure to give 0.15 g (73%) of dark red solid. 1H NMR (acetone-d6,
ppm): δ 79.7 (br s, 4H, CHcarb/BH), 53.5 (br s, 4H, CHcarb/BH), 29.5 (br q, J = 129 Hz, 2H, BH), 2.7 (br
m, 4H, BH), −6.0 (s, 6H, OCH3), −10.1 (br q, J = 166 Hz, 4H, BH), −24.1 (br q, 2H, BH). 13C NMR
(acetone-d6, ppm): δ 70.2 (OCH3), −398.0 (CHcarb), −408.0 (CHcarb). 11B NMR (acetone-d6, ppm): δ

114.6 (d, 2B), −6.2 (d, 4B), −8.0 (d, 4B), −69.1 (d, 2B), −443.2 (br s, 6B). IR (film, cm−1): 3034 (br, νC–H),
2952 (br, νC–H), 2926 (br, νC–H), 2856 (br, νC–H), 2564 (br, νB–H), 1696, 1488, 1458, 1377. ESI HRMS for
C6H26B18FeO2

−: calcd. m/z 381.3077, obsd. m/z 381.3069.

3.2.6. Synthesis of (Bu4N)[4,7′-(MeO)2-3,3′-Fe(1,2-C2B9H10)2] ((Bu4N)[8])

To a solution of K[4] (0.20 g, 0.98 mmol) in dried tetrahydrofuran under argon atmosphere
potassium tert-butoxide (0.55 g, 4.92 mmol) and anhydrous FeCl2 (0.62 g, 4.92 mmol) were added.
The reaction mixture was refluxed for 12 h. and left overnight in the air. The solid was filtered off
and the filtrate was evaporated under reduced pressure. The residue was dissolved in acidified water
(1 mL of HCl in 30 mL of H2O) and extracted by diethyl ether (2 × 30 mL). Organic fractions were
collected and evaporated under reduced pressure. The resedue was dissolved in water (10 mL) and
reprecipitated by tetrabutylammonium bromide (0.16 g, 0.5 mmol) in water (5 mL) to give 0.13 g (43%)
of dark red solid. 1H NMR (acetone-d6, ppm): δ 69.4 (br s, 2H, CHcarb/BH), 66.3 (br s, 2H, CHcarb/BH),
60.8 (br s, 2H, CHcarb/BH), 53.9 (br s, 2H, CHcarb/BH), 41.6 (br q, J = 135 Hz, 4H, BH), 28.6 (br m,
2H, BH), 3.0 (m, 8H, Bu4N+), 2.9 (s, 6H, OCH3), 1.4 (m, 8H, Bu4N+), 0.9 (m, 8H, Bu4N+), 0.7 (m, 12H,
Bu4N+), −2.8 (br q, J = 170 Hz, 2H, BH), −7.6 (br q, 4H, BH). 13C NMR (acetone-d6, ppm): δ 77.7
(OCH3), 58.1 (t, Bu4N+), 23.1 (Bu4N+), 19.1 (Bu4N+), 12.7 (Bu4N+), −475.2 (CHcarb), −500.1 (CHcarb).
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11B NMR (acetone-d6, ppm): δ 109.5 (d, 2B), 9.7 (d, 2B), 7.5 (d, 2B), 1.1 (d, 2B), −21.8 (d, 2B), −40.7 (d,
2B), −403.4 (br s, 2B), −431.7 (br s, 2B), −461.1 (br s, 2B). IR (film, cm−1): 2963 (br, νC–H), 2933 (br,
νC–H), 2876 (br, νC–H), 2824 (br, νC–H), 2559 (br, νB–H), 1482, 1462, 1381. ESI HRMS for C6H26B18FeO2

−:
calcd. m/z 381.3077, obsd. m/z 381.3068.

3.2.7. Synthesis of (Bu4N)[4,7′-(MeO)2-3,3′-Co(1,2-C2B9H10)2] ((Bu4N)[9])

To a solution of K[4] (0.20 g, 0.98 mmol) in dried tetrahydrofuran under argon atmosphere
potassium tert-butoxide (1.10 g, 9.83 mmol) was added. The mixture was stirred at r.t. for 30 min
and the anhydrous CoCl2 (1.27 g, 9.83 mmol) was added. The reaction mixture was refluxed for
18 h. The solid was filtered off and the filtrate was evaporated under reduced pressure. The residue
was dissolved in water (30 mL) and extracted by diethyl ether (2 × 30 mL). Organic fractions were
collected and evaporated under reduced pressure. The residue was dissolved in water (10 mL) and
reprecipitated by tetrabutylammonium bromide (0.16 g, 0.5 mmol) in water (5 mL) to give 0.14 g (45%)
of orange solid. 1H NMR (acetone-d6): δ 3.81 (s, 2H, CHcarb), 3.70 (s, 2H, CHcarb), 3.45 (m, 8H, Bu4N+),
3.23 (q (1:1:1:1), 3JB,H = 3.9 Hz, 6H, OCH3), 1.84 (m, 8H, Bu4N+), 1.45 (m, 8H, Bu4N+), 1.00 (t, 12H,
Bu4N+), 2.6–0.5 (br s, 16H, BH). 13C NMR (acetone-d6): δ 58.5 (t, Bu4N+), 55.6 (OCH3), 44.9 (CHcarb),
23.5 (Bu4N+), 19.5 (Bu4N+), 13.0 (Bu4N+). 11B NMR (acetone-d6): δ 13.9 (s, 2B), 5.2 (d, J = 139 Hz, 2B),
−0.8 (d, J = 137 Hz, 2B), −7.9 (d, J = 142 Hz, 4B), −9.0 (d, J = 142 Hz, 2B), −19.8 (d, J = 152 Hz, 4B),
−24.6 (d, J = 170 Hz, 2B). IR (film, cm−1): 3035 (br, νC–H), 2961 (br, νC–H), 2926 (br, νC–H), 2874 (br,
νC–H), 2853 (br, νC–H), 2559 (br, νB–H), 1712, 1478, 1459, 1379. ESI HRMS for C6H26B18CoO2

–: calcd.
m/z 384.3059, obsd. m/z 384.3052.

4. Conclusions

The reaction of nido-carborane [7,8-C2B9H12]− with dimethoxymethane in the presence of
mercury(II) chloride lead to a mixture of four products that can be separated by column chromatography.
The first two products represent symmetrical and asymmetrical charge compensated dimethyloxonium
derivatives of nido-carborane 10-Me2O-7,8-C2B9H11 and 9-Me2O-7,8-C2B9H11, whereas two other
products are the corresponding methoxy derivatives of nido-carborane [10-MeO-7,8-C2B9H11]− and
[9-MeO-7,8-C2B9H11]−. It was demonstrated, that dimethyloxonium derivatives of nido-carborane
can act as active methylating agents. The reaction of the symmetrical methoxy derivative
[10-MeO-7,8-C2B9H11]− with anhydrous FeCl2 in tetrahydrofuran in the presence of t-BuOK results in
the corresponding iron bis(dicarbollide) complex [8,8′-(MeO)2-3,3′-Fe(1,2-C2B9H10)2]−, whereas the
similar reactions of the asymmetrical methoxy derivative [9-MeO-7,8-C2B9H11]− with FeCl2 and CoCl2
give solely the 4,7′-isomers [4,7′-(MeO)2-3,3′-M(1,2-C2B9H10)2]− (M = Fe, Co) rather than a mixture of
rac-4,7′- and meso-4,4′-isomers.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-6740/7/4/46/s1,
NMR spectra of compounds 1–9.
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27. Plešek, J.; Janoušek, Z.; Heřmanek, S. Four new (CH3)2SC2B9H11 isomers. Collect. Czech. Chem. Commun.
1978, 43, 2862–2868. [CrossRef]

28. Lyssenko, K.A.; Golovanov, D.G.; Meshcheryakov, V.I.; Kudinov, A.R.; Antipin, M.Y. Nature of weak
inter- and intramolecular interactions in crystals. 5. Interactions Na···H–B in a crystal of sodium salt of
charge-compensated nido-carborane [9-SMe2-7,8-C2B9H10]−. Russ. Chem. Bull. 2005, 54, 933–941. [CrossRef]

29. Ryschkewitsh, G.E.; Rademaker, W.J. Long-range B–H coupling and quadrupole relaxation. J. Magn. Reson.
1969, 1, 584–588. [CrossRef]

30. Allerhand, A.; Moll, R.E. Indirect determination of boron-proton coupling in trimethyl borate by proton
spin-echo NMR. J. Magn. Reson. 1969, 1, 488–493. [CrossRef]

31. Bogdanov, V.S.; Kessenikh, A.V.; Negrebetsky, V.V. The indirect measurement of 11B–H coupling constants in
some organoboron compounds. J. Magn. Reson. 1971, 5, 145–150. [CrossRef]

32. Zozulin, A.J.; Jakobsen, H.J.; Moore, T.F.; Garber, A.R.; Odom, J.D. 13C-{1H,11B} triple-resonance experiments.
Sign determination of 1J(11B-11B), J(13C-11B), and 2J(1H-11B) in some organoboron compounds. J. Magn. Reson.
1980, 41, 458–466. [CrossRef]

33. Kultyshev, R.G.; Liu, J.; Meyers, E.A.; Shore, S.G. Synthesis and characterization of sulfide, sulfide-sulfonium,
and bissulfide derivatives of [B12H12]2−. Additivity of Me2S and MeS-substituent effects in 11B NMR spectra
of disubstituted icosahedral boron clusters. Inorg. Chem. 2000, 39, 3333–3341. [CrossRef]

34. Hamilton, E.J.M.; Leung, H.T.; Kultyshev, R.G.; Chen, X.; Meyers, E.A.; Shore, S.G. Unusual cationic
tris(dimethylsulfide)-substituted closo-boranes: Preparation and characterization of [1,7,9-(Me2S)3-B12H9]BF4

and [1,2,10-(Me2S)3-B10H7]BF4. Inorg. Chem. 2012, 51, 2374–2380. [CrossRef]
35. Anufriev, S.A.; Erokhina, S.A.; Suponitsky, K.Y.; Godovikov, I.A.; Filippov, O.A.; Fabrizi de Biani, F.;

Corsini, M.; Chizhov, A.O.; Sivaev, I.B. Methylsulfanyl-stabilized rotamers of cobalt bis(dicarbollide). Eur. J.
Inorg. Chem. 2017, 2017, 4444–4451. [CrossRef]

36. Bukowski, R.M.; Yasothan, U.; Kirkpatrick, P. Pazopanib. Nat. Rev. Drug Discov. 2010, 9, 17–18. [CrossRef]
[PubMed]

http://dx.doi.org/10.1039/C8NJ04192J
http://dx.doi.org/10.1016/j.ccr.2013.10.017
http://dx.doi.org/10.1016/j.tetlet.2009.03.171
http://dx.doi.org/10.1039/b907774j
http://dx.doi.org/10.1021/ic9020806
http://dx.doi.org/10.1055/s-1991-34780
http://dx.doi.org/10.1135/cccc19782862
http://dx.doi.org/10.1007/s11172-005-0337-x
http://dx.doi.org/10.1016/0022-2364(69)90043-2
http://dx.doi.org/10.1016/0022-2364(69)90084-5
http://dx.doi.org/10.1016/0022-2364(71)90073-4
http://dx.doi.org/10.1016/0022-2364(80)90303-0
http://dx.doi.org/10.1021/ic000198o
http://dx.doi.org/10.1021/ic2023709
http://dx.doi.org/10.1002/ejic.201700575
http://dx.doi.org/10.1038/nrd3073
http://www.ncbi.nlm.nih.gov/pubmed/20043026


Inorganics 2019, 7, 46 12 of 13

37. Qi, H.; Chen, L.; Liu, B.; Wang, X.; Long, L.; Liu, D. Synthesis and biological evaluation of novel pazopanib
derivatives as antitumor agents. Bioorg. Med. Chem. Lett. 2014, 24, 1108–1110. [CrossRef] [PubMed]

38. Mei, Y.C.; Yang, B.W.; Chen, W.; Huang, D.D.; Li, Y.; Deng, X.; Liu, B.M.; Wang, J.J.; Qian, H.; Huang, W.L.
A novel practical synthesis of pazopanib: An anticancer drug. Lett. Org. Chem. 2012, 9, 276–279.

39. Baddam, S.R.; Kumar, N.U.; Reddy, A.P.; Bandichhor, R. Regioselective methylation of indazoles using
methyl 2,2,2-trichloromethylacetamide. Tetrahedron Lett. 2013, 54, 1661–1663. [CrossRef]

40. Romanovskiy, V.N.; Smirnov, I.V.; Babain, V.A.; Shadrin, A.Y. Combined processes for high level radioactive
waste separations: UNEX and other extraction processes. In Advanced Separation Techniques for Nuclear
Fuel Reprocessing and Radioactive Waste Treatment; Nash, K.L., Lumetta, G.J., Eds.; Woodhead Publishing:
Cambridge, UK, 2011; pp. 229–265.
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