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Abstract: Aqueous synthesis of metal–organic frameworks (MOFs) at room temperature offers many
advantages such as reduction in the generation of toxic byproducts and operation costs, as well as
increased safety in the material’s production. Functional group-bearing MOFs have received growing
attention compared to nonfunctionalized analogues due to enhanced adsorption properties of the
former in many cases. Here, we report an aqueous solution-based synthesis of a robust zirconium MOF,
UiO-66-NO2, at room temperature. We evaluated the phase purity, porosity, thermal stability, particle
morphology and size of the resulting material. High uptake, as well as near complete recyclability of
water and ethanol vapor isotherms at room temperature supports the potential of UiO-66-NO2 as a
solid adsorbent in adsorption-based cooling applications or water harvesting systems.

Keywords: zirconium-based MOFs; water adsorption; ethanol adsorption; porous materials;
adsorption heat pump

1. Introduction

Metal–organic frameworks (MOFs) [1–5] are a promising class of crystalline porous materials with
a wide range of applications including but not limited to heterogeneous catalysis [6–10], enzyme and
nanoparticle encapsulation [11–14], water capture [15–19], gas storage, and separation [20–25]. Importantly,
physical and chemical properties of MOFs can be fine-tuned with the help of reticular chemistry, where
pre-selected molecular building blocks are combined to yield pre-designed frameworks for targeted
applications [26–30].

While gas adsorption is the most widely studied application of MOFs, vapor adsorption in MOFs
has recently garnered some attention especially with the increasing number of water-stable MOFs
reported [15–19,31–33]. MOFs with a high capacity for water uptake at room temperature have also
gained increasing attention. By tuning features such as the topology, pore size, pore volume, and
chemical functionality of MOFs, the relative pressure where the water uptake reaches maximum can be
controlled. This is essential for many applications such as natural gas dehydration [34], water capture
from air [16,35], adsorption-based cooling systems [15,19,36], and indoor humidity cooling systems [18].
Ethanol can be also used as refrigerant for adsorption-driven cooling application due to its lower
freezing point compared to water [37]. Nevertheless, all of these adsorption-based applications such
as adsorption beds [21,38], mixed-matrix membranes [39,40], or devices for capturing water from
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air [35,41], require large amounts of adsorbents for operation. Consequently, developing green and
scalable methods for synthesis of MOFs is of interest for the aforementioned applications.

We have recently reported a promising strategy for the scalable synthesis of UiO-66 (UiO = University
of Oslo) analogues (i.e., UiO-66-(COOH)2 and UiO-66-F4) for toxic chemical removal [42]. Herein,
we extended this method to the synthesis of a highly stable Zr MOF, UiO-66-NO2 [43–45]. Various
characterization techniques were implemented to confirm phase purity, morphology, thermal stability, and
porosity of the resulting MOF. Moreover, we studied water and ethanol vapor adsorption of UiO-66-NO2,
which showed high uptake as well as good recyclability.

2. Results and Discussion

UiO-66 is constructed from 12-connected hexanuclear zirconium oxo-clusters and terephthalate
linkers with face-centered cubic (fcu) topology [46]. Due to the exceptional chemical and thermal
stability, UiO-66 has become one of the most studied MOFs since its invention in 2008 [43,46–49].
UiO-66 can be easily functionalized with different functional groups on account of its isoreticular
chemistry [5], however, a vast majority of these studies involve N,N-dimethylformamide (DMF), a toxic
organic solvent, and elevated temperatures [5]. We recently reported an inexpensive, scalable, and
environmentally benign procedure to synthesize UiO-66 derivatives (UiO-66-(COOH)2 and UiO-66-F4)
in water at room temperature [42]. Building on the previous successful examples, we extended our
strategy to synthesize another UiO-66 derivative, UiO-66-NO2 (Figure 1A). Among those functionalized
UiO-66 analogues, UiO-66-NO2 is believed to be one of the most chemically stable Zr MOFs which
makes it a potential candidate for broader applications [50,51].
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Figure 1. (A) Structural representation of UiO-66-NO2 constructed from 12-c Zr nodes and linear
2-nitroterephthalic acid (H2BDC-NO2) ligand. (B) Powder X-ray diffraction (PXRD) pattern of the
as-synthesized sample matched well with the simulated UiO-66-NO2.
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As illustrated in Figure 1B, our aqueous synthetic method at room temperature resulted in
phase-pure UiO-66-NO2 confirmed by the powder X-ray diffraction (PXRD) pattern. The crystal size of
UiO-66-NO2 was about 100 nm as shown in the scanning electron microscopy (SEM) image (Figure S1).

N2 adsorption–desorption isotherms at 77 K revealed the experimental total pore volume at
P/P0 = 0.8 was about 0.43 cm3

·g−1, and the apparent Brunauer–Emmett–Teller (BET) area of UiO-66-NO2

was calculated to be 840 m2
·g−1 based on the relative pressure range from P/P0 = 0.004 to P/P0 = 0.0294

(Figure 2A), in line with the surface areas obtained from solvothermal synthesis [52]. The pore-size
distribution based on non-local density functional theory (NLDFT) model with the cylindrical kernel
showed two major pores. The main peak centered at about 1.3 nm was assigned to octahedral cages
of ideal UiO-66 structure, and the smaller shoulder near 1.8 nm was assigned to the presence of
non-ordered missing cluster defects (Figure 2B) [53]. The sharp increase in the N2 isotherm near
saturation pressure was due to the condensation of the N2 gas at interparticle voids, which is common
in MOFs with nanosized crystallites [54].
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The thermogravimetric analyses (TGA) plot of UiO-66-NO2 under continuous air flow indicated
that the framework was stable up to about 300 ◦C (Figure S2). The number of the linkers per Zr6

node inside UiO-66-NO2 was estimated to be about 4.3 according to the TGA plot, assuming the
full combustion of MOFs under the air flow. This indicated the defective nature of this UiO-66-NO2

synthesized in water at room temperature, which was consistent with the pore size distribution,
further indicating the presence of defects. Diffuse reflectance infrared Fourier transform spectroscopy
(DRIFTS) spectra was collected on this material where a sharp band at 3667 cm−1 was assigned to µ3

-OH stretches on the hexanuclear zirconium oxo-clusters (Figure S3) which was red-shifted compared
to its parent UiO-66 [55] and consistent with solvothermally synthesized UiO-66-NO2 [52]

Encouraged by the moderate surface area and high stability of the UiO-66-NO2, we further
studied the ethanol and water vapor sorption, which is important for practical applications such
as adsorption-based heat pump and vapor capture from air, respectively. Ethanol adsorption of
UiO-66-NO2 at 298 K showed an uptake of about 112 cm3

·g−1 at P/P0 = 0.3 and about 186 cm3
·g−1

at P/P0 = 0.9, respectively (Figure 3). Moreover, it retained its ethanol sorption performance for the
second cycle after the simple activation under dynamic vacuum.

Water adsorption isotherm at room temperature is important to gauge MOFs for their potential
for water vapor sorption related applications or to assess their moisture stability [19,35]. Thus, we
performed the water vapor sorption at 298 K for UiO-66-NO2, which exhibited an S-shape adsorption
isotherm (Figure 4). The uptake of water vapor at P/P0 = 0.9 was about 459 cm3

·g−1 (or 0.37 g·g−1),
and this value was slightly smaller than the reported value [17] of parent UiO-66 (533 cm3

·g−1 or
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0.43 g·g−1), due to the reduction of pore volume after the introduction of nitro-groups. On the other
hand, the water uptake of UiO-66-NO2 at P/P0 = 0.3 was about 177 cm3

·g−1 (or 0.14 g·g−1) which
was higher than that of UiO-66 (108 cm3

·g−1 or 0.09 g·g−1), indicating the more hydrophilic nature
of this material in comparison with the parent UiO-66. The second run of the same batch material
also verified the good cycling ability and therefore the stability of UiO-66-NO2. Note, the UiO-66-NO2

synthesized in aqueous solution at room temperature showed similar water uptake to that previously
reported (459 cm3

·g−1 (or 20.5 mmol·g−1) in this work, in comparison to 533 cm3
·g−1 (or 22 mmol·g−1)

at P/P0 = 0.9 by Walton and coworkers [44]), further confirming the practicality of this synthesis method
of UiO-66-NO2 compared to that of solvothermal based methods.
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3. Materials and Methods

All reagents were obtained from commercial sources and used without further purification,
unless otherwise noted. Zirconium (IV) oxynitrate hydrate (99%) was purchased from Sigma-Aldrich
(St. Louis, MO, USA).
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3.1. X-ray Diffraction Analyses

Powder X-ray diffraction (PXRD) of MOFs were measured at room temperature on a
STOE-STADIMP powder diffractometer (STOE & Cie GmbH, Darmstadt, Germany) equipped with an
asymmetric curved Germanium monochromator (Cu Kα1 radiation, λ= 1.54056 Å) and one-dimensional
silicon strip detector (MYTHEN2 1K from DECTRIS, Baden, Switzerland). The line focused Cu X-ray
tube was operated at 40 kV and 40 mA. The activated powder was sandwiched between two Kapton
foils and measured in transmission geometry in a rotating holder. Intensity data from 1 to 30 degrees
two theta were collected over a period of 6 min. The instrument was calibrated against a NIST Silicon
standard (640d) prior to the measurement.

3.2. N2 Sorption Measurements

N2 adsorption and desorption isotherms on activated materials were measured on a Tristar
(Micromeritics, Norcross, GA, USA) instrument at 77 K. In general, about 30–50 mg of sample was
used in each measurement after activated at 120 ◦C for 24 h.

3.3. Thermogravimetric Analyses (TGA)

TGA was performed on a TGA/DCS 1 system (Mettler-Toledo AG, Schwerzenbach, Switzerland),
which runs on a PC with STARe software. Samples were heated from 30 to 600 ◦C at a rate of 10 ◦C/min
under air with flow rate 20 mL/min.

3.4. Diffuse Reflectance for Infrared Fourier Transform Spectroscopy (DRIFTS)

DRIFTS spectra were recorded on a Nicolet 6700 FTIR spectrometer (Thermo Nicolet Corp.,
Madison, WI, USA) equipped with an MCT detector. The detector was cooled with liquid N2 and the
spectra were collected under Ar atmosphere. KBr was utilized as a background spectrum.

3.5. Scanning Electron Micrographs (SEM)

Scanning electron micrographs (SEM) images were taken using a Hitachi SU8030 (Hitachi
High Technologies Corporation, Tokyo, Japan) at the EPIC facility (NUANCE Center-Northwestern
University). Samples were activated and coated with OsO4 to ~9 nm thickness in a Denton Desk III
TSC Sputter Coater before imaging.

3.6. Water and Ethanol Vapor Sorption Measurements

Water and ethanol isotherms were measured on a 3Flex (Micromeritics), and the water uptake
in g·g−1 unit is calculated as [(adsorbed amount of water)/(amount of adsorbent)]. Prior to the
adsorption measurements, water or ethanol (analyte) was flash frozen under liquid nitrogen and then
evacuated under dynamic vacuum at least 3 times to remove any gases in the water reservoir until the
P0 of the analyte gas matches the suggested P0 at room temperature. The measurement temperature
was controlled with an ISO Controller (Micromeritics).

3.7. Synthesis of UiO-66-NO2

1.5 mL of water was added to 20 mg (~0.094 mmol) of 2-nitroterephthalic acid. The mixture was
then placed in the oven at 100 ◦C for 5 min. The color of the solution became pale yellow. Separately,
48 mg (~0.208 mmol) of zirconyl nitrate hydrate (ZrO(NO3)2·xH2O) was dissolved by adding 1.0 mL
of water followed by sonication. The two solutions were combined, followed by an addition of 300 µL
(~5.24 mmol) of acetic acid. The mixture was stirred for 72 h at room temperature. The crystalline
powders were collected by centrifugation (7000 rpm for 30 min). As-synthesized sample was washed
3 times with DI water and then sequentially washed 2 times with ethanol, and finally immersed in
acetone for 2 days, during which time the acetone was replaced 2 times per day. The product was
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obtained after initial drying via leaving exposed to ambient atmosphere overnight and activated at
120 ◦C for 24 h; yield: 25 mg.

4. Conclusions

In conclusion, we extended the room temperature, aqueous methodology of Zr MOFs to access
a nitro-functionalized UiO-66 derivative, UiO-66-NO2. Importantly, the UiO-66-NO2 obtained here,
using more environmentally benign methods, showed comparable BET area to MOFs obtained from
solvothermal synthesis. Moreover, water and ethanol vapor sorption isotherms at room temperature
indicated high uptake of both vapors, which suggests potential of UiO-66-NO2 for adsorption-based
cooling applications or water harvesting systems.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-6740/7/5/56/s1,
Figures S1–S3: SEM image, TGA curve and DRIFTS spectra of UiO-66-NO2.
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