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Abstract: Prostate-specific membrane antigen (PSMA) is a biomarker expressed on the surface of
prostate cancer (PCa). In an effort to improve the detection and treatment of PCa, small urea-based
PSMA inhibitors have been studied extensively. In the present study, we aimed to develop
99mTc-tricabonyl labeled urea-based PSMA conjugates containing isonitrile (CN-R)-coordinating
ligands ([99mTc]Tc-15 and [99mTc]Tc-16). Both the PSMA conjugates were obtained at high
radiochemical efficiency (≥98.5%). High in vitro binding affinity was observed for [99mTc]Tc-15 and
[99mTc]Tc-16 (Kd = 5.5 and 0.2 nM, respectively) in PSMA-expressing 22Rv1 cells. Tumor xenografts
were conducted using 22Rv1 cells and rapid accumulation of [99mTc]Tc-16 (1.87 ± 0.11% ID/g) was
observed at 1 h post-injection, which subsequently increased to (2.83± 0.26% ID/g) at 4 h post-injection.
However, [99mTc]Tc-15 showed moderate tumor uptake (1.48 ± 0.18% ID/g), which decreased at
4 h post-injection (0.81 ± 0.09% ID/g). [99mTc]Tc-16 was excreted from non-targeted tissues with
high tumor-to-blood (17:1) and tumor-to-muscle ratio (41:1) at 4 h post-injection at approximately
4 times higher levels than [99mTc]Tc-15. Uptakes of [99mTc]Tc-15 and [99mTc]Tc-16 to PSMA-expressing
tumor and tissues were significantly blocked by co-injection of 2-(Phosphonomethyl)-pentandioic
acid (2-PMPA), suggesting that their uptakes are mediated by PSMA specifically. Whole-body single
photon emission computed tomography imaging of [99mTc]Tc-16 verified the ex vivo biodistribution
results and demonstrated clear visualization of tumors and tissues expressing PSMA compared to
[99mTc]Tc-15. In conclusion, using [99mTc]Tc-16 rather than [99mTc]Tc-15 may be the preferable because
of its relatively high tumor uptake and retention.
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1. Introduction

Prostate cancer (PCa) is a commonly diagnosed disease and is the second leading cause of cancer
death in the United States. In 2018, approximately 164,690 men were diagnosed with PCa, leading to an
estimated 29,430 deaths [1]. Prostate-specific membrane antigen (PSMA) is glutamate carboxypeptidase
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II (GCPII) or N-acetyl-l-aspartyl-l-glutamate peptidase I (NAALADase I), and is a type II integral
transmembrane glycoprotein (100–120 kDa). PSMA is expressed in most PCa tissues and its expression
often increased in metastatic, poorly differentiated, androgen-independent, and hormone-refractory
carcinoma [2–4]. In addition, the levels of PSMA expression correlate with the progression, stage,
and the risk of disease [5,6]. Therefore, PSMA is considered to be a promising, reliable, and an efficient
biomarker for PCa imaging and therapeutic application.

PSMA was originally imaged by FDA approved 111In-labeled monoclonal antibody
(111In-capromab pendetide, ProstaScint®) to diagnose PCa [7–10]. However, it binds to an intracellular
site of PSMA and is only able to access necrotic tumor cells [11,12]. Therefore, it failed to gain
wide acceptance in the field of nuclear medicine. Subsequently, a humanized monoclonal antibody
(J591) to target the extracellular domain of the PSMA was evaluated preclinically as an imaging and
radioimmunotherapeutic agent [13–16]. Despite improved target efficiency, its slow pharmacokinetics
and slow clearance from non-target tissue made it incompatible for diagnostic applications. Thereafter,
small molecular weight ligands, mainly urea-based small molecules, showed promising applications
for imaging PSMA-expressing prostate tumor xenografts owing to their rapid clearance from the
non-target tissue and very high tumor-to-background ratio [17,18]. Recently, numerous urea-based
PSMA ligands have been developed to improve the affinity, specificity, and targeting efficacy of
diagnostic agents [19–28]. Several molecules have been tested in preclinical and clinical stages for the
visualization of primary, metastatic bone, and soft-tissue lesions of PCa [29–32].

Technetium-99m (99mTc) is the most widely used radionuclide for single photon emission computed
tomography (SPECT) because of its excellent nuclear physical characteristics (t1/2 = 6 h, Eγ = 140 keV).
It is conveniently available from 99Mo/99mTc generator in high specific activity [33]. There was a report
of 99mTc-labeled urea-based PSMA ligand for PCa imaging [34]. A bifunctional chelating agent used for
this compound was a tripeptide containing cysteine moiety which is somewhat vulnerable to air and
forms a monodentate complex. Thus we tried to find a more advanced method for the 99mTc-labeling
which leads to multidentate complex with increased affinity.

The [99mTc][Tc(CO)3(H2O)3]+ has emerged as a versatile core for the labeling of biomolecules
because of its excellent chelation chemistry, chemical inertness, and thermodynamic stability [35–37].
Furthermore, suitable mono-, bi-, and tri-dentate ligand can easily be coordinated with a [99mTc]
[Tc(CO)3(H2O)3]+ core at elevated temperature (>90 ◦C) by replacement of three water molecule in
aqueous solution [38,39].

99mTc-labeled hexakis-methoxyisobutylisonitrile (99mTc-MIBI) is a lipophilic complex with a
positive charge and is a well-known myocardial perfusion SPECT agent in the clinical field [40,41]. In the
99mTc-MIBI complex, 99mTc(I) is a soft metal and is complexed by six soft isonitrile ligands in a hexavalent
fashion to form a stable octahedral complex [42]. The metal center of [99mTc][Tc(CO)3(H2O)3]+ is
likewise soft and the isonitrile ligands can strongly coordinate with it in a 3:1 ratio, as reported
previously [43–45]. Isonitrile derivatives of arginine-glycine-aspartate (RGD) and nitroimidazole were
labeled with 99mTc by inducing a reaction with [99mTc][Tc(CO)3(H2O)3]+ and have been evaluated
in vivo with promising results [38,46]. Recently, a 99mTc-labeled tris-folate conjugate was developed
by using isonitrile and [99mTc][Tc(CO)3(H2O)3]+ to target folate receptors [47].

Here, we tried to develop an asymmetrical urea-based PSMA using the isonitrile containing
vectors 15 and 16 with two different spacers. Both of these were labeled with 99mTc in a trivalent
fashion using [99mTc][Tc(CO)3(H2O)3]+. 99mTc-labeled PSMA conjugates [99mTc]Tc-15 and [99mTc]Tc-16
were then tested in vitro for their specific PSMA binding as well as in vivo uptake in a prostate cancer
22Rv1 xenograft model as potential PSMA imaging agents.
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2. Results

2.1. Chemistry

Asymmetrical urea 1 was synthesized by treating l-glutamic acid di-tert-butyl ester hydrochloride
with triphosgene in the presence of triethylamine (TEA) at −78 ◦C to produce an intermediate
isocyanate, which subsequently was treated with N′-Cbz-l-lysine tert-butyl ester to produce 1 after
purification by silica gel chromatography (Scheme 1). The carbobenzoxy (Cbz) protecting group was
removed by catalytic hydrogenation to produce 2 in quantitative yield, and subsequently reacted with
Fmoc-6-Ahx–OH in the presence of a coupling agent (HBTU) to produce 3. Selective removal of the
Fmoc group (20% piperidine/N,N-dimethylformamide (DMF)) produce 4, and the tert-butyl protecting
group was then removed to yield 5, which was used for the synthesis of the PSMA conjugate 15.
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Scheme 1. Reagents and conditions: (a) Lys(Cbz)-OtBu, triphosgene, −78 ◦C–RT, 18 h; (b) 10%
Pd/C, methanol, 18 h; (c) Fmoc-6-Ahx–OH, N,N,N′,N′-Tetramethyl-O-(1H-benzotriazol-1-yl)uronium
hexafluorophosphate (HBTU), N,N-diisopropylethylamine (DIPEA), 0 ◦C–RT, overnight; (d) 20%
piperidine/N,N-dimethylformamide (DMF), 1 h; (e) trifluoroacetic acid (TFA): dichloromethane (DCM)
(1:1), 18 h.

For the synthesis of the PSMA conjugate 16, 4 was conjugated with Fmoc–Phe–OH using
HBTU to generate compound 6 (Scheme 2). Selective deprotection of Fmoc group from 6 using 20%
piperidine/DMF produced 7. An additional conjugation of the Fmoc–Phe–OH group to 7, followed
by removing the Fmoc group generated 9. Compound 9 was then treated with 6-Boc-aminohexanoic
acid in the presence of a coupling agent (HBTU) to produce 10. Subsequently, Boc and tert-butyl
groups were removed using a mixture of trifluoroacetic acid (TFA)/dichloromethane (DCM) (1:1 v/v) to
generate compound 11.
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Scheme 2. Reagents and conditions: (a) Fmoc-Phe-OH, HBTU, DIPEA, 0 ◦C–RT overnight; (b) 20%
piperidine/DMF, 1 h; (c) Fmoc-Phe-OH, HBTU, DIPEA, 0 ◦C–RT overnight; (d) 20% piperidine/DMF,
1 h; (e) Boc-6-Ahx–OH, HBTU, DIPEA, 0 ◦C–RT overnight; (f) TFA:DCM (1:1, v/v).

Synthesis of TFP-activated isonitrile and conjugation with 5 and 11 was accomplished in four
steps (Scheme 3). First, N-formyl-β-alanine (12) was obtained by refluxing a mixture of β-alanine,
formic acid, and acetic anhydride. The carboxylic acid group was activated with TFP to produce 13.
The formyl group was converted to isonitrile with a dehydrating agent triphosgene to generate 14.
Finally, isonitrile was conjugated to 5 or 11 in the presence of N,N-diisopropylethylamine (DIPEA)
to produce the final PSMA conjugates 15 and 16. The final products were purified by prep-HPLC.
The identities of intermediate compounds and final precursors were confirmed by 1H-NMR and
ESI/MS.
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Scheme 3. Reagents and conditions: (a) formic acid, acetic anhydride, refluxed, 3 h; (b) 2,3,5,6-
tetrafluorophenol, N,N′-dicyclohexyalcarodiimide (DCC), DMF, RT, 24 h; (c) triphosgene, DCM, TEA, 0 ◦C,
1.5 h; (d) 5,DIPEA, RT, 5 h; (e) 10, DIPEA, RT, 5 h; (f) [Re(CO)3(H2O)3]Br; (g) [99mTc]Tc(H2O)3(CO)3]+.
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2.2. Radiolabeling

[99mTc][Tc(I)(OH2)3(CO)3]+ was prepared at ≥98.5% radiolabeling efficiency (Figure 1A). Under
the given conditions, [99mTc]Tc-15 and [99mTc]Tc-16 were consistently obtained at high radiolabeling
efficiency (≥98.5%). Subsequent purification by radio-HPLC provided high radiochemical purity
(≥99.5%) of [99mTc]Tc-15 and [99mTc]Tc-16 (Figure 1B,C). Molar activities of both labeled products were
4.07 × 108 GBq/mol.
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2.3. In Vitro Serum Stability and Distribution Coefficient (LogD)

In vitro stability of [99mTc]Tc-15 and [99mTc]Tc-16 were tested in human serum at 37 ◦C, and
both showed high stability at least for 6 h (Figure 2). LogD values were determined by partitioning
[99mTc]Tc-15 or [99mTc]Tc-16 between 1-octanol and PBS (pH 7.4) and found to be −3.72 ± 0.05 and
−2.10 ± 0.03, respectively, indicating high hydrophilicity of the compounds.
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Figure 2. In vitro stability in human serum at 1, 3, and 6 h incubation at 37 ◦C determined by thin
layer chromatography (TLC)-SG developed with methanol and HCl (99: 1; v/v) and radio-HPLC for
(A) [99mTc]Tc-15 and (B) [99mTc]Tc-16.
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2.4. In Vitro Binding Affinity (Kd)

Saturation binding analysis was conducted to determine the binding affinity of [99mTc]Tc-15 or
[99mTc]Tc-16 using 22Rv1 cells. Specific binding was determined by subtracting total binding from
non-specific binding obtained by blocking with 2-(Phosphonomethyl)-pentandioic acid (2-PMPA)
(250 µM). The binding affinity Kd values of [99mTc]Tc-15 and [99mTc]Tc-16 were determined by nonlinear
regression to be 5.5 ± 0.99 and 0.2 ± 0.01 nM, respectively.

2.5. Ex Vivo Biodistribution

Ex vivo biodistribution studies of [99mTc]Tc-15 and [99mTc]Tc-16 were performed at 1 and 4 h
post-tail vein injection in 22Rv1 tumor bearing BALB/c male mice (Tables 1 and 2). [99mTc]Tc-15
and [99mTc]Tc-16 showed tumor uptakes of 1.48 ± 0.18 and 1.87 ± 0.11% ID/g at 1 h post-injection,
respectively. At 4 h post-injection, significantly decreased tumor uptake was observed for [99mTc]Tc-15
(0.81± 0.09% ID/g) (p < 0.01), whereas [99mTc]Tc-16 showed significantly increased in tumor uptake (2.83
± 0.26% ID/g) (p < 0.01). As expected, the highest accumulation of activity for 99mTc-labeled conjugates
were observed in the kidney (59.59± 8.45% ID/g for [99mTc]Tc-15 and 24.66± 2.17% ID/g for [99mTc]Tc-16)
at 1 h post-injection. However, at 4 h post-injection the kidney uptake for [99mTc]Tc-15 decreased
(13.72 ± 5.45% ID/g), whereas [99mTc]Tc-16 showed increased kidney uptake (39.65 ± 6.86% ID/g).
Furthermore, [99mTc]Tc-15 showed lower splenic uptake at all-time points compared to [99mTc]Tc-16.
In the blocking study, all of the tumor uptakes were reduced to background levels by co-injection
of 2-PMPA. In addition, kidney uptake dramatically reduced: 4.22 ± 1.30 and 1.44 ± 0.09%ID/g for
[99mTc]Tc-15 at 1 and 4 h, respectively, and 5.66 ± 0.6 and 3.59 ± 0.52% ID/g for [99mTc]Tc-16 at 1 and
4 h, respectively. Uptake in the liver was relatively low for both 99mTc-labeled conjugates and was
further decreased at 4 h post-injection.

Table 1. Biodistribution and uptake ratios of [99mTc]Tc-15 prostate-specific membrane antigen
(PSMA)-targeted 22Rv1 tumor bearing BALB/c male nude mice at 1 and 4 h.

Tissues 1 h 4 h 1 h Blockade 4 h Blockade

Blood 0.60 ± 0.02 0.31 ± 0.02 0.52 ± 0.09 0.31 ± 0.01
Muscle 0.17 ± 0.07 0.08 ± 0.01 0.11 ± 0.02 0.08 ± 0.01
Tumor 1.48 ± 0.18 *** 0.81 ± 0.09 *** 0.38 ± 0.12 0.20 ± 0.04
Heart 0.22 ± 0.02 0.12 ± 0.01 0.16 ± 0.03 0.10 ± 0.01
Lung 0.64 ± 0.02 0.30 ± 0.04 0.61 ± 0.20 0.30 ± 0.05
Liver 0.94 ± 0.05 0.85 ± 0.05 0.84 ± 0.12 0.84 ± 0.03

Spleen 0.90 ± 0.14 0.26 ± 0.06 0.15 ± 0.03 0.16 ± 0.01
Stomach 0.31 ± 0.07 0.15 ± 0.02 0.17 ± 0.04 0.14 ± 0.01
Intestine 0.78 ± 0.07 0.81 ± 0.19 0.55 ± 0.13 0.97 ± 0.20
Kidney 59.59 ± 8.45 *** 13.72 ± 5.45 ** 4.22 ± 1.30 1.44 ± 009

Bone 0.34 ± 0.02 0.16 ± 0.03 0.26 ± 0.07 0.20 ± 0.03
Tumor/blood 2.50 ± 0.18 *** 2.6 ± 0.13 *** 0.73 ± 0.18 0.65 ± 0.13

Tumor/muscle 8.50 ± 2.80 ** 10.4 ± 0.77 *** 3.5 ± 0.50 2.71 ± 0.78
Tumor/liver 1.57 ± 0.15 ** 0.96 ± 0.13 ** 0.45 ± 0.10 0.24 ± 0.04

Tumor/kidney 0.02 ± 0.00 0.06 ± 0.02 0.09 ± 0.02 0.14 ± 0.03

Results are expressed as % ID/g (mean ± SD for n = 3). The blocking studied were performed by co-injection of
2-PMPA (100 µg). *** p ≤ 0.001, ** p ≤ 0.01.
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Table 2. Biodistribution and uptake ratios of [99mTc]Tc-16 in PSMA-targeted 22Rv1 tumor bearing
BALB/c male nude mice at 1 and 4 h post-injection.

Tissues 1 h 4 h 1 h Blockade 4 h Blockade

Blood 0.42 ± 0.01 0.17 ± 0.03 0.75 ± 0.08 0.15 ± 0.01
Muscle 0.13 ± 0.02 0.07 ± 0.01 0.22 ± 0.06 0.05 ± 0.01
Tumor 1.87 ± 0.11 *** 2.83 ± 0.26 *** 0.45 ± 0.02 0.39 ± 0.03
Heart 0.36 ± 0.01 0.25 ± 0.05 0.48 ± 0.05 0.11 ± 0.01
Lung 0.52 ± 0.05 0.36 ± 0.04 1.63 ± 0.10 0.45 ± 0.04
Liver 1.17 ± 0.04 0.69 ± 0.11 1.95 ± 0.07 1.33 ± 0.15

Spleen 3.40 ± 0.93 3.44 ± 0.23 0.40 ± 0.03 0.20 ± 0.04
Stomach 0.85 ± 0.23 0.42 ± 0.04 1.04 ± 0.26 0.23 ± 0.04
Intestine 0.47 ± 0.06 1.48 ± 0.18 0.85 ± 0.07 1.26 ± 0.14
Kidney 24.66 ± 2.17 ** 39.65 ± 6.86 *** 5.66 ± 0.63 3.59 ± 0.52

Bone 0.63 ± 0.03 1.04 ± 0.15 1.16 ± 0.08 0.47 ± 0.12
Tumor/blood 4.43 ± 0.39 *** 16.70 ± 1.36 *** 0.61 ± 0.07 2.67 ± 0.25

Tumor/muscle 14.05 ± 1.78 *** 40.43 ± 3.97 *** 2.16 ± 0.43 8.44 ± 1.52
Tumor/liver 1.60 ± 0.13 *** 4.17 ± 0.36 *** 0.23 ± 0.02 0.30 ± 0.04

Tumor/kidney 0.08 ± 0.01 0.07 ± 0.01 0.08 ± 0.01 0.11 ± 0.01

Results are expressed as % ID/g (mean ± SD for n = 4). The blocking studied were performed by co-injection of
2-PMPA (100 µg). *** p ≤ 0.001, ** p ≤ 0.01.

2.6. SPECT Imaging

In order to further validate the capability of [99mTc]Tc-15 and [99mTc]Tc-16 to target PSMA in vivo,
whole-body SPECT/CT imaging in 22Rv1 tumor-bearing BALB/c male nude mice was conducted
(Figures 3 and 4). [99mTc]Tc-15 and [99mTc]Tc-16 were rapidly excreted through the kidneys. [99mTc]Tc-15
showed slightly increased uptake in tumors, whereas [99mTc]Tc-16 showed a higher tumor to background
contrast. The tumor uptake was completely blocked by co-injection of 2-PMPA (Figures 3 and 4).
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3. Discussion

PSMA is expressed in wide variety of PCa and its expression is correlated with disease stage and
plays an important role in early detection of PSMA-positive lesion in patients. It has been reported
that the glutamate moiety on urea-based PSMA inhibitors interacts with the S1 binding pocket, which
can interact with lipophilic spacers. The S1 binding pocket is a funnel-shaped tunnel with a depth of
approximately 20 Å and a width of 8−9 Å [48–50]. The synergistic effect of a glutamate motif and a
lipophilic spacer determines the internalization potency of PSMA inhibitor. Therefore, many efforts
have been made to improve the affinity and pharmacokinetic properties by introducing various spacers
into the PSMA targeting molecule [51–53].

Considering the importance of hydrophobic motifs in a targeting molecule, we synthesized an
asymmetrical glutamate-urea-lysine-based PSMA inhibitor containing an aromatic ring (Phe-Phe) in
the linker (10) and compared it to a PSMA inhibitor containing only a straight alkyl chain (5). Isonitrile
residues were incorporated to PSMA inhibitors 5 and 10 to obtain 15 and 16, respectively. 15 and 16
were radiolabeled with99mTc using [99mTc][Tc(OH2)3(CO)3]+ in high radiochemical yield (≥98.5%).
The labeled products were subsequently purified by radio-HPLC to a high radiochemical purity (≥99.5%)
to remove remaining ligands and other 99mTc species (Figure 1). In order to validate the structure
of [99mTc]Tc-15 and [99mTc]Tc-16, macroscale reaction was carried out with cold [Re(CO)3(H2O)3]+

and a 99mTc analogue having similar chemistry for standard chemical characterization. HPLC
profiles of Re-15 and Re-16 coincided well with the respective radioactive analogues [99mTc]Tc-15
and [99mTc]Tc-16, suggesting that both [99mTc]Tc-15 and [99mTc]Tc-16 possessed the proposed trivalent
structure (Figures S30 and S31).
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It is very important to investigate the stability of 99mTc-labeled conjugates in view of future
clinical applications. [99mTc]Tc-15 and [99mTc]Tc-16 demonstrate high stability in human serum up
to 6 h with no sign of decomposition owing to well-known fact that isonitrile complexes are highly
stable and inert under physiological conditions. Hydrophilicity is usually reported in LogD, which
is an important predictor to determine the pharmacokinetics of radiopharmaceutical and is usually
measured by partitioning the radiotracer between n-octanol and PBS buffer (pH 7.4) under strict
equilibrium conditions. The low LogD value of [99mTc]Tc-15 compared to [99mTc]Tc-16 suggests that it
is more hydrophilic. However, the presence of two phenyl amino acid groups in the spacer did not
show much influence on the LogD value compared to other reports, likely because the phenyl amino
groups are hindered inside the trivalent complex [4,54].

The dissociation constants (Kd) of [99mTc]Tc-15 and [99mTc]Tc-16 were evaluated using the 22Rv1
cell line, which has moderate PSMA expression [55,56]. [99mTc]Tc-16 showed higher binding affinity
(0.2 nM) than [99mTc]Tc-15 (5.5 nM). Both of them were higher than the tripeptide-based monodentate
99mTc-labeled ligand (13.8 nM)[34] and comparable to MIP-1404 (1.07 nM) a highly potent PSMA
targeting probe [57]. One reason for the high binding affinity may be because of the decreased
dissociation rate from the cell surface due to the multimerization effect, which has been reported
previously [17,58].

Tissue distribution of [99mTc]Tc-15 and [99mTc]Tc-16 were evaluated in 22Rv1 tumor bearing BALB/c
nude mice at 1 and 4 h post-tail vein injection (Tables 1 and 2). [99mTc]Tc-16 showed rapid accumulation
at the tumor site (1 h post-injection) and the tumor uptake increased at 4 h post-injection. In contrast,
[99mTc]Tc-15 showed a moderate uptake in the tumor tissue and decreased at 4 h post-injection.
The uptakes in all tumor tissues were significantly reduced by co-injection of 2-PMPA, demonstrating
that the tumor uptakes are PSMA-specific for both [99mTc]Tc-15 and [99mTc]Tc-16. [99mTc]Tc-16 is rapidly
cleared from blood and showed approximately 2 times higher tumor-to-blood and tumor-to-muscle
ratio compared to [99mTc]Tc-15 at 1 h post-injection, which subsequently increased to 6.4 times higher
at 4 h post-injection, resulting in a high tumor-to-background ratio. Furthermore, [99mTc]Tc-15
demonstrated high accumulation of radioactivity in kidney (~3 times higher) compared to [99mTc]Tc-16
at 1 h post-injection. The uptakes in the kidney and spleen were inhibited by co-injection of 2-PMPA,
indicating that the uptakes in these organs were mainly mediated by binding to PSMA. Similar results
have been reported for other PSMA-targeting agents [59–63]. Another reason for high kidney uptake is
the hydrophilic nature of [99mTc]Tc-15 and [99mTc]Tc-16,which makes the kidney the primary excretion
pathway. With regard to clinical translation, however, the expression of PSMA in the kidneys of nude
mice is higher than expression levels in human kidneys [3,64].

The feasibility of [99mTc]Tc-15 and [99mTc]Tc-16 as PSMA imaging agents was tested by SPECT/CT
using 22Rv1 tumor bearing BALB/c mice (Figures 3 and 4). [99mTc]Tc-16 clearly allows for the
visualization of tumor tissues after 1 h post-injection and showed prolonged retention of activity
until 4 h (Figure 4). [99mTc]Tc-16 was cleared from non-targeted tissues and showed improved
images with high tumor-to-background contrast at 4 h post-injection (Figure 4). [99mTc]Tc-15 was
more rapidly excreted from the blood and showed poor tumor-to-background contrast (Figure 3).
Blocking experiments by co-injection of 2-PMPA demonstrated that the tumor and kidney uptakes
were specifically mediated by PSMA (Figures 3 and 4).

4. Experimental

4.1. General

All commercially available chemicals were of analytical grade and were used
without further purification. Anhydrous dichloromethane (DCM), triethylamine (TEA),
anhydrous methanol, triphosgene, 10% palladium on activated carbon (10% Pd/C),
9-Fluorenylmethoxycarbonyl chloride (Fmoc-Cl), N,N-diisopropylethylamine (DIPEA),
N,N,N′,N′-Tetramethyl-O-(1H-benzotriazol-1-yl)uronium hexafluorophosphate (HBTU), piperidine,
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N,N-dimethylformamide (DMF), formic acid, acetic anhydride, N,N′-dicyclohexyalcarodiimide (DCC),
trifluoroacetic acid (TFA), 2-(Phosphonomethyl)-pentandioic acid (2-PMPA) were purchased from
Sigma-Aldrich, Korea. l-glutamic acid di-tert-butyl ester hydrochloride, N′-Cbz-l-lysine tert-butyl
ester, 6-aminiohexanoic acid, N-(9-Fluorenylmethoxycarbonyl)-l-phenylalanine (Fmoc-Phe–OH), and
2,3,5,6-tetrafluorophenol (TFP) were obtained from Tokyo Chemical Industry CO., Ltd. (Tokyo, Japan).
6-(Fmoc-amino)hexanoic acid (Fmoc-6-Ahx–OH) and Boc-6-aminohexanoic acid (Boc-6-Ahx–OH)
were prepared according to reported methods [65,66]. Compounds 12–14 were prepared according
to reported method [47]. The 22Rv1 cell line (human prostate carcinoma epithelial cell line) was
obtained from the American Type Culture Collection (ATCC). Na[99mTcO4] was eluted from a
99Mo/99mTc generator using saline obtained from Unitech (Korea). The radioactive precursor
[99mTc][Tc(H2O)3(CO)3]+ was prepared using an IsoLink kit (Paul Scherrer Institute, Villigen,
Switzerland). Radio-thin layer chromatography (TLC) was performed with silica plates (Silica gel 60
F254, Merck Ltd., Seoul, Korea) and counted using a Bio-Scan AR-2000 system scanner (Bioscan, WI,
USA). Reverse phase preparative and analytical high-performance liquid chromatography (RP-HPLC)
assays were performed using Xterra RP18 10 µm (10 mm × 250 mm) and Xterra RP18 3.5 µm (4.6 mm
× 100 mm) columns (Waters Co. Milford, MA, USA), respectively. Sep-Pak C18 cartridges (130 mg,
55–105 µm) were obtained from Waters, Dublin, Ireland. Mass spectra (ESI/MS) were recorded on a
Thermofisher LTQ Velos instrument in positive ionization mode. Matrix-assisted laser desorption
ionization time-of-flight (MALDI-TOF) was performed using Voyager DE-STR (Applied Biosystems,
Seoul, Korea). H NMR spectra were recorded on an Avance-500 NMR spectrometer (500 MHz for H;
Bruker, Seongnam, Korea) and an AL-300 FT NMR spectrometer (300 MHz for H; Jeol, Tokyo, Japan).
The chemical shifts are reported in parts per million (ppm). The following abbreviations are used for
the description of H NMR spectra: singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), doublet
of doublets (dd), triplet of doublet (td), doublet of triplet (dt), triplet of triplet (tt), doublet of quartets
(dq), doublet of doublet of double (ddd), triplet of double of doublet (tdd), doublet of triplet of triplet
(dtt). Micro-SPECT/CT imaging studies were performed on a nanoSPECT/CT plus device (Mediso,
Budapest, Hungary).

4.2. Cell Culture and Tumor Model

22Rv1 cells were cultured as monolayers in RPMI-1640 medium at 37 ◦C in a humidified atmosphere
containing 5% CO2. RPMI was supplemented with 10% fetal bovine serum, 4.5 g/L d-glucose, 2 mM
l-glutamine, 1 mM sodium pyruvate, and 1.5 g/L sodium bicarbonate. 22Rv1 tumor xenografts were
established with male BALB/c nude mice (3–4 weeks old). Briefly, approximately, 5 × 106 cultured
22Rv1 cells were suspended in RPMI-640 media and subcutaneously implanted (100 µL) into the upper
right flank of mice. Ex vivo biodistribution and imaging studies were performed once the tumor
reached 100–400 mm3 in volume (3–4 weeks). All animal experiments (#3520150085, approval date
9 November 2015) were performed in compliance with the Seoul National University Hospital, Seoul,
Korea, which is accredited by the Association for Assessment and Accreditation of Laboratory Animal
Care (AAALAC International, 2007).

4.3. Chemical Synthesis

Tri-tert-butyl (13S)-3,11-dioxo-1-phenyl-2-oxa-4,10,12-triazapentadecane-9,13,15-tricarboxylate (1).
A solution of l-glutamic acid di-tert-butyl ester hydrochloride (2.3 g, 7.88 mmol) in anhydrous
DCM (60 mL) was added to TEA (2.6 mL, 25.7 mmol) at −78 ◦C and stirred for 30 min under a nitrogen
atmosphere. Triphosgene (0.8 g, 2.6 mmol) was added dropwise over a period of 1 h and stirred at
room temperature (rt) for 1 h followed by addition of N′-Cbz-l-lysine tert-butyl ester (1.6 g, 4.7 mmol)
containing TEA (0.4 mL, 4.7 mmol) in DCM (20 mL) in one portion. The mixture was allowed to
react overnight (18 h). After the completion of the reaction, the organic layer was washed with a
saturated solution of NaHCO3 (1 × 50 mL), water (2 × 50 mL), and finally with brine (1 × 30 mL).
The organic layer was separated and dried over anhydrous sodium sulfate, concentrated under reduce
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pressure, and purified by silica gel column chromatography using DCM and Methanol (95:5, v/v) to
yield colorless oil (1.9 g, 66%). 1H NMR (500 MHz, CDCl3) δ 7.37–7.27 (m, 5H), 5.13–5.07 (m, 2H),
4.32 (td, J = 8.4, 4.8 Hz, 2H), 3.23–3.10 (m, 2H), 2.33–2.23 (m, 2H), 1.90–1.70 (m, 2H), 1.66–1.46 (m, 4H),
1.46–1.26 (m, 31H). ESI-MS, (m/z): [M + H]+, 622.

Di-tert-butyl ((6-amino-1-(tert-butoxy)-1-oxohexan-2-yl)carbamoyl)-l-glutamate (2). 10% Pd/C
(100 mg) was added to the solution described above in 1 (1.5 g, 2.4 mmol) in methanol (20 mL).
The suspension was stirred for 18 h under a hydrogen atmosphere. After the completion of the reaction,
Pd/C was removed by passing it though Celite®. The filtrate obtained was concentrated under reduced
pressure to obtained colorless oil (quantitative yield), which solidified on standing over a period of
time. We then proceeded to the next step without further purification. 1H NMR (500 MHz, CDCl3) δ
4.31–4.22 (m, 2H), 2.34–2.30 (m, 2H), 1.89–1.77 (m, 2H), 1.77–1.62 (m, 4H), 1.58–1.47 (m, 2H), 1.46–1.28
(m, 29H). ESI-MS, (m/z): [M + H]+, 488.

Tri-tert-butyl (20S)-1-(9H-fluoren-9-yl)-3,10,18-trioxo-2-oxa-4,11,17,19-tetraazadocosane-16,20,22-
tricarboxylate (3). Fmoc-6-Ahx–OH (505 mg, 1.43 mmol) in DMF (15 mL) and DIPEA (1 mL, 3.5 mmol)
were added to the solution obtained in 2 (500 mg, 1.0 mmol), and stirred at 0 ◦C for 10 min under an
inert atmosphere. HBTU (585 mg, 1.5 mmol) in DMF (5 mL) was added dropwise and the reaction
mixture was stirred for 18 h at RT. After the completion of the reaction, ethyl acetate (50 mL) was
added and the organic layer was washed with water (3 × 30 mL), dried over Na2SO4, and concentrated
under reduce pressure. The crude product obtained was purified by silica gel column chromatography
using DCM/methanol (97: 3, v/v) to produce a white solid product (494 mg, 60%). 1H NMR (500 MHz,
CDCl3) δ 7.78–7.74 (m, 2H), 7.60 (d, J = 7.4 Hz, 2H), 7.42–7.37 (m, 2H), 7.31 (td, J = 7.5, 1.2 Hz, 2H), 4.39
(dt, J = 10.1, 5.2 Hz, 2H), 4.36–4.26 (m, 2H), 4.25–4.18 (m, 1H), 3.38–3.06 (m, 4H), 2.32 (tdd, J = 13.4, 9.3,
6.3 Hz, 2H), 2.19 (dd, J = 13.8, 6.6 Hz, 2H), 2.11–2.03 (m, 2H), 1.88–1.75 (m, 2H), 1.58–1.33 (m, 37H).
ESI-MS, (m/z): [M + H]+, 823.

Di-tert-butyl ((6-(6-aminohexanamido)-1-(tert-butoxy)-1-oxohexan-2-yl)carbamoyl)-l-glutamate
(4). The solution described in 3 (500 mg, 0.6 mmol) was dissolved in 20% piperidine/DMF (1 mL) and
was stirred at RT for 1 h. The solvent was removed under vacuum and the product was purified by
HPLC (method 1) to yield a white solid product (306 mg, 80%). 1H NMR (500 MHz, CDCl3) δ 4.18 (p,
J = 5.0 Hz, 2H), 2.32 (t, J = 7.5 Hz, 2H), 2.28–2.22 (m, 2H), 2.09–1.85 (m, 2H), 1.69 (ddd, J = 24.0, 18.3,
11.1 Hz, 6H), 1.58–1.23 (m, 37H). ESI-MS, (m/z): [M + H]+, 601.

((5-(6-Aminohexanamido)-1-carboxypentyl)carbamoyl)-l-glutamic acid (5). The product obtained
in 4 (200 mg, 0.33 mmol) was dissolved in a mixture of TFA and DCM (2 mL, 1: 1 v/v) and was stirred
overnight at RT. After completion of the reaction, the solvent was removed by reduced pressure and
the residue was purified by HPLC (method 2) to obtain a white solid product (56, 39%). 1H NMR
(500 MHz, Methanol-d4) δ 4.27 (ddd, J = 31.1, 8.6, 5.0 Hz, 2H), 3.17 (t, J = 6.8 Hz, 2H), 2.91 (t, J = 7.6 Hz,
2H), 2.40 (ddd, J = 8.5, 6.8, 4.2 Hz, 2H), 2.20 (t, J = 7.3 Hz, 2H), 1.71–1.60 (m, 10H), 1.45–1.35 (m, 4H).
(ESI-MS, (m/z): [M + H]+, 433.

Tri-tert-butyl (23S)-5-benzyl-1-(9H-fluoren-9-yl)-3,6,13,21-tetraoxo-2-oxa-4,7,14,20,22-pentaazapenta
cosane-19,23,25-tricarboxylate (6). A solution of 4 (800 mg, 1.33 mmol), Fmoc–Phe–OH (515 mg, 1.33),
and DIPEA (0.8 mL, 4.65 mmol) in DMF (6 mL) was cooled to 0 ◦C and stirred for 10 min. HBTU (1.0 g,
2.7 mmol) in DMF (2 mL) was added dropwise and the reaction mixture was allowed to stir at RT for
18 h. After the completion of the reaction, ethyl acetate (20 mL) was added and the organic layer
was washed with water (3 × 40 mL), dried over Na2SO4, and concentrated under reduce pressure.
The product obtained was purified by silica gel column chromatography using DCM and methanol
(96: 4, v/v) to produce a white solid (839 mg, 65%). 1H NMR (500 MHz, CDCl3) δ 7.75 (dt, J = 7.6,
0.9 Hz, 2H), 7.39 (t, J = 7.4 Hz, 2H), 7.30–7.20 (m, 9H), 4.52–4.34 (m, 4H), 4.30 (t, J = 9.1 Hz, 1H), 4.18 (t,
J = 7.1 Hz, 1H), 3.17 (d, J = 6.4 Hz, 2H), 3.06 (d, J = 7.2 Hz, 2H), 2.37–2.27 (m, 2H), 2.26–2.01 (m, 4H),
1.89–1.74 (m, 2H), 1.68–1.56 (m, 2H), 1.55–1.22 (m, 37H). ESI-MS, (m/z): [M + H]+, 971.
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Tri-tert-butyl (3S)-21-amino-5,13,20-trioxo-22-phenyl-4,6,12,19-tetraazadocosane-1,3,7-tricarboxy
late (7). The solution obtained in 6 (300 mg, 0.3 mmol) was dissolved in 20% piperidine/DMF (1 mL)
and was allowed to stirred for 1 h at RT. The solvent was removed by vacuum and purified by HPLC
(method 3) to afford white solid (179 mg, 80%). 1H NMR (500 MHz, CDCl3) δ 7.28 (d, J = 1.8 Hz, 1H),
7.26–7.20 (m, 4H), 4.33 (t, J = 7.3 Hz, 1H), 4.24 (dt, J = 8.7, 5.3 Hz, 2H), 3.35–3.08 (m, 6H), 2.31 (td,
J = 7.4, 6.6, 1.7 Hz, 2H), 2.16 (t, J = 6.9 Hz, 2H), 1.66–1.50 (m, 4H), 1.49–1.28 (m, 37H). ESI-MS, (m/z):
[M + H]+, 748.

Tri-tert-butyl (8R,26S)-5,8-dibenzyl-1-(9H-fluoren-9-yl)-3,6,9,16,24-pentaoxo-2-oxa-4,7,10,17,23,25-
hexaazaoctacosane-22,26,28-tricarboxylate (8). The product 7 (526 mg, 0.7 mmol), was dissolved
in a mixture of Fmoc–Phe–OH (299 mg, 0.7 mmol) and DIPEA (0.43 mL, 4.65 mmol) in DMF (3 mL)
and was cooled to 0 ◦C and stirred for 10 min. HBTU (530 mg, 1.4 mmol) in DMF (2 mL) was added
dropwise over a period of 10 min. After stirring the reaction mixture for 18 h at RT, ethyl acetate
(30 mL) was added and the organic layer washed with water (3 × 40 mL), dried over Na2SO4, and
concentrated under reduce pressure. The product was purified by silica gel column chromatography
using DCM and methanol (96: 3,) to yield a white solid product (531 mg, 68%). 1H NMR (500 MHz,
CDCl3) δ 7.51–7.46 (m, 2H), 7.39 v/v (t, J = 7.4 Hz, 2H), 7.30–7.11 (m, 14H), 4.68 (d, J = 7.7 Hz, 1H),
4.51–4.29 (m, 4H), 4.21 (t, J = 8.9 Hz, 1H), 4.14 (t, J = 7.2 Hz, 1H), 3.29–2.80 (m, 8H), 2.37–2.21 (m, 4H),
2.10–2.01 (m, 2H), 1.89–1.74 (m, 2H), 1.62–1.26 (m, 37H). ESI-MS, (m/z): [M + H]+, 1118.

Tri-tert-butyl (3S,21R)-24-amino-21-benzyl-5,13,20,23-tetraoxo-25-phenyl-4,6,12,19,22-pentaazapen
tacosane-1,3,7-tricarboxylate (9). The product 8 (300 mg, 0.3 mmol) was dissolved in 20%
piperidine/DMF solution (1 mL) was stirred at RT for 1 h. The solvent was removed by under
vacuum and the product was purified by HPLC (method 4) to afford white solid (215 mg, 90%).
1H NMR (500 MHz, CDCl3) δ 7.25–7.09 (m, 10H), 4.58 (q, J = 7.6 Hz, 1H), 4.30 (d, J = 10.3 Hz, 2H), 3.30
(dd, J = 13.5, 6.9 Hz, 1H), 3.21–3.00 (m, 6H), 2.93–2.83 (m, 1H), 2.36–2.22 (m, 2H), 2.10 (dtt, J = 35.8, 14.2,
7.6 Hz, 4H), 1.86–1.67 (m, 2H), 1.49–1.14 (m, 37H). ESI-MS, (m/z): [M + H]+, 896.

Tri-tert-butyl (16R,34S)-13,16-dibenzyl-2,2-dimethyl-4,11,14,17,24,32-hexaoxo-3-oxa-5,12,15,18,25,31,
33-heptaazahexatriacontane-30,34,36-tricarboxylate (10). The solution obtained in 9 (150 mg,
0.2 mmol) was mixed with Boc-6-Ahx–OH (42 mg, 0.2 mmol) and DIPEA (0.1 mL, 0.6 mmol) and
dissolved in in DMF (2 mL),then cooled to 0 ◦C. HBTU (127 mg, 1.4 mmol) in DMF (1mL) was added
dropwise. After stirring the reaction mixture at RT for 18 h, ethyl acetate (15 mL) was added and the
organic layer washed with water (3 × 20 mL), dried over Na2SO4, and concentrated under reduce
pressure. The mixture was purified by silica gel column chromatography using DCM and MeOH (96:3,
v/v) to yield a white solid product (155 mg, 70%). 1H NMR (500 MHz, CDCl3) δ 7.26–7.10 (m, 10H),
4.74–4.58 (m, 3H), 4.45 (q, J = 6.5 Hz, 2H), 3.25–2.82 (m, 9H), 2.39–2.15 (m, 5H), 2.09 (dt, J = 13.0, 6.5 Hz,
4H), 1.92–1.71 (m, 2H), 1.68–1.30 (m, 52H). ESI-MS, (m/z): [M + H]+, 1109.

(3S,21R)-31-amino-21,24-dibenzyl-5,13,20,23,26-pentaoxo-4,6,12,19,22,25-hexaazahentriacontane-1,3,
7-tricarboxylic acid (11). The solution produced in 10 (50 mg, 0.05) was dissolved in a mixture of TFA
and DCM (2 mL, 1: 1, v/v) and was stirred overnight at RT. After completion of the reaction, the solvent
was removed by reduced pressure and the residue was purified by HPLC (method 4) to yield a white
solid product (17 mg, 44%). 1H NMR (500 MHz, Methanol-d4) δ 7.34–7.11 (m, 10H), 4.69–4.47 (m, 2H),
4.30 (ddd, J = 14.8, 8.4, 4.9 Hz, 2H), 3.21–3.13 (m, 2H), 3.08 (ddt, J = 13.4, 6.8, 2.9 Hz, 4H), 2.99–2.74 (m,
4H), 2.41 (ddd, J = 8.2, 6.9, 1.9 Hz, 2H), 2.21–2.08 (m, 4H), 1.96–1.77 (m, 2H), 1.61 (s, 2H), 1.58–1.12 (m,
16H). ESI-MS, (m/z): [M + H]+, 841.

(3S)-22-isocyano-5,13,20-trioxo-4,6,12,19-tetraazadocosane-1,3,7-tricarboxylic acid (15). A solution of
the product of 5 (90 mg, 0.2 mmol) and DIPEA (2.5 eq) in anhydrous methanol (2 mL) was and stirred
for 10 min at RT. The product of 14 (77 mg, 0.3 mmol) was dissolved in anhydrous methanol (1 mL) and
was added dropwise and stirred under a nitrogen atmosphere for 5 h. The solvent was removed using
a rotary evaporator and the product was purified by RP-HPLC (method 5) and lyophilized to obtain
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oily compound (35 mg, 34%). 1H NMR (500 MHz, Methanol-d4) δ 4.23 (ddd, J = 18.8, 8.6, 4.9 Hz, 2H),
3.13 (t, J = 6.7 Hz, 2H), 2.87 (t, J = 7.7 Hz, 2H), 2.40–2.31 (m, 2H), 2.16 (t, J = 7.3 Hz, 2H), 1.90–1.72 (m,
2H), 1.66–1.27 (m, 14H). ESI-MS, (m/z): [M + H]+, 514.

(3S,21R)-21,24-dibenzyl-35-isocyano-5,13,20,23,26,33-hexaoxo-4,6,12,19,22,25,32-heptaazapentatriac
ontane-1,3,7-tricarboxylic acid (16). DIPEA (2.5 eq) was added to a solution of the product of 11
(35 mg, 0.039 mmol) in anhydrous methanol (1 mL) and stirred at RT for 10 min. A solution of the
product of 14 (14 mg, 0.05 mmol) in methanol (1 mL) was added and stirred for 5 h. After completion
of the reaction, the solvent was removed using a rotary evaporator and purified by HPLC (method 6)
to yield a white solid product (14 mg, 40%). 1H NMR (500 MHz, Methanol-d4) δ 7.22 (dq, J = 14.6, 7.0
Hz, 10H), 4.56 (ddd, J = 14.1, 8.9, 6.0 Hz, 2H), 4.24 (td, J = 7.7, 4.8 Hz, 2H), 3.25–2.88 (m, 12H), 2.54
(s, 2H), 2.38 (ddd, J = 8.7, 6.6, 2.7 Hz, 2H), 2.17–2.06 (m, 4H), 1.59 (ddd, J = 30.6, 14.5, 7.2 Hz, 4H),
1.46–1.14 (m, 16H). ESI-MS, (m/z): [M + H]+, 921.

Re-15 and Re-16. The cold rhenium precursor [Re(CO)3(H2O)3]Br was synthesized according to a
reported method [67]. In brief, bromopentacarbonylrhenium(I) (100 mg, 0.25 mmol) was refluxed
for 24 h in deionized water (5 mL) to obtain [Re(CO)3(H2O)3]Br at a final concentration of 2 mg/mL.
For synthesis of Re-15, [Re(CO)3(H2O)3]Br (400 µL, 1 µmol) was added to a solution of precursor 15
(11 mg, 0.02 mmol) in methanol (2 mL) and heated at 100 ◦C for 4 h. For Re-16, [Re(CO)3(H2O)3]Br
(400 µL, 1 µmol) was added to a solution of 16 (10 mg, 0.01 mmol) in a mixture of methanol and
water (3 mL, 1:1 v/v). The reaction mixture was heated for 3 h at 100 ◦C. The resulting mixture was
concentrated in a rotary evaporator and injected in to a HPLC (method 7 or 8).

4.4. Radiolabeling of [99mTc]Tc-15 and [99mTc]Tc-16

[99mTc][Tc(H2O)3(CO)3] precursor was prepared using an IsoLink kit. A kit containing sodium
tetraborate decahydrate (2.9 mg), sodium carbonate (7.8 mg), potassium sodium tartrate tetrahydrate
(9.0 mg), and disodium boranocarbonate (4.5 mg) was added [99mTcO4]–(1 mL, 555–740 MBq). The vial
was heated on a heating block for 30 min at 100 ◦C and equilibrated at RT for 10 min. The pH (6–6.5) was
adjusted by addition of 1 N HCl (200 µL). The radiochemical purity was determined by radio-HPLC
(method 7 or 8). A freshly prepared solution of [99mTc][Tc(H2O)3(CO)3]+ (500 µL, 370 MBq) was added
to a vial containing 15 or 16 in a mixture of methanol and water (100 µg, 200 µL, 3:1 v/v). The vial
was heated for 30 min at 100 ◦C, followed by purification by radio-HPLC (method 7 or 8). The eluted
fractions containing 99mTc-labeled conjugates were collected and diluted with water (20 mL) and
passed through a Sep-Pak C18 cartridge, which was preconditioned with ethanol (12 mL) and water
(12 mL). After washing the Sep-Pak C18 cartridge with water (5 mL), the 99mTc-labeled conjugates
were eluted with ethanol (1 mL) and diluted with saline for further in vitro and imaging studies.

4.5. In Vitro Stability Tests in Serum

In vitro stability of the 99mTc labeled conjugates were tested in human serum. In brief, [99mTc]Tc-15
or 16 (25.9 MBq, 200 µL) was incubated with human serum (500 µL) in an incubator at 37 ◦C with
gentle shaking. After 1, 3, and 6 h, an aliquot of the solution (50 µL) was added to methanol (100 µL).
The resulting supernatant was centrifuged and radiochemical purity was determined by radio-TLC
and radio-HPLC.

4.6. Determination of Distribution Coefficient (LogD Value)

The distribution coefficients (LogD values) of the 99mTc labeled conjugates were determined by
measuring the activity that partitioned between 1-octanol and PBS (50 mM, pH 7.4) under equilibrium
conditions. Briefly, [99mTc]Tc-15 or [99mTc]Tc-16 purified by radio-HPLC and solvent was removed by
rotary evaporator. The residue obtained was dissolved in 3 mL PBS (50 mM, pH 7.4) to a concentration
of 2.5 MBq/mL in triplicate. Anhydrous 1-octanol was added (3 mL) and the mixture was vortexed
for 5 min and centrifuged at 3300 r/min for 5 min to separate the layers. The counts in the organic
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and inorganic layers (100 µL) were determined using an γ-counter (Cobra II automated γ-counter).
The LogD was calculated using the following equation: LogD = Log(cpm in octanol − cpm in
background)/(cpm in buffer − cpm in background).

4.7. Measurement of Binding Affinity (Kd) In Vitro

To evaluate the binding affinity of [99mTc]Tc-15 and [99mTc]Tc-16, Kd was investigated using a
saturation binding assay. 22Rv1 cells (1 × 105 cells/well, 1 mL) were plated into a 24-well flat-bottom
plate and allowed to form an adherent monolayer. The medium in each well was then replaced
with HBSS supplemented with 1% bovine serum albumin, containing increasing concentrations of
[99mTc]Tc-15 or [99mTc]Tc-16 in serial dilutions. The cells were incubated for 1 h at 37 ◦C with shaking.
After 1 h, the media was aspirated and the cells were washed with HBSS (3 mL × 2) to remove unbound
activity. Cells were lysed by adding sodium dodecyl sulfate (0.5% in PBS, 500 µL) to each well and
mixed to dissolve the cells, and the lysates were transferred to plastic tubes (4 mL). The radioactivity
of each sample was counted using a γ-counter (Cobra II automated γ-counter), along with reference
samples which contained the total amount of added radioactivity. Nonspecific binding was determined
in the presence of 2-PMPA (250 µM). Specific binding was calculated by subtracting the nonspecific
bound radioactivity from that of the total binding. The Kd was calculated by non-linear regression using
GraphPad Prism 7 (GraphPad Software Inc., San Diego, CA, USA) using a one site binding equation.

4.8. Ex Vivo Biodistribution Study

The ex vivo biodistribution of [99mTc]Tc-15 or [99mTc]Tc-16 was evaluated in 22Rv1 tumor-bearing
male nude mice (22–25 g). [99mTc]Tc-15 or [99mTc]Tc-16 (74 kBq, 100 µL) was administered via a lateral
tail vein in each mice. The mice were sacrificed at 1 and 4 h post-injection. The relevant tissues and
organs were excised and collected. The collected tissues and organs were washed with saline, dried,
weighed, and counted using an automatic γ-counter. In order to confirm the specific uptake, mice were
co-injected with 2-PMPA (100 µg). Uptake in each tissues and organ was expressed as the percentage
of the injected dose per gram (% ID/g). A standard solution was additionally prepared to estimate the
total dose injected per mice. Values are expressed as the mean ± standard deviation (SD).

4.9. SPECT/CT Imaging

The SPECT/CT images were taken at 1 and 3 h for [99mTc]Tc-15 (7.4MBq/200µL) and for [99mTc]Tc-16
(7–6 MBq/200 µL) images were acquired at 1 and 4 h after the administration of 99mTc-labeled conjugates
to 22Rv1 tumor-bearing BALB/c male nude mice through the tail vein. For blockade experiment,
mice were co-injected with potent inhibitor 2-PMPA (100 µg) to confirm uptake in the tumor was
PSMA mediated. For SPECT/CT imaging, mice were anesthetized with isoflurane and scanned with a
nanoScan SPECT/CT device. The scanning acquisition parameters for imaging modality are 140 keV ±
10% γ-ray energy window, 256 × 256 matrix size, 5 Section per angular step of 18◦ of time acquisition,
and a reconstruction algorithm of ordered subset expectation maximization with nine iterations. For
CT, a tube voltage of 45 kVp, an exposure time of 1.5 Section per projection, and a reconstruction
algorithm of cone-beam filtered back-projection was used. Images were processed using Invivoscope
processing software. A Gauss reconstruction filter was used to the SPECT images and scale is adjusted
to allow visualization of organs and tissues of interest.

Statistical Analysis. Statistical analyses were performed by Student’s t-test. The difference was
considered statistically significant when the p values were ≤ 0.05.

5. Conclusions

We successfully synthesized [99mTc]Tc-15 and [99mTc]Tc-16 for imaging PSMA and evaluated their
binding affinities in vitro and targeting capabilities in vivo. The in vitro study results demonstrated
that [99mTc]Tc-16 has a higher binding affinity compared to [99mTc]Tc-15, possibly because of its
interaction with the S1 hydrophobic pocket and multimeric effects. Ex vivo biodistribution study for
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both 99mTc-labeled conjugates demonstrated significantly improved tumor uptake and retention of
[99mTc]Tc-16 compared to [99mTc]Tc-15 up to 4 h post-injection. The tumor uptakes were blocked by
co-injection of 2-PMPA, suggesting that the uptake is PSMA mediated. Finally, whole-body SPECT/CT
image demonstrated the feasibility of [99mTc]Tc-16 as an efficient imaging agent for PSMA-expressing
tumors with higher tumor-to-background ratio compared to [99mTc]Tc-15.
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ESI-MS spectrum of 3, Figure S7: 1H-NMR of 4, Figure S8: ESI-MS spectrum of 4, Figure S9: 1H-NMR of 5,
Figure S10: ESI-MS spectrum of 5, Figure S11: 1H-NMR of 6, Figure S12: ESI-MS spectrum of 6, Figure S13:
1H-NMR of 7, Figure S14: ESI-MS spectrum of 7, Figure S15: 1H-NMR of 8, Figure S16: ESI-MS spectrum of 8,
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