Supplementary Materials: Molecular Modelling of the Ni(II)-Responsive *Synechocystis* PCC 6803 Transcriptional Regulator InrS in the Metal Bound Form

Elia Barchi and Francesco Musiani *

Figure S1. RcnR/CsoR family solved structures. CsoR from (**a**) *Geobacillus thermodenitrificans* NG80-2 (*Gt*CsoR, PDB id: 4M1P) [1], (**b**) *Mycobacterium tuberculosis* (*Mt*CsoR, PDB id: 2HH7) [2], (**c**) *Streptomyces lividans* (*Sl*CsoR, PDB id: 4ADZ) [3], and (**d**) *Thermus thermophiles* HB8 (*Tt*CsoR, PDB id: 3AAI) [4]; together with FrmR from (**e**) *Escherichia coli* (*Ec*FrmR, PDB id: 5LBM, **E**) [5] and (**f**) *Salmonella typhimurium* (strain SL1344) (*St*FrmR, PDB id: 5LCY) [6]. All the structures are reported as ribbons. Chains α , β , α' , and β' are coloured in orange, green, light blue and yellow, respectively. Cu(I) ions are depicted as orange spheres, while formaldehyde bound proline residues in *Ec*FrmR is reported as sticks coloured according to atom type. The structure in the bottom panels are rotated by 90° around the horizontal axis with respect to the structure in the top panels.

Protein	UniProt code	Source	Inducer
SyInrS	Q55554	Synechocystis PCC 6803	Ni(II)
<i>Th</i> InrS	V5V4A7	Thermosynechococcus sp. NK55a	Ni(II)
<i>Ec</i> RcnR	P64530	Escherichia coli	Ni(II)/Co(II)
<i>Mt</i> CsoR	P9WP49	Mycobacterium tuberculosis	Cu(I)
<i>Tt</i> CsoR	Q5SHL1	Thermus thermophilus	Cu(I)
<i>Cg</i> CsoR	A4QB25	Corynebacterium glutamicum	Cu(I)
S/CsoR	Q9KZW5	Streptomyces lividans	Cu(I)
<i>Bs</i> CsoR	O32222	Bacillus subtilis	Cu(I)
<i>Gt</i> CsoR	A4INJ9	Geobacillus thermodenitrificans	Cu(I)
<i>Lm</i> CsoR	Q8Y646	Listeria monocytogenes	Cu(I)
SaCsoR	W8UW13	Staphylococcus aureus	Cu(I)
<i>Lf</i> NcrB	Q06VT2	Leptospirillum ferriphilum	Ni(II)/Co(II)
<i>Mt</i> RicR	O07434	Mycobacterium tuberculosis	Cu(I)
<i>Ec</i> FrmR	P0AAP3	Escherichia coli	Formaldehyde
S <i>t</i> FrmR	A0A0H3NLH8	Salmonella typhimurium (strain SL1344)	Formaldehyde
SaCstR	а	Staphylococcus aureus NCTC 8325	HS ⁻ /SO ₃ ²⁻

Table S1. CsoR/RcnR family representative sequences used for the multiple sequencealignment reported in Figure S2.

^a Encoded by the complementary strand of nucleotides 37974-38234 in the *S. aureus* strain Newman genome [7].

Figure S2. Ribbon diagram and inertia ellipsoid of *Sy*InrS in the apo (**a**) and holo (**b**) conformations. Chains α , β , α' , and β' are coloured in orange, green, yellow, and light blue, respectively. Proposed Ni(II) binding residues are reported as sticks coloured accordingly to the atom type. The axes of the inertia ellipsoids are reported as grey sticks.

Figure S3. Detail of the α -helices $\alpha 1$ and $\alpha 2$ rotation occurring during the apo to holo conformational transition. Chain α is reported in red and in orange for the apo and the holo conformation, respectively. The other chains were made transparent in order to increase the clarity of the figure. The axes of the α -helices are reported as grey sticks.

Table S2. Structural analysis of the models of Ni(II) bound *Sy*InrS generated starting from the protein in the apo conformation.

Ramachandran	Apo model					
plot	Η21(Νδ)-	Η21(Νδ)-	Η21(Νδ)-	Η21(Νε)-		
region	Η78(Νε)	Η78(Νε)	Η78(Νδ)	Η78(Νε)		
Most favoured	92.6%	96.3%	96.3%	93.8%		
Additionally allowed	6.2%	3.7%	3.7%	2.5%		
Generously allowed	1.2%	-	-	1.2%		
Disallowed	-	-	-	2.5%		
G-factor	-0.1	0.06	-0.03	-0.03		

Table S3. Structural analysis of the models of Ni(II) bound *Sy*InrS generated starting from the protein in the holo conformation.

Ramachandran	Holo model				
plot	H21(Nδ)-	Η21(Νδ)-	Η21(Νδ)-	Η21(Νε)-	
region	Η78(Νε)	Η78(Νε)	Η78(Νδ)	Η78(Νε)	
Most favoured	94.2%	94.2%	93.0%	90.7%	
Additionally allowed	5.8%	4.7%	5.8%	9.3%	
Generously allowed	-	1.2%	1.2%	-	
Disallowed	-	-	-	-	
G-factor	0.09	0.03	0.03	0.00	

Figure S4. Results for the H21(N ϵ)-H78(N δ) (**a**), H21(N δ)-H78(N ϵ) (**b**), H21(N δ)-H78(N δ) (**c**), and H21(N ϵ)-H78(N ϵ) (**d**) modelling of Ni(II) bound *Sy*InrS starting from the protein in the apo conformation. The *Sy*InrS backbone is reported as ribbons coloured by polypeptide chains, with chain α in orange and chain β in green. Putative metal binding residues are reported as sticks coloured according to atom types. The Ni(II) ion is shown as a green sphere.

Figure S5. Results for the H21(N ϵ)-H78(N δ) (**a**), H21(N δ)-H78(N ϵ) (**b**), H21(N δ)-H78(N δ) (**c**), and H21(N ϵ)-H78(N ϵ) (**d**) modelling of Ni(II) bound *Sy*InrS starting from the protein in the holo conformation. The *Sy*InrS backbone is reported as ribbons coloured by polypeptide chains, with chain α in orange and chain β in green. Putative metal binding residues are reported as sticks coloured according to atom types. The Ni(II) ion is shown as a green sphere.

Supplementary References

- 1. Chang, F.M.; Coyne, H.J.; Cubillas, C.; Vinuesa, P.; Fang, X.; Ma, Z.; Ma, D.; Helmann, J.D.; Garcia-de los Santos, A.; Wang, Y.X., *et al.* Cu(I)-mediated allosteric switching in a coppersensing operon repressor (CsoR). *J. Biol. Chem.* **2014**, *289*, 19204-19217.
- Liu, T.; Ramesh, A.; Ma, Z.; Ward, S.K.; Zhang, L.; George, G.N.; Talaat, A.M.; Sacchettini, J.C.; Giedroc, D.P. CsoR is a novel *Mycobacterium tuberculosis* copper-sensing transcriptional regulator. *Nat. Chem. Biol.* 2007, *3*, 60-68.
- 3. Dwarakanath, S.; Chaplin, A.K.; Hough, M.A.; Rigali, S.; Vijgenboom, E.; Worrall, J.A. Response to copper stress in Streptomyces lividans extends beyond genes under direct control of a copper-sensitive operon repressor protein (CsoR). *J. Biol. Chem.* **2012**, *287*, 17833-17847.
- 4. Sakamoto, K.; Agari, Y.; Agari, K.; Kuramitsu, S.; Shinkai, A. Structural and functional characterization of the transcriptional repressor CsoR from Thermus thermophilus HB8. *Microbiology* **2010**, *156*, 1993-2005.
- 5. Denby, K.J.; Iwig, J.; Bisson, C.; Westwood, J.; Rolfe, M.D.; Sedelnikova, S.E.; Higgins, K.; Maroney, M.J.; Baker, P.J.; Chivers, P.T., *et al.* The mechanism of a formaldehyde-sensing transcriptional regulator. *Sci. Rep.* **2016**, *6*, 38879.
- Osman, D.; Piergentili, C.; Chen, J.; Sayer, L.N.; Uson, I.; Huggins, T.G.; Robinson, N.J.; Pohl,
 E. The effectors and sensory sites of formaldehyde-responsive regulator FrmR and metalsensing variant. J. Biol. Chem. 2016, 291, 19502-19516.
- 7. Grossoehme, N.; Kehl-Fie, T.E.; Ma, Z.; Adams, K.W.; Cowart, D.M.; Scott, R.A.; Skaar, E.P.; Giedroc, D.P. Control of copper resistance and inorganic sulfur metabolism by paralogous regulators in *Staphylococcus aureus*. *J. Biol. Chem.* **2011**, *286*, 13522-13531.