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Abstract: Biomass has gained great attention as an alternative to fuel-derived chemicals. This report
concerns new catalytic systems consisting of [IrCp*Cl2]2 (Cp*: Pentamethylcyclopentadienyl) for
the reduction of aldehyde and biogenetic alcohols as hydrogen sources. [IrCp*Cl2]2 has been used
as a transfer hydrogenation catalyst using fossil fuel-derived alcohols as hydrogen sources in the
presence of a base. In contrast, our system does not require any base, and the reaction can proceed in
water. Various types of biogenetic alcohols can be used as hydrogen sources, such as monosaccharides,
oligosaccharides, and glycerol. Aromatic and aliphatic aldehydes, as well as ketones, were successfully
reduced to the corresponding alcohols in the present system.

Keywords: iridium; aldehyde; ketone; sugar; glycerol; biogenetic; biomass; reduction; hydrogenation;
hydrogen transfer

1. Introduction

Fossil fuels play a dominant role in chemical sciences and industries. However, fossil fuel
dependency is unsustainable due to its limited amount of resources. Moreover, a large number of
greenhouse gases, such as CO2, are emitted by the use of fossil fuels. Biomass has the potential to
provide a sustainable and carbon-neutral process which complements the drawback of fossil fuels and
possibly suppresses global warming [1]. In recent years, a number of research directions focusing on
biomass transformation have been explored, such as for biofuels and bioplastics [2]. On the other hand,
a trivalent iridium complex bearing a pentamethylcyclopentadienyl (Cp*) ligand is a well-known
stable complex [3]. The Cp* ligand is not susceptible to chemical transformation and has been used as
an effective ligand because it can form stable coordination with a metal center in a tridentate coordination
fashion. Thus, the Cp* ligand has been employed to improve the stabilities and hemilabilities of
catalytically active species [4]. Therefore, a number of IrCp*-catalyzed reactions have been reported so
far [5]; however, there has been no report on the reduction of carbonyl compounds using biogenetic
alcohols as hydrogen sources despite the known reducing property of glucose in the field of metal
nanoparticles synthesis [6]. Though RhCp*-catalyzed hydrogenation using sugars as hydrogen sources
has been reported, excess amounts of sugar, bases, and toxic chlorinated solvents were necessary [7].
Herein, [IrCp*Cl2]2-catalyzed reduction of carbonyl groups is reported, which consists of biogenetic
alcohols, such as monosaccharides, oligosaccharides, or glycerol, as a hydrogen source. This system
does not require any base, and the reaction can proceed in the presence of water.

2. Results and Discussions

The investigation on the optimization of [IrCp*Cl2]2-catalyzed reaction condition using 2-
naphthaldehyde (1a) as a substrate was performed. Reductions of 1a using sugars as hydrogen sources
under base-free conditions were conducted. The reaction was carried out using different types of solvents in
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the presence of [IrCp*Cl2]2 as a catalyst (5.0 mol %-Ir) and glucose as a hydrogen source at 85 ◦C for 24 h;
as a result, 2-naphthyl methanol (2a) was formed (Table 1). In order to dissolve glucose, water was required
for this reaction. The choice of solvent was essential for the high conversion of 1a; a less polar solvent such
as CH2Cl2 and toluene showed lower yields of 45% (Entry 1) and 61% (Entry 2), while a polar solvent such
as tetrahydrofuran (THF), MeOH, and 1,4-dioxane gave higher yields of 81% (Entry 3), 93% (Entry 4) and
95% (Entry 5), respectively. When the amount of the catalyst was reduced to 1 mol%, the product yield
decreased to 53% (Entry 6). The addition of a base may have had some effect; the product yield slightly
increased to 60% when 1 mol % of Ir and 10 mol % of K2CO3 were used (Entry 7).

Table 1. Optimization of solvents in the reduction of 1a a.
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1 CH2Cl2/ H2O 45
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3 THF/ H2O 81

4 MeOH/ H2O 93

5 1,4-dioxane/ H2O 95
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a The reaction was carried out with benzaldehyde (0.25 mmol), glucose (0.25 mmol) and [IrCp*Cl2]2 (0.0125 mmol,
5.0 mol %) in a solvent (1 mL, 1:1 with water) at 85 ◦C for 24 h. Yields were determined by 1H NMR using
1,1,2,2-tetrachloroethane as an internal standard. b [IrCp*Cl2]2 (0.0025 mmol, 1.0 mol%) was used. c [IrCp*Cl2]2
(0.0025 mmol, 1.0 mol %) and K2CO3 (10 mol %) was used.

Encouraged by the above results, we envisaged using other sugars in the IrCp*-catalyzed reactions.
The results of the investigation are summarized in Table 2. The reaction of monosaccharides, such as
glucose, galactose, and xylose, resulted in excellent yields (Entries 1–3). When the reaction was
performed using a disaccharide such as lactose, sucrose, and maltose, similar yields were obtained
(Entries 4–6), while decreasing the amount of disaccharide also caused a decrease of the product yield.
This suggests a 1:1 reaction of a sugar and 1a despite of the number of hydroxyl groups (Entry 7).
Similarly, trisaccharide, and raffinose also gave 2a in a high yield (Entry 8). However, when cellulose
was used, the reaction did not proceed. These results suggest that the choice of sugar is also essential.

Table 2. Reduction of 1a using various sugars as hydrogen sources a.
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Next, the reduction reactions of various aldehydes were investigated (Table 3). As described above,
1a gave 2a in an 88% isolated yield (Entry 1). Noticeable electronic and steric effects were not observed
for aromatic aldehydes bearing the 4-methyl (1b, Entry 2), 4-cyano (1c, Entry 3), 4-trifluoromethyl (1d,
Entry 4), 4-bromo (1e, Entry 5), and 2-bromo groups (1f, Entry 6). Heteroaromatic aldehydes, such as
4-pyridinecarboxaldehyde (1g, Entry 7) and 2-thiophenecarboxaldehyde (1h, Entry 8) were converted
to the corresponding alcohols. Furthermore, alkyl aldehyde (1i, Entry 9) and ketone (1j, Entry 10) could
also be applicable. However, any alkenes and alkynes were out of the scope for the catalytic system.

Table 3. IrCp*-catalyzed reduction of various carbonyl compounds using glucose as a hydrogen source a.

Inorganics 2019, 7, x FOR PEER REVIEW 4 of 7 

 

Table 3. IrCp*-catalyzed reduction of various carbonyl compounds using glucose as a hydrogen 
source a. 

 
Entry Substrate Product Yield/% 

1 

1a 

2a 88 

2 

1b 

2b 69 

3 

1c 

2c 62 

4 

1d 

2d 71 

5 

1e 

2e 83 

6 

1f 

2f 63 

7 

1g 

2g 62 

8 
1h 

2h 65 

9 

1i 

2i 70 

10 

1j 

2j 61 

a The reaction was carried out with 1 (0.25 mmol), glucose (0.25 mmol) and [IrCpCl2]2 (0.0125 mmol, 
5.0 mol %) in H2O (0.5 mL) and 1.4-dioxane (0.5 mL) at 85 °C for 24 h. Yields were determined after 
isolation with column chromatography. 

Entry Substrate Product Yield/%

1

Inorganics 2019, 7, x FOR PEER REVIEW 4 of 7 

 

Table 3. IrCp*-catalyzed reduction of various carbonyl compounds using glucose as a hydrogen 
source a. 

 
Entry Substrate Product Yield/% 

1 

1a 

2a 88 

2 

1b 

2b 69 

3 

1c 

2c 62 

4 

1d 

2d 71 

5 

1e 

2e 83 

6 

1f 

2f 63 

7 

1g 

2g 62 

8 
1h 

2h 65 

9 

1i 

2i 70 

10 

1j 

2j 61 

a The reaction was carried out with 1 (0.25 mmol), glucose (0.25 mmol) and [IrCpCl2]2 (0.0125 mmol, 
5.0 mol %) in H2O (0.5 mL) and 1.4-dioxane (0.5 mL) at 85 °C for 24 h. Yields were determined after 
isolation with column chromatography. 

1a

2a 88

2

Inorganics 2019, 7, x FOR PEER REVIEW 4 of 7 

 

Table 3. IrCp*-catalyzed reduction of various carbonyl compounds using glucose as a hydrogen 
source a. 

 
Entry Substrate Product Yield/% 

1 

1a 

2a 88 

2 

1b 

2b 69 

3 

1c 

2c 62 

4 

1d 

2d 71 

5 

1e 

2e 83 

6 

1f 

2f 63 

7 

1g 

2g 62 

8 
1h 

2h 65 

9 

1i 

2i 70 

10 

1j 

2j 61 

a The reaction was carried out with 1 (0.25 mmol), glucose (0.25 mmol) and [IrCpCl2]2 (0.0125 mmol, 
5.0 mol %) in H2O (0.5 mL) and 1.4-dioxane (0.5 mL) at 85 °C for 24 h. Yields were determined after 
isolation with column chromatography. 

1b

2b 69

3

Inorganics 2019, 7, x FOR PEER REVIEW 4 of 7 

 

Table 3. IrCp*-catalyzed reduction of various carbonyl compounds using glucose as a hydrogen 
source a. 

 
Entry Substrate Product Yield/% 

1 

1a 

2a 88 

2 

1b 

2b 69 

3 

1c 

2c 62 

4 

1d 

2d 71 

5 

1e 

2e 83 

6 

1f 

2f 63 

7 

1g 

2g 62 

8 
1h 

2h 65 

9 

1i 

2i 70 

10 

1j 

2j 61 

a The reaction was carried out with 1 (0.25 mmol), glucose (0.25 mmol) and [IrCpCl2]2 (0.0125 mmol, 
5.0 mol %) in H2O (0.5 mL) and 1.4-dioxane (0.5 mL) at 85 °C for 24 h. Yields were determined after 
isolation with column chromatography. 

1c

2c 62

4

Inorganics 2019, 7, x FOR PEER REVIEW 4 of 7 

 

Table 3. IrCp*-catalyzed reduction of various carbonyl compounds using glucose as a hydrogen 
source a. 

 
Entry Substrate Product Yield/% 

1 

1a 

2a 88 

2 

1b 

2b 69 

3 

1c 

2c 62 

4 

1d 

2d 71 

5 

1e 

2e 83 

6 

1f 

2f 63 

7 

1g 

2g 62 

8 
1h 

2h 65 

9 

1i 

2i 70 

10 

1j 

2j 61 

a The reaction was carried out with 1 (0.25 mmol), glucose (0.25 mmol) and [IrCpCl2]2 (0.0125 mmol, 
5.0 mol %) in H2O (0.5 mL) and 1.4-dioxane (0.5 mL) at 85 °C for 24 h. Yields were determined after 
isolation with column chromatography. 

1d

2d 71

5

Inorganics 2019, 7, x FOR PEER REVIEW 4 of 7 

 

Table 3. IrCp*-catalyzed reduction of various carbonyl compounds using glucose as a hydrogen 
source a. 

 
Entry Substrate Product Yield/% 

1 

1a 

2a 88 

2 

1b 

2b 69 

3 

1c 

2c 62 

4 

1d 

2d 71 

5 

1e 

2e 83 

6 

1f 

2f 63 

7 

1g 

2g 62 

8 
1h 

2h 65 

9 

1i 

2i 70 

10 

1j 

2j 61 

a The reaction was carried out with 1 (0.25 mmol), glucose (0.25 mmol) and [IrCpCl2]2 (0.0125 mmol, 
5.0 mol %) in H2O (0.5 mL) and 1.4-dioxane (0.5 mL) at 85 °C for 24 h. Yields were determined after 
isolation with column chromatography. 

1e

2e 83

6

Inorganics 2019, 7, x FOR PEER REVIEW 4 of 7 

 

Table 3. IrCp*-catalyzed reduction of various carbonyl compounds using glucose as a hydrogen 
source a. 

 
Entry Substrate Product Yield/% 

1 

1a 

2a 88 

2 

1b 

2b 69 

3 

1c 

2c 62 

4 

1d 

2d 71 

5 

1e 

2e 83 

6 

1f 

2f 63 

7 

1g 

2g 62 

8 
1h 

2h 65 

9 

1i 

2i 70 

10 

1j 

2j 61 

a The reaction was carried out with 1 (0.25 mmol), glucose (0.25 mmol) and [IrCpCl2]2 (0.0125 mmol, 
5.0 mol %) in H2O (0.5 mL) and 1.4-dioxane (0.5 mL) at 85 °C for 24 h. Yields were determined after 
isolation with column chromatography. 

1f

2f 63

7

Inorganics 2019, 7, x FOR PEER REVIEW 4 of 7 

Table 3. IrCp*-catalyzed reduction of various carbonyl compounds using glucose as a hydrogen 
source a. 

Entry Substrate Product Yield/%

1 

1a 

2a 88 

2 

1b 

2b 69 

3 

1c 

2c 62 

4 

1d 

2d 71 

5 

1e 

2e 83 

6 

1f 

2f 63 

7 

1g 

2g 62 

8 
1h 

2h 65 

9 

1i 

2i 70 

10 

1j 

2j 61 

a The reaction was carried out with 1 (0.25 mmol), glucose (0.25 mmol) and [IrCpCl2]2 (0.0125 mmol, 
5.0 mol %) in H2O (0.5 mL) and 1.4-dioxane (0.5 mL) at 85 °C for 24 h. Yields were determined after 
isolation with column chromatography. 

1g

2g 62

8

Inorganics 2019, 7, x FOR PEER REVIEW 4 of 7 

 

Table 3. IrCp*-catalyzed reduction of various carbonyl compounds using glucose as a hydrogen 
source a. 

 
Entry Substrate Product Yield/% 

1 

1a 

2a 88 

2 

1b 

2b 69 

3 

1c 

2c 62 

4 

1d 

2d 71 

5 

1e 

2e 83 

6 

1f 

2f 63 

7 

1g 

2g 62 

8 
1h 

2h 65 

9 

1i 

2i 70 

10 

1j 

2j 61 

a The reaction was carried out with 1 (0.25 mmol), glucose (0.25 mmol) and [IrCpCl2]2 (0.0125 mmol, 
5.0 mol %) in H2O (0.5 mL) and 1.4-dioxane (0.5 mL) at 85 °C for 24 h. Yields were determined after 
isolation with column chromatography. 

1h

2h 65

9

Inorganics 2019, 7, x FOR PEER REVIEW 4 of 7 

 

Table 3. IrCp*-catalyzed reduction of various carbonyl compounds using glucose as a hydrogen 
source a. 

 
Entry Substrate Product Yield/% 

1 

1a 

2a 88 

2 

1b 

2b 69 

3 

1c 

2c 62 

4 

1d 

2d 71 

5 

1e 

2e 83 

6 

1f 

2f 63 

7 

1g 

2g 62 

8 
1h 

2h 65 

9 

1i 

2i 70 

10 

1j 

2j 61 

a The reaction was carried out with 1 (0.25 mmol), glucose (0.25 mmol) and [IrCpCl2]2 (0.0125 mmol, 
5.0 mol %) in H2O (0.5 mL) and 1.4-dioxane (0.5 mL) at 85 °C for 24 h. Yields were determined after 
isolation with column chromatography. 

1i

2i 70

10

Inorganics 2019, 7, x FOR PEER REVIEW 4 of 7 

Table 3. IrCp*-catalyzed reduction of various carbonyl compounds using glucose as a hydrogen 
source a. 

Entry Substrate Product Yield/%

1 

1a 

2a 88 

2 

1b 

2b 69 

3 

1c 

2c 62 

4 

1d 

2d 71 

5 

1e 

2e 83 

6 

1f 

2f 63 

7 

1g 

2g 62 

8 
1h 

2h 65 

9 

1i 

2i 70 

10 

1j 

2j 61 

1j

2j 61

a The reaction was carried out with 1 (0.25 mmol), glucose (0.25 mmol) and [IrCpCl2]2 (0.0125 mmol, 5.0 mol
%) in H2O (0.5 mL) and 1.4-dioxane (0.5 mL) at 85 ◦C for 24 h. Yields were determined after isolation with
column chromatography.



Inorganics 2019, 7, 114 4 of 6

A time-resolved reaction profile for the [IrCp*Cl2]2-catalyzed reduction of aldehyde 1a to alcohol
2a is shown in Figure 1. This profile indicates that the 2a product gradually formed, and a 24 h reaction
is necessary.
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Figure 1. Time-course analysis of the product yield of 2a or recovery of 1a. The reaction was carried out
with 1a (0.25 mmol), glucose (0.25 mmol), and [IrCp*Cl2]2 (0.0125 mmol, 5.0 mol %) in H2O (0.5 mL)
and 1.4-dioxane (0.5 mL) at 85 ◦C. Product yields were determined by gas chromatography using
dodecane as an international standard.

Next, an investigation was performed to confirm which hydrogen on a sugar was used as
a reductant. Using methyl α-d glucoside, the system did not afford the desired product (Table 4, Entry 1).
However, another biogenetic alcohol, glycerol, worked as a hydrogen source (Table 4, Entry 2).
This suggests that glucose binds to the Ir center via the deprotonated hydroxyl group at the anomeric
carbon followed by a hydrogen shift from that carbon to iridium, and then the reduction of the aldehyde
may occur.

Table 4. Investigation of hydrogen source a.
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5.0 mol %) in H2O (0.5 mL) and 1.4-dioxane (0.5 mL) at 85 ◦C for 24 h. Yields were determined by isolation with
column chromatography.

The reaction mechanism is supposed to be similar to the traditional [IrCp*Cl2]2-catalyzed transfer
hydrogenation with fossil fuel-derived alcohols [3]. However, the reason for the lack of need of the
base is still unclear. Further investigations would be necessary to distinguish the difference among the
reaction mechanisms occurring with different types of alcohol.
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3. Materials and Methods

All reactions were carried out under an argon atmosphere. 1,4-dioxane and d(+)-glucose were
purchased from Wako Pure Chemical Industries (Osaka, Japan). The Ir complex was purchased from
Furuya Metal Co., Ltd. (Tokyo, Japan). Glucono-δ-lactone was purchased from Kishida Chemical
Co. (city, country), which was used for the LC–MS analysis of the standard sample. 1H (400 MHz)
and 13C (100 MHz) NMR spectra were recorded using a JEOL JNM-LA400 spectrometer (JEOL, Ltd,
Tokyo, Japan). Proton chemical shifts were relative to solvent peaks [chloroform: 7.27 (1H), 77.00 (13C)].
Reactions were monitored by thin-layer chromatography (TLC) that was carried out on 0.25 mm Merck
silica gel plates 60F-254 (Merck, Darmstadt, Germany) using UV light for visualization.

The catalytic reaction was performed as follows: Aldehyde (0.25 mmol), sugar (0.25 mmol) and
[IrCp*Cl2]2 (5.0 mol %) were dissolved in H2O (0.5 mL) and 1,4-dioxane (0.5 mL). The reaction mixture
was stirred for 24 h at 85 ◦C. After cooling, the reaction mixture was diluted with H2O and extracted
with ethyl acetate. For gas chromatography analysis, a known amount of dodecane was added in the
mixture, and the product yield was determined by comparing the areas of the GC spectra. For 1H
NMR analysis, the mixture was concentrated under reduced pressure, and the crude 1H-NMR spectra
in CDCl3 was obtained using a known amount of 1,1,2,2-tetrachloroethane as an internal standard
(see Supplementary Materials). The yield was measured by integrating the H of the benzylic position
with respect to the 1,1,2,2-tetrachloroethane peak.

4. Conclusions

The [IrCp*Cl2]2-catalyzed reduction of carbonyl compounds was achieved using biogenetic
alcohols, such as sugars and glycerol. The mechanism of the reaction was similar to the previously
developed hydrogen transfer reactions using alcohols as hydrogen sources [3]; however, the developed
system herein does not require the addition of a base. The utilization of biogenetic alcohols as hydrogen
sources will provide new methods for organic synthetic chemistry and will contribute to the fields of
sustainable chemical engineering research. Currently, a long reaction time of 24 h is required, but this
could be improved by modifying the structure of the ligand on Ir [8] and will be investigated in the
future work.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-6740/7/9/114/s1.
NMR data and ESI-MS data.
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