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Abstract: Tris(8-hydroxyquinoline) aluminum(III) (Alq3) and its derivatives, characterized by
a propeller-shaped three-dimensionally π-conjugated structure, have been intensively studied in the
few past decades on account of their potential utility in optoelectronic applications. Reported herein
are the synthesis and properties of π-extended Alq3 complexes that contain an azaperylene core in
each ligand. Intramolecular palladium-catalyzed direct C–H arylations or base-promoted arylations
were employed to prepare these large Alq3 analogues. A single-crystal X-ray diffraction analysis
of one of the obtained Al complexes revealed a unique three-dimensional packing structure within
the crystal, i.e., a honeycomb packing along the ab-plane and columnar π-stacks along the c-axis.
An Alq3 analogue with azaperylene-dicarboximide ligands exhibited deep blue color in solution with
an intense absorption band that extended to 780 nm (λmax = 634 nm; ε = 58,000 M−1 cm−1).
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1. Introduction

Three-dimensional (3D) π-conjugated systems have received increasing attention as
charge-transporting materials for thin-film devices [1–12]. While two-dimensional (2D) planar
π-systems often exhibit an anisotropic charge transport depending on their orientation in the
film (face-on or edge-on relative to the substrate), 3D nonplanar π-systems may potentially
exhibit isotropic charge-transport behavior. Recently, Sisto and co-workers reported that 3D
nanostructures, in which three graphene nanoribbons are covalently attached to a triptycene core,
can be used as electron-extracting layers in perovskite solar cells [12]. Zhang and co-workers
reported a 3D nanostructure comprised of three perylene-dicarboximide units covalently attached to
a [3,3,3]propellane core that exhibits an isotropic charge transport despite the weak intermolecular
contact between the π-conjugated moieties [5]. Substantial efforts have also been devoted to developing
non-fullerene-type acceptor materials for organic photovoltaics (OPVs) based on twisted 3D π-systems
given their positive influence on the morphology of films mixed with donor polymers [6–11].

Among the 3D π-systems, tris(8-hydroxyquinoline) aluminum(III) (Alq3), which exhibits
a propeller-shaped structure, is often encountered in OLEDs as a stable, light-emitting,
and electron-transporting material [13,14]. The aluminum(III) ion plays a critical role in the
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well-controlled structure of the 3D π-system, in which three 8-hydroxyquinolinato ligands are
assembled in a propeller shape that allows for two stereoisomers: Meridional (mer) and facial (fac)
isomers with C1- and C3-symmetric point groups, respectively. In the past few decades, the properties,
structures, and ligand-exchange dynamics of Alq3 have been extensively studied, both in solutions
and in the solid state [15–17]. The properties of Alq3 can be tuned via the introduction of functional
group(s) in the 8-hydroxyquinolinato ligands of Alq3 [18–23]. Even though 3D π-systems can be
readily obtained by using metal-coordination, the π-extension of the ligands in Alq3 derivatives
by annulation has remained largely unexplored. We envisioned that 3D π-systems with enhanced
intermolecular π–π interactions could potentially be obtained by introducing a naphthalene-fused
structure to the ligands of Alq3 (Figure 1). Herein, we report the synthesis and properties of π-extended
Alq3 derivatives that contain azaperylene or azaperylene-dicarboximide units by intramolecular
palladium-catalyzed direct C–H arylation or base-promoted arylation. The unique packing structure
of the naphthalene-fused Alq3 with an intense visible absorption was unambiguously revealed by
single-crystal X-ray diffraction analysis.
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direct C–H arylations (Scheme 1) [24–30]. Precursor 1 contains two possible reaction sites for direct 
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an N-methylpyrrolidone (NMP) solution containing 1, Pd(OAc)2, PCy3·HBF4 (ligand), and K2CO3

(base) to 170 °C afforded π-extended 2 (48%) and its regioisomer 3 (12%) due to the formation of 
hexagonal and pentagonal rings, respectively (Table 1, entry 1). When PivOH was used as an
additive, the yield of 3 improved (21%), while the yield of 2 remained virtually unchanged (47%) 
(Table 1, entry 2). Upon decreasing the reaction temperature, the formation of 2 was not observed,
and 3 (20%) was generated exclusively (Table 1, entry 3). PivOH has been reported to act as a proton 
shuttle in a concerted metalation–deprotonation (CMD) pathway of Pd-catalyzed direct arylations 
[25]. Thus, the obtained results indicate that the CMD pathway favors the cyclization that furnishes 
3, while the formation of 2 proceeds via a different pathway, e.g., a Heck-type coupling reaction. The 
structure of 2 was unambiguously determined by a single-crystal X-ray diffraction analysis (cf.
Supplementary Materials). 

Control over the selectivity in Pd-catalyzed direct arylation reactions has recently been reported
by Würthner and co-workers, who demonstrated that in the synthesis of electron-deficient polycyclic 
aromatic dicarboximides, intramolecular cyclization modes under the formation of hexagonal and 
pentagonal rings can be addressed by the judicious choice of the auxiliary base such as Cs2CO3 or 
diazabicycloundecene (DBU) [31]. In our case, the annulation mode was controlled by the use of a 
catalytic amount of PivOH under a decreased reaction temperature. To gain better insight into the 
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Figure 1. Chemical structures of Alq3 stereoisomers and of a π-extended Alq3 that contains
an azaperylene unit in each ligand.

2. Results and Discussion

The synthesis of the naphthalene-fused ligands was accomplished using precursor 1,
which contains a methoxy group in order to increase the reactivity toward the intramolecular
Pd-catalyzed direct C–H arylations (Scheme 1) [24–30]. Precursor 1 contains two possible reaction
sites for direct arylation at the quinoline core (indicated with arrows in Scheme 1). During the
optimization of the reaction conditions, we found that adding pivalic acid (PivOH) under the decreased
reaction temperature allowed us to control the cyclization mode (Table 1). The microwave-assisted
heating of an N-methylpyrrolidone (NMP) solution containing 1, Pd(OAc)2, PCy3·HBF4 (ligand),
and K2CO3 (base) to 170 ◦C afforded π-extended 2 (48%) and its regioisomer 3 (12%) due to the
formation of hexagonal and pentagonal rings, respectively (Table 1, entry 1). When PivOH was used
as an additive, the yield of 3 improved (21%), while the yield of 2 remained virtually unchanged
(47%) (Table 1, entry 2). Upon decreasing the reaction temperature, the formation of 2 was not
observed, and 3 (20%) was generated exclusively (Table 1, entry 3). PivOH has been reported to act
as a proton shuttle in a concerted metalation–deprotonation (CMD) pathway of Pd-catalyzed direct
arylations [25]. Thus, the obtained results indicate that the CMD pathway favors the cyclization that
furnishes 3, while the formation of 2 proceeds via a different pathway, e.g., a Heck-type coupling
reaction. The structure of 2 was unambiguously determined by a single-crystal X-ray diffraction
analysis (cf. Supplementary Materials).

Control over the selectivity in Pd-catalyzed direct arylation reactions has recently been reported
by Würthner and co-workers, who demonstrated that in the synthesis of electron-deficient polycyclic
aromatic dicarboximides, intramolecular cyclization modes under the formation of hexagonal and
pentagonal rings can be addressed by the judicious choice of the auxiliary base such as Cs2CO3

or diazabicycloundecene (DBU) [31]. In our case, the annulation mode was controlled by the use
of a catalytic amount of PivOH under a decreased reaction temperature. To gain better insight
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into the mechanisms that underpin these catalytic systems, we conducted DFT calculations at the
M06-2x/6-31G** (C, H, N, O, P)/SDD (Pd) level of theory [32]. In the absence of PivOH, the calculated
barrier for the Heck-type pathway via transition-state (TS) I (Figure 2) to give 2 was lower than
the barrier for the formation of 3, i.e., ∆G‡ = +34.0 and +48.7 kcal/mol for the formation of 2 and 3,
respectively (cf. Supplementary Materials) [33–35]. On the other hand, in the presence of PivOH,
the calculated barrier for the CMD pathway via TS II (Figure 2) to give 2 was higher than the barrier
for the formation of 3, i.e., ∆G‡ = +46.9 and +33.5 kcal/mol (L = NMP) [30] for the formation of 2 and 3,
respectively (cf. Supplementary Materials). The selectivity of the annulation mode upon using PivOH
can probably be ascribed to the steric constraints in the transition states for both the Heck-type and the
CMD pathways. The obtained products were subsequently deprotected with sodium thiomethoxide to
furnish the naphthalene-fused ligand L1 and its regioisomer L2 [36].
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Scheme 1. Synthetic routes to naphthalene-fused quinolinol ligands via an intramolecular
palladium-catalyzed direct arylation followed by deprotection; PCy3: Tricyclohexylphosphine; NMP:
N-methylpyrrolidone.

Table 1. Optimization of the reaction conditions for the synthesis of 2 and 3.

Entry Additive Temp. (◦C) Yield (%) 1

2 3

1 – 170 48 12
2 PivOH 170 47 21
3 PivOH 120 0 20

1 Isolated yield; PivOH: Pivalic acid.
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Figure 2. Transition-states I and II for the formation of 2 and 3 via Heck-type and concerted
metalation–deprotonation (CMD) pathways, respectively.

Owing to the presence of a strong electron-withdrawing group, the intramolecular cyclization of
precursor 4 could be carried out by base-promoted direct arylation [37,38]. Product 5 was subsequently
deprotected to provide ligand L3 with an azaperylene-dicarboximide unit (Scheme 2), and its structure
was unequivocally confirmed by a single-crystal X-ray diffraction analysis.
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generate L3.

The synthesis of the propeller-shaped aluminum complex Al(L1)3 was accomplished by treating
the L1 ligand with aluminum trichloride (Scheme 3). Al(L1)3 was obtained as a dark purple solid,
which was hardly soluble in common organic solvents, except for 1,1,2,2-tetrachloroethane (TCE),
benzonitrile, and 1,2-dichlorobenzene (ODCB). While Al(L2)3 exhibited solubility similar to that of
Al(L1)3, the dark blue solid of Al(L3)3, which contained three bulky dicarboximide moieties (Scheme 3),
showed an improved solubility in organic solvents such as chloroform and dichloromethane. The APCI
mass spectrum of Al(L3)3 clearly exhibited the molecular ion peak [M]−. The 1H NMR spectrum
of Al(L3)3 in CDCl3 indicated that the complex adopted C1 symmetry, i.e., the meridional form
was present in CDCl3 judging from the aromatic proton signals arising from three nonequivalent
azaperylene moieties. DFT calculations at the B3LYP/6-31G* level of theory for Al(L3′)3 (Ar = methyl
for simplification) suggest that the meridional isomer was more stable than the facial isomer by
∆E = 4.8 kcal/mol, and it was almost identical to the stabilization of the meridional form of Alq3
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Scheme 3. Formation of the propeller-shaped complexes Al(L1)3 and Al(L3)3.

A single crystal of Al(L1)3 was obtained by the slow diffusion of acetonitrile into an ODCB solution
of Al(L1)3. The structure of Al(L1)3 was unambiguously determined by a single-crystal X-ray diffraction
analysis, which revealed that the crystal contained acetonitrile and the meridional isomer of Al(L1)3.
The packing structure of mer-Al(L1)3 within the crystal was characterized by a two-dimensional
honeycomb-type arrangement of the two enantiomers, namely the Λ and ∆ forms [39,40], in the
ab-plane (Figure 3a). Each enantiomer of mer-Al(L1)3 formed one-dimensional π-stacks with a rotation
of the three ligands along the c-axis (Figure 3b). The intermolecular distances of the π-stacks (3.3–3.5 Å)
within the crystal of mer-Al(L1)3 were shorter than those reported for mer-Alq3 (3.5–3.9 Å) [41], reflecting
the enhanced π–π interactions between the π-extended ligands.



Inorganics 2019, 7, 109 5 of 13
Inorganics 2019, 7, x FOR PEER REVIEW 5 of 13 

 

 
Figure 3. X-ray crystal structure of Al(L1)3. (a) Two-dimensional honeycomb-type packing in the ab-
plane and (b) one-dimensional π-stacks along the c-axis within the crystal. Thermal ellipsoids are 
shown at 50% probability. 

To examine the electronic properties, the absorption spectra of the ligands as well as their 
aluminum complexes were recorded (Figure 4). The obtained results indicate that the absorption 
bands of the aluminum complexes were notably red-shifted with respect to those of the ligands. For 
example, the intense absorption band of Al(L3)3 (λmax = 634 nm; log ε = 4.76), which was blue in 
solution, was bathochromically shifted by 100 nm with respect to that of L3 (λmax = 534 nm; log ε = 
4.31). The characteristics of Al(L1)3 (λmax = 556 nm; logε = 4.54) and Al(L3)3 (λmax = 634 nm; log ε = 4.76) 
were the broad absorption bands in the visible range tailing up to 640 and 780 nm, respectively, with 
a remarkably high molar absorptivity compared to that of Alq3 (λmax = 388 nm; log ε = 3.83) and [6,6]-
phenyl-C60-butyric acid methyl ester (PCBM, λmax = 430 nm; log ε = 3.2), which is used as the acceptor 
material in OPVs [42,43]. DFT calculations for Al(L1)3 and Al(L3)3 at the B3LYP/6-31G* level of theory 
suggest that the π-conjugation did not include multiple ligands through the aluminum center, but 
that it was rather localized on each ligand, which reflected the C1 symmetry of the meridional form 
(Figure 5). While the longest wavelength absorptions of Al(L1)3 and Al(L3)3 could be assigned to the 
two overlapping transitions with dominant contributions of localized π–π* transitions in each ligand, 
there were also minor contributions with the intramolecular charge-transfer (ICT) character, which 
corresponded to the transitions across the different ligands (Table 2). The cyclic voltammogram of 
Al(L3)3 exhibited a reversible reduction wave (E1/2 = −1.29 V vs Fc/Fc+) that was almost identical to 
that of L3 (E1/2 = −1.31 V), indicating a high electron affinity for Al(L3)3 due to the dicarboximide 
groups with strongly electron-withdrawing properties. 

Figure 3. X-ray crystal structure of Al(L1)3. (a) Two-dimensional honeycomb-type packing in the
ab-plane and (b) one-dimensional π-stacks along the c-axis within the crystal. Thermal ellipsoids are
shown at 50% probability.

To examine the electronic properties, the absorption spectra of the ligands as well as their
aluminum complexes were recorded (Figure 4). The obtained results indicate that the absorption bands
of the aluminum complexes were notably red-shifted with respect to those of the ligands. For example,
the intense absorption band of Al(L3)3 (λmax = 634 nm; log ε = 4.76), which was blue in solution,
was bathochromically shifted by 100 nm with respect to that of L3 (λmax = 534 nm; log ε = 4.31).
The characteristics of Al(L1)3 (λmax = 556 nm; logε = 4.54) and Al(L3)3 (λmax = 634 nm; log ε = 4.76)
were the broad absorption bands in the visible range tailing up to 640 and 780 nm, respectively,
with a remarkably high molar absorptivity compared to that of Alq3 (λmax = 388 nm; log ε = 3.83)
and [6,6]-phenyl-C60-butyric acid methyl ester (PCBM, λmax = 430 nm; log ε = 3.2), which is used as the
acceptor material in OPVs [42,43]. DFT calculations for Al(L1)3 and Al(L3)3 at the B3LYP/6-31G* level
of theory suggest that the π-conjugation did not include multiple ligands through the aluminum center,
but that it was rather localized on each ligand, which reflected the C1 symmetry of the meridional
form (Figure 5). While the longest wavelength absorptions of Al(L1)3 and Al(L3)3 could be assigned
to the two overlapping transitions with dominant contributions of localized π–π* transitions in each
ligand, there were also minor contributions with the intramolecular charge-transfer (ICT) character,
which corresponded to the transitions across the different ligands (Table 2). The cyclic voltammogram
of Al(L3)3 exhibited a reversible reduction wave (E1/2 = −1.29 V vs Fc/Fc+) that was almost identical
to that of L3 (E1/2 = −1.31 V), indicating a high electron affinity for Al(L3)3 due to the dicarboximide
groups with strongly electron-withdrawing properties.
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Figure 5. Selected frontier orbitals of the meridional isomer of Al(L3)3 for the optimized ground-state
structure calculated at the B3LYP/6-31G* level of theory.
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Table 2. Main electronic transitions for mer-Al(L3)3, calculated at the TD-CAM-B3LYP/6-31G*//
B3LYP/6-31G* level of theory.

λcalculated (nm) Oscillator Strength Contributing MOs (%) 1 Character

546 0.916
HOMO→ LUMO+2 (58)
HOMO–2→ LUMO (19)
HOMO→ LUMO+1 (10)

π→π*
π→π*
ICT

536 0.861

HOMO–2→ LUMO (45)
HOMO–1→ LUMO+1

(36)
HOMO→ LUMO+1 (5)

π→π*
π→π*
ICT

1 The corresponding orbitals are shown in Figure 5.

3. Materials and methods

The 1H and 13C NMR measurements were carried out with a JEOL JNM-ECA 500 instrument
(JEOL Ltd., Tokyo, Japan). The NMR chemical shifts were reported in ppm with reference to residual
protons and carbons of CDCl3 (δ 7.26 ppm in 1H NMR and δ 77.0 ppm in 13C NMR), CD2Cl2 (δ 5.33
ppm in 1H NMR and δ 54.2 ppm in 13C NMR), and tetrachloroethane-d2 (δ 6.00 ppm in 1H NMR).
UV–Vis absorption spectra were measured with a Shimadzu UV-3150 spectrometer (Shimadzu Corp.,
Kyoto, Japan). APCI and ESI mass spectra were measured on Bruker micrOTOF-Q II spectrometer
(Bruker Japan K.K., Kanagawa, Japan). The microwave reaction was performed using an Anton Paar
Monowave 300 (Anton Paar Japan K.K., Tokyo, Japan). Cyclic voltammetry (CV) was performed
on a BAS ALS620A electrochemical analyzer (BAS Inc., Tokyo, Japan). The CV cell consisted
of a glassy carbon electrode, a Pt wire counter electrode, and an Ag/AgNO3 reference electrode.
The measurements were carried out under an argon atmosphere using a CH2Cl2 solution of a sample
with a concentration of 1 mM and 0.1 M tetrabutylammonium hexafluorophosphate (nBu4N+PF6

−) as
a supporting electrolyte. The redox potentials were calibrated with ferrocene as an internal standard.
tBuOH, diazabicycloundecene (DBU), 3-aminopentane were purchased from Tokyo Chemical Industry
Co., Ltd. (Tokyo, Japan). 4-Bromo-1,8-naphthalic anhydride, 2,6-diisopropylaniline, propionic acid,
K3PO4, PCy3·HBF4, DMF, PivOH, Pd(OAc)2, N-methylpyrrolidone (NMP), AlCl3, K2CO3, aniline were
purchased from FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan). Sodium thiomethoxide
was purchased from Sigma-Aldrich Co. LLC. (Tokyo, Japan). N-Hexylamine was purchased from
Nacalai Tesque, Inc. (Kyoto, Japan). Compound 1A1 and 4A2 were prepared according to the literature.

All calculations were conducted with Gaussian 09 packages (Gaussian, Inc., Wallingford, CT,
USA). The structures were fully optimized with the B3LYP functional and basis set of 6-31G* without
any symmetry assumptions. For the computational analyses of the mechanism of the Pd-catalyzed
direct arylation reactions, calculations were performed by the M06-2X with a combined basis set, i.e.,
SDD for Pd and 6-31G** for the rest. Optical transitions with oscillator strength were calculated at the
TD-CAM-B3LYP/6-31G* level of theory.

3.1. Synthesis of Compound 1

Compound 1A (513 mg, 1.80 mmol), o-dibromonaphthalene (1.03 g, 3.60 mmol), Pd2(dba)3·CHCl3
(56.0 mg, 0.0540 mmol), PPh3 (56.7 mg, 0.216 mmol) and K3PO4 (1.15 g, 5.40 mmol) were suspended in
a mixed solvent of DMF/H2O (10:1, 33 mL) and stirred for 5 h at 80 ◦C under an argon atmosphere.
The reaction mixture was cooled to room temperature and diluted with EtOAc. The organic layer
was washed three times with water, and the aqueous layer was extracted three times with EtOAc.
The organic layer was combined, dried over Na2SO4, and evaporated under a reduced pressure.
The crude product was purified by column chromatography on silica gel (CH2Cl2/AcOEt, 10:1) to
give 1 (495 mg, 1.36 mmol) in a 75% yield as colorless solids. Data for 1: 1H NMR (500 MHz, CDCl3):
δ 8.97 (dd, J = 2.0, 0.8 Hz, 1H), 8.04 (dd, J = 4.3, 1.0 Hz, 1H), 8.00 (dd, J = 4.0, 0.5 Hz, 1H), 7.77 (dd,
J = 3.4, 1.0 Hz, 1H), 7.62 (m, 2H), 7.54 (dd, J = 3.8, 1.0 Hz, 1H), 7.43 (d, J = 4.0 Hz, 1H), 7.36 (t, J = 3.8 Hz,
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1H), 7.25 (dd, J = 4.3, 2.0 Hz, 1H), 7.11 (d, J = 3.8 Hz, 1H), and 4.17 (s, 3H); 13C NMR (126 MHz,
CDCl3): δ 155.01, 148.80, 139.60, 136.52, 135.84, 134.47, 133.80, 132.20, 132.11, 130.61, 130.21, 129.59,
129.07, 127.90, 126.17, 125.44, 121.46, 119.67, 106.74 and, 55.94; HRMS (+APCI): [M + H]+ calculated for
C20H15BrNO 364.0332, found 364.0322.

3.2. Synthesis of Compounds 2 and 3

Compound 1 (726 mg, 1.99 mmol), Pd(OAc)2 (45.5 mg, 0.203 mmol), PCy3·HBF4 (148 mg,
0.0401 mmol) and K2CO3 (556 mg, 4.02 mmol) in NMP (10 mL) were placed in a sealed reaction vials
and stirred in the microwave reactor at 170 ◦C for 1 h under an argon atmosphere. The reaction
mixture was cooled to room temperature and diluted with CH2Cl2. The organic layer was washed
with water, and the aqueous layer was extracted three times with CH2Cl2. The organic layer was
combined, dried over Na2SO4, and evaporated under a reduced pressure. The crude product was
purified by column chromatography on silica gel (CH2Cl2/EtOAc, 10:1) to give 2 (269 mg, 0.950 mmol)
in a 48% yield as brown solids and regioisomer 3 (66.6 mg, 10.2 mmol) as a by-product. Data for 2:
1H NMR (500 MHz, CDCl3): δ 8.89 (d, J = 2.5 Hz, 1H), 8.29 (d, J = 3.5 Hz, 1H), 8.17 (d, J = 4.0 Hz,
1H), 8.15 (d, J = 3.5 Hz, 1H), 7.98 (d, J = 2.3 Hz, 1H), 7.83 (d, J = 4.0 Hz, 1H), 7.69 (d, J = 4.0 Hz, 1H),
7.53 (m, 2H), 7.13 (d, J = 4.3 Hz, 1H), and 4.13 (s, 3H); 13C NMR (126 MHz, CDCl3): δ 154.87, 149.92,
139.37, 134.55, 130.59, 130.56, 128.63, 128.20, 127.26, 126.98, 126.38, 124.96, 123.49, 122.03, 120.37, 119.93,
114.06, 108.34, and 56.08 (two sp2 carbon signals were overlapped with other signals); HRMS (–APCI):
[M]− calculated for C20H13NO 283.1003, found 283.1007, and found 283.1013. Data for 3: 1H NMR
(500 MHz, CDCl3): δ 8.95 (m, 2H), 8.26 (d, J = 3.3 Hz, 1H), 8.04 (d, J = 3.5 Hz, 1H), 7.89 (d, J = 4.0 Hz,
1H), 7.83 (d, J = 4.0 Hz, 1H), 7.67 (m, 3H), 7.56 (dd, J = 4.5, 2.5 Hz, 1H), and 4.16 (s, 3H); 13C NMR
(126 MHz, CDCl3): δ 155.52, 148.25, 140.07, 138.30, 137.16, 136.77, 132.12, 131.91, 129.42, 128.12, 127.83,
127.72, 126.26, 126.12, 122.46, 122.11, 121.05, 101.91, and 56.21 (one sp2 signal was overlapped with
another signal); HRMS (–APCI): [M]− calculated for C20H13NO 283.1003, found 283.1007.

3.3. Synthesis of Compound 4

Compound 1A (85.3 mg, 0.299 mmol), compound 4A (196 mg, 0.448 mmol), Pd2(dba)3·CHCl3
(10.0 mg, 0.00966 mmol), PCy3·HBF4 (13.0 mg, 0.0353 mmol) and K3PO4 (191 mg, 0.90 mmol)
were suspended in a mixed solvent of DMF/H2O (10:1, 5.5 mL) and stirred for 2 h at 80 ◦C under
an argon atmosphere. The reaction mixture was cooled to room temperature and diluted with CH2Cl2.
The organic layer was washed three times with water, and the aqueous layer was extracted three times
with CH2Cl2. The organic layer was combined, dried over Na2SO4, and evaporated under a reduced
pressure. The crude product was purified by column chromatography on silica gel (CH2Cl2/EtOAc,
10:1) to give 4 (149 mg, 0.290 mmol) in a 97% yield as colorless solids. Data for 4: 1H NMR (500 MHz,
CDCl3): δ 9.00 (dd, J = 4.0, 1.5 Hz, 1H), 8.77 (d, J = 7.5 Hz, 1H), 8.69 (dd, J = 7.0, 1.5 Hz, 1H), 7.87
(dd, J = 8.5, 1.0 Hz, 1H), 7.81 (d, J = 7.5 Hz, 1H), 7.74 (dd, J = 8.5, 1.5 Hz, 1H), 7.64 (t, J = 7.8 Hz, 1H),
7.55 (d, J = 8.0 Hz, 1H), 7.50 (t, J = 7.8 Hz, 1H), 7.35 (m, 3H), 7.24 (d, J = 7.5 Hz, 1H), 4.22 (s, 3H),
2.81 (m, 2H), and 1.20 (m, 12H); 13C NMR (126 MHz, CDCl3): δ 187.95, 187.81, 179.74, 172.85, 169.68,
168.24, 163.71, 157.39, 156.68, 155.38, 155.20, 154.94, 154.64, 153.12, 152.96, 152.73, 152.26, 152.07, 151.57,
150.64, 130.82, 79.70, 52.70, 47.30, and 47.25; HRMS (–APCI): [M]− calculated for C34H30N2O3 514.2256,
found 514.2244.

3.4. Synthesis of Compound 5

Compound 4 (129 mg, 0.250 mmol) and potassium tert-butoxide (168 mg, 1.50 mmol) were
suspended in DBU (0.8 mL) and stirred for 1 h at 80 ◦C under an argon atmosphere. The reaction
mixture was cooled to room temperature and quenched with NH4Cl aq. The aqueous layer was
extracted three times with CH2Cl2. The organic layer was washed with water, dried over Na2SO4,
and evaporated under a reduced pressure. The crude product was purified by column chromatography
on silica gel (CH2Cl2/acetone, 10:1) to give 5 (106 mg, 0.208 mmol) in an 83% yield as reddish purple
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solids. Data for 5: 1H NMR (500 MHz, CDCl3): δ 9.01 (d, J = 4.5 Hz, 1H), 8.66 (d, J = 8.0 Hz, 1H), 8.63
(d, J = 8.0 Hz, 1H), 8.57 (d, J = 8.0 Hz, 1H), 8.46 (d, J = 8.5 Hz, 1H), 8.41 (d, J = 8.5 Hz, 1H), 8.24 (d,
J = 4.5 Hz, 1H), 7.51 (t, J = 7.8 Hz, 1H), 7.35 (d, J = 7.5 Hz, 1H), 7.24 (d, J = 8.5 Hz, 1H), 7.24 (d, J = 7.5
Hz, 1H), 4.16 (s, 3H), 2.75 (m, 2H), and 1.14 (d, J = 7.0 Hz, 12H); 13C NMR (126 MHz, CD2Cl2): δ 164.30,
158.13, 150.35, 146.50, 141.69, 137.38, 136.96, 135.36, 132.64, 131.84, 131.80, 130.79, 129.73, 127.04, 125.40,
124.59, 124.40, 123.57, 122.15, 121.68, 120.51, 120.22, 116.88, 109.45, 56.74, 30.06, 29.46, and 24.07 (three
sp2 and three sp3 carbon signals were overlapped with other signals). HRMS (–APCI): [M]− calculated
for C34H28N2O3 512.2105, found 512.2095.

3.5. Synthesis of Compound L1

MeSNa (106 mg, 1.51 mmol) was weighed in a glove box and placed in a Schlenk tube. Compound
2 (79.8 mg, 0.281 mmol) and DMF (6.0 mL) were added and stirred for 2.5 h at 70 ◦C under an argon
atmosphere. The reaction mixture was cooled to room temperature, diluted with CH2Cl2, and quenched
by NH4Cl aq. The organic layer was washed three times with water, and the aqueous layer was extracted
three times with CH2Cl2. The organic layer was combined, dried over Na2SO4, and evaporated under
a reduced pressure. The aqueous layer was extracted three times with CH2Cl2 again. The crude
mixture was dissolved in minimum CH2Cl2, added to n-hexane, and filtered with membrane filter to
give L1 (66.1 mg, 0.245 mmol) in an 87% yield as red solids. Data for L1: 1H NMR (500 MHz, CDCl3): δ
8.72 (d, J = 2.3 Hz, 1H), 8.28 (d, J = 3.5 Hz, 1H), 8.15 (m, 2H), 7.96 (d, J = 2.5 Hz, 1H), 7.84 (d, J = 4.0 Hz,
1H), 7.68 (d, J = 4.0 Hz, 1H), 7.53 (m, 2H), and 7.24 (d, J = 4.0 Hz, 1H); 13C NMR spectrum could not be
obtained due to insufficient solubility; HRMS (–APCI): [M – H]− calculated for C19H10NO 268.0768,
found 268.0765.

3.6. Synthesis of Compound L2

Compound 3 (143 mg, 0.503 mmol) and sodium thiomethoxide (245 mg, 3.50 mmol) were
suspended in DMF (5 mL) and stirred for 2 h at 80 ◦C under an argon atmosphere. The reaction mixture
was cooled to room temperature and quenched with NH4Cl aq. The precipitate was filtered and
washed with water and MeOH. The crude mixture was dissolved in a minimum amount of CH2Cl2,
precipitated with n-hexane, and filtered with a membrane filter to give L2 (127 mg, 0.471 mmol) in
a 94% yield as yellow solids. Data for 3: 1H NMR (500 MHz, CDCl3): δ 8.94 (dd, J = 8.0, 1.0 Hz, 1H),
8.77 (dd, J = 4.5, 2.0 Hz, 1H), 8.22 (d, J = 7.0 Hz, 1H), 8.02 (d, J = 7.0 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H),
7.81 (d, J = 8.5 Hz, 1H), 7.77 (s, 1H), 7.65 (t, J = 7.5 Hz, 2H), and 7.56 (dd, J = 8.5, 4.0 Hz, 1H); 13C NMR
(126 MHz, CDCl3): δ 152.47, 146.85, 139.52, 138.20, 137.44, 136.89, 132.71, 131.99, 129.53, 128.17, 127.95,
127.94, 126.04, 125.52, 125.02, 122.55, 122.05, 121.51, and 104.46; HRMS (–APCI): [M – H]− calculated
for C19H10NO 268.0768, found 268.0763.

3.7. Synthesis of Compound L3

Compound 5 (590 mg, 1.15 mmol) and sodium thiomethoxide (646 mg, 9.21 mmol) were suspended
in DMF (23 mL) and stirred for 2 h at 100 ◦C under an argon atmosphere. The reaction mixture was
cooled to room temperature and quenched with NH4Cl aq. The aqueous layer was extracted three times
with CH2Cl2. The organic layer was washed with water, dried over Na2SO4, and evaporated under
a reduced pressure. The crude mixture was dissolved in a minimum amount of CH2Cl2, precipitated
with n-hexane, and filtered with membrane filter to give L3 (534 mg, 1.07 mmol) in a 93% yield as
reddish purple solids. Data for L3: 1H NMR (500 MHz, CDCl3): δ 8.91 (d, J = 5.0 Hz, 1H), 8.70 (d,
J = 8.5 Hz, 1H), 8.66 (d, J = 8.0 Hz, 1H), 8.53 (d, J = 8.0 Hz, 1H), 8.41 (d, J = 8.0 Hz, 1H), 8.36 (d, J = 8.0
Hz, 1H), 8.22 (d, J = 4.5 Hz, 1H), 7.49 (t, J = 8.0 Hz, 1H), 7.34 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 8.5 Hz, 1H),
2.75 (m, 2H), and 1.18 (d, J = 6.5 Hz, 12H); 13C NMR (126 MHz, CDCl3): δ 163.86, 163.82, 154.61, 148.97,
145.77, 139.21, 137.63, 137.04, 134.37, 132.67, 131.58, 130.92, 130.56, 129.63, 126.95, 125.61, 124.14, 123.73,
123.59, 121.92, 120.58, 120.21, 119.81, 116.58, 111.86, 29.25, and 24.08 (two sp2 and four sp3 carbon
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signals were overlapped with other signals); HRMS (–APCI): [M – H]− calculated for C33H25N2O3

497.1865, found 497.1864.

3.8. Synthesis of Compound Al(L1)3

Compound L1 (26.9 mg, 0.0999 mmol) and AlCl3 (5.41 mg, 0.0406 mmol) were suspended in
EtOH (1 mL) and stirred for 1 h at reflux temperature under an argon atmosphere. The reaction
mixture was quenched with NEt3. The precipitate was filtered, centrifuged, washed with MeOH,
and then it was collected by centrifugation. The resulting solid was dried in vacuo to give Al(L1)3

(26.6 mg, 0.0320 mmol) in a 97% yield as dark purple solids. Data for Al(L1)3: 1H NMR (500 MHz,
1,1,2,2-tetrachloroethane-d2): δ 8.70 (m, 2H), 8.22 (m, 4H), 8.15 (d, J = 3.0 Hz, 1H), 8.08 (m, 4H), 7.93 (d,
J = 2.3 Hz, 1H), 7.84 (m, 4H), 7.69 (d, J = 2.5 Hz, 1H), 7.61 (m, 3H), 7.49 (m, 6H), 7.39 (d, J = 2.8 Hz, 1H),
7.17 (m, 2H), and 7.10 (d, J = 3.7 Hz, 1H); HRMS (+ESI): [M + Na]+ calculated for C57H30AlN3NaO3

854.1995, found 854.1973 (We could not observe the 13C NMR signals of Al(L1)3, likely due to severe
broadening caused by the aggregation and ligand exchange dynamics.).

3.9. Synthesis of Compound Al(L3)3

Compound L3 (25.0 mg, 0.0501 mmol) and AlCl3 (2.82 mg, 0.0211 mmol) were suspended in EtOH
(1 mL) and stirred for 1 h at reflux temperature under an argon atmosphere. The reaction mixture was
quenched with NEt3 and evaporated. The precipitate was centrifuged, washed with MeOH, and then
collected by centrifugation. The resulting solid was dried in vacuo to give Al(L3)3 (23.2 mg, 0.0153
mmol) in a 92% yield as dark blue solids. Data for Al(L3)3: 1H NMR (500 MHz, CDCl3): δ 9.00 (d,
J = 5.0 Hz, 1H), 8.93 (d, J = 5.0 Hz, 1H), 8.65 (m, 7H), 8.50 (m, 5H), 8.31 (m, 5H), 8.24 (d, J = 4.5 Hz,
1H), 8.05 (d, J = 4.5 Hz, 1H), 7.62 (d, J = 5.5 Hz, 1H), 7.47 (m, 4H), 7.33 (m, 7H), 2.71 (m, 6H), and 1.16
(m, 36H); HRMS (–APCI): [M]− calculated for C99H75AlN6O9 1518.5416, found 1518.5400 (We could
not clearly observe the 13C NMR signals of Al(L3)3 likely due to severe broadening caused by the
aggregation and ligand exchange dynamics).

4. Conclusions

We have reported a synthetic route to π-extended propeller-shaped tris(8-hydroxyquinoline)
aluminum(III) complexes (Alq3), i.e., Al(L1)3 and Al(L3)3, which contain an azaperylene core in the
ligands. A single-crystal X-ray diffraction analysis of Al(L1)3 revealed a unique three-dimensional (3D)
packing structure, i.e., a two-dimensional honeycomb packing in the ab-plane and a one-dimensional
π-stacked column along the c-axis. In the cyclization of precursor 1 via an intramolecular Pd-catalyzed
direct arylation, cyclization modes for the formation of hexagonal and pentagonal rings could be
controlled by the use of a catalytic amount of PivOH under a decreased reaction temperature.
Al(L3)3, which contains strongly electron-withdrawing dicarboximide moieties, was synthesized
using a base-promoted cyclization. Al(L3)3 exhibited deep blue color in solution with a strong
absorption band that extended to 780 nm. Further studies on large propeller-shaped π-systems using
metal-coordination for applications in n-type semiconducting materials are currently in progress in
our laboratory and will be reported in due course.
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