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Abstract: The enhanced stabilization of a carbocationic site adjacent to a ferrocenyl moiety was
recognized within a few years of the discovery of sandwich compounds. While a detailed understanding
of the phenomenon was the subject of some early debate, researchers soon took advantage of it to control
the ease and direction of a wide range of molecular rearrangements. We, here, discuss the progress in
this area from the pioneering studies of the 1960s, to more recent applications in chromatography and
analytical detection techniques, and currently in the realm of bioactive organometallic complexes.
Several classic reactions involving ferrocenyl migrations, such as the pinacol, Wolff, Beckmann,
and Curtius, are discussed, as well as the influence of the ferrocenyl substituent on the mechanisms
of the Nazarov, Meyer-Schuster, benzoin, and Stevens rearrangements. The preparation and
isomerizations of ferrocenyl-stabilized vinyl cations and vinylcyclopropenes, together with the
specific cyclization of acetylcyclopentadienyl-metal derivatives to form 1,3,5-substituted benzenes,
demonstrate the versatility and generality of this approach.

Keywords: metal-stabilized carbocations; reaction mechanisms; NMR; bioorganometallics

1. Introduction

The ability of the ferrocenyl moiety to stabilize an adjacent carbocationic center has long
been attributed to delocalization of the electron deficiency onto the iron atom [1]. The X-ray
crystallographically established [2,3] tendency of the cationic α-carbon atom to lean towards the
metal as in 1, was originally interpreted in terms of an overlap of the vacant 2p orbital on carbon with
a filled 3d orbital of suitable symmetry on iron [4]. Taking a more extreme view, one could regard
the system as a neutral fulvene ligand coordinated to a [(C5H5)Fe]+ unit, as depicted in 2 (Figure 1),
but this has been criticized based on the low barrier to rotation about the exocyclic bond in some
cases [5,6].
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Figure 1. Delocalization of charge from the cationic α carbon onto the iron atom. Figure 1. Delocalization of charge from the cationic α carbon onto the iron atom.

Fortunately, a comprehensive overview of this, sometimes controversial, phenomenon has been
presented by Gleiter, Bleiholder, and Rominger [7]. Nevertheless, it is this character of charge
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delocalization that facilitates a number of molecular rearrangements or ferrocenyl migrations, as we
shall attempt to demonstrate.

2. Ferrocenyl-Mediated Carbocationic Rearrangements

2.1. Isomerizations of Secondary to Tertiary Carbocations

Following pioneering studies by Cais [8], dissolution of ferrocenyl-substituted alcohols in
trifluoroacetic acid allowed the acquisition of well-resolved 1H NMR spectra by several other groups [9–11],
and revealed the unusual stability of the carbocations so generated. Subsequently, in a series of
ground-breaking papers, Watts and his group reported the rearrangement behavior of a number of
alkylferrocenyl carbocations upon protonation of their precursor alcohols [12].

Typically, the quantitative conversion of the ferrocenyl-stabilized secondary carbocation 3 into
its tertiary isomer 4, is in accord with the accepted hierarchy of stable carbocations. At first sight,
this appears to be a double shift rearrangement whereby an alkyl migration to form the β-ferrocenyl
cation 5 is followed by a [1,2]-hydrogen shift to yield the observed product. However, the authors
did not prefer this mechanism since the intermediate rearrangement product, 5, would undoubtedly
be thermodynamically disfavored relative to the ferrocenyl-stabilized starting cation 3. Instead, they
proposed that the initial methyl migration might proceed synchronously with the formation of a
short-lived spiro-diene species 6 (depicted in Scheme 1) which could reopen with concomitant hydrogen
migration, thus generating the observed final product [13]. In such a scenario, the cationic charge would
be delocalized onto the metal in the transition state. The analogous rearrangement of [Fc–CH–CPh3]+,
7, into [Fc–CPh–CHPh2]+, 8, was also observed (Scheme 2), but in this case the doubly-benzylic cation
[Fc–CHPh–CPh2]+, 9, might be a viable intermediate [14].
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Scheme 1. Rearrangement of 2° to 3° ferrocenyl trimethyl-carbocations. 
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Scheme 2. Rearrangement of 2° to 3° ferrocenyl triphenyl-carbocations. 

2.2. Rearrangements of Vinyl and Allyl Cations 

This work was elegantly extended to include the addition reactions of trityl cations to 

alkynylferrocenes to generate ferrocenyl-stabilized vinyl carbocations, 10, that underwent cyclization 

Scheme 1. Rearrangement of 2◦ to 3◦ ferrocenyl trimethyl-carbocations.
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This work was elegantly extended to include the addition reactions of trityl cations to
alkynylferrocenes to generate ferrocenyl-stabilized vinyl carbocations, 10, that underwent cyclization
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to form indenes, 11 [15]. The thermodynamic driving force in each case is the positioning of a
carbocationic site adjacent to the ferrocenyl moiety, as shown in Scheme 3.
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In a variant of this concept, the diferrocenyl-alkynes Fc–C≡C–CH2–Fc, 12a, and Fc–C≡C–C(=O)–Fc,
12b, were treated with trifluoroacetic acid to form the ferrocenyl-stabilized vinyl cations,
13a,b [15]. In these systems, cyclization occurred by electrophilic attack on the alkyl- or
acyl-linked ferrocenyl substituent to form (η5-cyclopentadienyl)(3-ferrocenylpentalenyl)iron, 14a,
or (η5-cyclopentadienyl)-(3-ferrocenyl-1-oxo-pentalenyl)iron, 14b, respectively, as depicted in Scheme 4.
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In another remarkable example, protonation of the alkynylcycloheptatriene derivative, 15, yielded
a ferrocenyl-stabilized vinyl cation, 16, that eventually yielded a tricyclic alcohol. The proposed
mechanism (Scheme 5) involves attack by a double bond of the trienyl unit at the vinylic cation to
generate the 6-ferrocenylbicyclo [3.2.2]nona-3,6,8-trien-2-yl cation, 17; subsequent cyclopropyl ring
closure yields the ferrocenyl-stabilized cation 18, and ultimately the alcohol 19 [15].
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Scheme 5. Cyclization of a cycloheptatrienyl unit onto a ferrocenyl-vinyl carbocation.

Another unexpected cyclization leading to formation of a polycyclic system was reported by
the Schottenberger group who prepared the ferrocenyl allyl alcohol 20 that underwent an allyl
rearrangement thus forming a vinylferrocene, 21, thereby positioning the hydroxy substituent near
the chain terminus. Treatment with concentrated sulfuric acid yielded as one of the products a dimer
whose structure, shown in Scheme 6, was established by X-ray crystallography [16]. The authors
advanced a mechanism whereby elimination of water formed the diene 22, which then participated in a
[4 + 2] Diels-Alder cycloaddition with the ferrocenyl allyl cation 23 prior to eventual indene formation.
One might perhaps more realistically envisage a stepwise process involving electrophilic attack by the
allyl cation on the diene to form the ferrocenyl-stabilized intermediate 24, closure of the six-membered
ring to generate a different cationic site adjacent to the other ferrocenyl moiety, as in 25, and finally
ring closure onto ferrocene, thus yielding the observed final product 26.
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Scheme 6. Dimerization of a ferrocenyl-allyl cation.

A second fascinating observation from the same laboratory resulted from the protonation of
1-ferrocenyl-2,3,4,5-tetramethylcyclopent-2-en-1-ol, 27, to form 4-ferrocenyl-4-hydroxy-2,3,5,6-tetra-
methyltetrahydropyran, 28 [16]. The proposed mechanism involves initial elimination of water together
with a series of hydride shifts to form the ferrocenyl-allyl cation 29 that can ring-open, in a reversal of
the normal Nazarov cyclization, to generate the divinylferrocenyl cation 30. Now, aqueous hydrolysis
to form the tetrahydropyran framework is followed by addition of a second molecule of water to
furnish the final product, 28, as illustrated in Scheme 7.
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2.3. Ferrocene-Mediated Cyclization to form Trisubstituted Aromatics, 1,3,5-C6H3(MLn)3

Treatment of acetylferrocene with SiCl4/ethanol provides a convenient route to the specific
formation of 1,3,5-triferrocenylbenzene [17]. This contrasts with the transition metal-catalyzed
trimerizations of ethynylferrocene which yield a mixture of 1,2,4 and 1,3,5 isomers [18,19]. The proposed
mechanism shown in Scheme 8 involves initial reaction of the cation [FcC(OH)CH3]+, 31, with the
enol form of the ketone, 32; this process continues in a stepwise manner as the chain gradually grows,
via intermediates 33 and 34, prior to the final dehydration leading to 35. This is a general reaction and
has also been exploited in the case of (acetylcyclopentadienyl)-manganesetricarbonyl which, likewise,
yields the 1,3,5-trisubstituted aromatic [17]. Moreover, mixed species are also accessible, as typified by
the Fe2Mn example, 36, shown in Figure 2; indeed, the bimetallic Fe–Mn precursor, 37, corresponding
to 33 in Scheme 7 has also been characterized by X-ray crystallography [20]. This approach has also
been used to prepare C3h-symmetric polycyclic systems [17].
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Figure 2. Molecular structures of the mixed iron-manganese complexes 36 and 37.

In some ways, the ferrocenyl group behavior may be compared to that of apparently related
molecular fragments, such as (η5-C5H4)Mn(CO)3 or (η6-C6H5)Cr(CO)3, which can also accommodate
the build-up of positive charge on an adjacent atom [21] as, for example, in the above-mentioned
preparation of 1,3,5-C6H3[(C5H4)Mn(CO)3]3 analogous to 1,3,5-triferrocenylbenzene [17]. However,
this is not necessarily a true comparison since the metal tricarbonyl complexes can also stabilize an
α-carbanion through delocalization of the negative charge onto the carbonyl ligands by enhanced
back-donation of electron density into the π* manifold [22]. This is most evident in metal carbonyl
infrared stretching frequencies, νCO, that decrease dramatically in the anions relative to their values in
the corresponding cations.

3. Rearrangements of Vinylcyclopropenes

The thermal instability of vinylcyclopropenes is markedly enhanced when they also bear ferrocenyl
substituents. Thus, decomposition of 3-cyclobutyl-3-ferrocenylcyclopropene, 38, brought about
rearrangement even at 0 ◦C to give 3-cyclobutyliden-3-ferrocenylpropene, 39, and 3-cyclobutyl-1H-
cyclopentaferrocene, 40 [23]. Mechanistically, one can invoke a ferrocenyl-stabilized diradical species
or a vinyl carbene, as in Scheme 9. The products can therefore arise either by hydrogen migration, or
by attack on the ferrocenyl unit to form 39 or 40, respectively.

Inorganics 2020, 8, x FOR PEER REVIEW 6 of 22 

 

 

Figure 2. Molecular structures of the mixed iron-manganese complexes 36 and 37. 

In some ways, the ferrocenyl group behavior may be compared to that of apparently related 

molecular fragments, such as (η5-C5H4)Mn(CO)3 or (η6-C6H5)Cr(CO)3, which can also accommodate 

the build-up of positive charge on an adjacent atom [21] as, for example, in the above-mentioned 

preparation of 1,3,5-C6H3[(C5H4)Mn(CO)3]3 analogous to 1,3,5-triferrocenylbenzene [17]. However, 

this is not necessarily a true comparison since the metal tricarbonyl complexes can also stabilize an 

α-carbanion through delocalization of the negative charge onto the carbonyl ligands by enhanced 

back-donation of electron density into the π* manifold [22]. This is most evident in metal carbonyl 

infrared stretching frequencies, νCO, that decrease dramatically in the anions relative to their values 

in the corresponding cations. 

3. Rearrangements of Vinylcyclopropenes 

The thermal instability of vinylcyclopropenes is markedly enhanced when they also bear 

ferrocenyl substituents. Thus, decomposition of 3-cyclobutyl-3-ferrocenylcyclopropene, 38, brought 

about rearrangement even at 0 °C to give 3-cyclobutyliden-3-ferrocenylpropene, 39, and 3-cyclobutyl-

1H-cyclopentaferrocene, 40 [23]. Mechanistically, one can invoke a ferrocenyl-stabilized diradical 

species or a vinyl carbene, as in Scheme 9. The products can therefore arise either by hydrogen 

migration, or by attack on the ferrocenyl unit to form 39 or 40, respectively. 

Fe

H

Fe

H

H

H

H
H

Fe

H

H

H

Fe

H

H

Fe

H

H

H

H

39

38

40

H

 

Scheme 9. Thermal rearrangement of 3-cyclobutyl-3-ferrocenylcyclopropene. 

In the closely related system, 3-ferrocenyl-3-(2-ferrocenyl-1-methylvinylcyclopropene, 41, which 

bears two ferrocenyl substituents, rearrangement occurs at 20 °C in benzene solution to yield 1,4-

diferrocenyl-5-methylcyclopentadiene, 42 (Scheme 10). Once again, the intermediacy of a vinyl 

carbene or a diradical species has been suggested [24]. 
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In the closely related system, 3-ferrocenyl-3-(2-ferrocenyl-1-methylvinylcyclopropene, 41, which bears
two ferrocenyl substituents, rearrangement occurs at 20 ◦C in benzene solution to yield 1,4-diferrocenyl-5-
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methylcyclopentadiene, 42 (Scheme 10). Once again, the intermediacy of a vinyl carbene or a diradical
species has been suggested [24].
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4. Ferrocenyl Migration onto an Electron-Deficient Carbon Center

4.1. Pinacol Rearrangements

Migratory aptitude is a widely invoked parameter to account for the selectivity and ease
of molecular rearrangements [25]. Typically, in cationic species, it is commonly assumed that a
phenyl migration is favored over that of its methyl counterpart because of charge delocalization in
the phenonium ion transition state. However, such generalizations must be treated with caution.
For example, upon protonation of the pinacol Ph2C(OH)-CMe2OH, it is a methyl that preferentially
migrates (Scheme 11), not because the alkyl group has a better migratory aptitude than the aryl
substituent, but rather that the more favored carbocation, 43, is doubly benzylic [26].
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Scheme 11. Pinacol rearrangement showing methyl rather than phenyl migration.

To make a fair comparison, for example between phenyl and ferrocenyl, one must eliminate
such extraneous factors. This was first discussed by Weliky and Gould [27] in 1956 who prepared
1,2-diferrocenyl-1,2-diphenyl-ethanediol, 44, by treatment of benzoylferrocene with cobalt dichloride
in the presence of a Grignard reagent. They noted that this pinacol “rearranged with remarkable
ease (merely upon passing gaseous HCl over its solution in benzene) to the pinacolone 45.” Clearly,
ferrocenyl was favored over phenyl migration, as in Scheme 12. Later work by several groups [28–30]
revealed, not surprisingly, that ferrocenyl migration was also favored over an alkyl shift (R = Me,
Et, nPr, nBu). Subsequently, however, it was found that phenyl migration in cation 46 is indeed
observable, but that the ferrocenyl shift was preferred by a factor of ~8. Interestingly, it was noted that
the rearrangement behavior of the threo and erythro isomers of 44 was identical [31].
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Much more recently, a comprehensive study of the modified Clemmensen reduction of
formylferrocene, acetylferrocene, and benzoylferrocene was reported by Bildstein [32]. In this case,
the normal reagents, Zn/HCl, were replaced by Zn/Me3SiCl in the expectation that deoxygenation to
obtain the corresponding alkenes, R(Fc)C=C(Fc)R, would be enhanced by formation of Me3Si–O–SiMe3

with its energetically favorable silicon-oxygen linkages. Experimentally, however, as shown in Scheme 13,
the isolated products were trans-diferrocenylethene, 47, 2,3-diferrocenyl-2,3-bis(trimethylsiloxy)butane,
48, and 2,2-diferrocenyl-1,2-diphenyl-ethan-1-one, 49, respectively. These three products were each
unambiguously characterized by X-ray crystallography. It is reasonable to assume that the pinacolone,
49, must have been derived from the diphenyl analogue of the disiloxy-pinacol 48. Related work in
this area, including synthetic routes to ferrocenyl cumulenes, has been fully reviewed elsewhere [33].
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15) [35], the cobalt analogues of ferrocifens, 55, that are now under intensive investigation for their 

activity against breast cancers and other related diseases [36] (see Section 7). 

Scheme 13. Experimentally observed products derived from Clemmensen reduction of formylferrocene,
acetylferrocene, and benzoylferrocene.

These results may be compared with those found in the course of the closely analogous
McMurry reaction of (η5-acetylcyclopentadienyl)(η4-tetraphenylcyclobutadiene)cobalt, 50, with
benzophenone [34]. The products observed in addition to the desired hetero-coupled alkene,
51, were trans-2,3-bis[(η5-cyclopentadienyl)(η4-tetraphenylcyclobutadienecobalt]-2-butene, 52, and
3,3-bis-[(η5-cyclopentadienyl)(η4-tetraphenylcyclobutadiene)cobalt]butan-2-one, 53, which parallel
the structures of Bildstein’s iron complexes, 47 and 49. Once again, the homo-coupled alkene adopts
the trans structure, and it is the cobalt sandwich moiety that has migrated to form the pinacolone, as
shown in Scheme 14.
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This reaction was important for the development of a synthetic route to cobaltifens, 54,
(Scheme 15) [35], the cobalt analogues of ferrocifens, 55, that are now under intensive investigation for
their activity against breast cancers and other related diseases [36] (see Section 7).Inorganics 2020, 8, x FOR PEER REVIEW 9 of 22 
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Scheme 15. Synthetic route to cobaltifens: reagents (i) (p-HOC6H4)2C=O, Zn, TiCl4, THF; (ii) NaH,
DMF, (iii) Cl(CH2)nNMe2, NEt3, THF.

Following the mechanistic proposals of Bogdanović [37] and of Geise [38], it was suggested that
one could visualize formation of the trans-alkene 52 from the C2-symmetric intermediate 56 (Scheme 16).
In contrast, when the bulky metallocenyl groups are positioned in a cis fashion, alkene formation
may be sterically hindered and instead a pinacol-to-pinacolone rearrangement via a metal-stabilized
cationic structure, 57, is the preferred option (Scheme 17).
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Scheme 17. Pinacolone formation in a McMurry reaction of (C4Ph4)Co[C5H4C(=O)Me].

The corresponding bridging structure, 58, that facilitates a ferrocenyl migration would serve the
same purpose (but markedly more efficiently) as the phenonium ion, 59, that allows delocalization of
positive charge in the transition state for phenyl migrations (Figure 3).
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Figure 3. Transition states for ferrocenyl and phenyl rearrangements whereby positive charge is
delocalized onto the migrating group.

A particularly fascinating pinacol-to-pinacolone rearrangement was reported by Härter and
colleagues who studied the McMurry reaction of [3]ferrocenophanone under different conditions [39].
When the standard reagent system (TiCl4/Zn) was augmented with pyridine, the homo-coupled
product bis-[3]ferrocenophane-1-ylidene, 60, (as an E/Z mixture) was obtained in 70% yield (Scheme 18).
In contrast, in the absence of pyridine, the major product was the spiro-linked pinacolone 61, which was
unequivocally characterized by X-ray crystallography.
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4.2. Wolff Rearrangements

Thermal or photochemical dissociation of α-diazoketones liberates nitrogen to form the
corresponding ketene. Whether the reaction involves formation of free carbenes, or proceeds via a
concerted process is still the subject of discussion. Nevertheless, the ketenes produced by migration of
the alkyl group onto the electron-deficient carbon are versatile species that react with nucleophiles,
such as water, alcohols or amines, to form carboxylic acids, esters, or amides, but are also routinely
used as partners in [2 + 2] cycloadditions [40]. Diphenylketene is a stable solid but the existence of
ferrocenylketene, 62, has only been verified spectroscopically by laser flash photolysis, and was then
trapped by reaction with n-butylamine [41]. Similarly, the bis-ketene 63 is detectable in the photolysis
of 1,2-diferrocenyl-1-cyclobuten-3,4-dione (Scheme 19).
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4.3. Rearrangements of Alkynyl-4-hydroxy-2-cyclobutenones

In the continuing search for novel anti-cancer agents, the 2-alkylidene-4-cyclopentene-1,3-dione
framework [42] has attracted considerable recent attention. The remarkable bioactivity of ferrocenyl-
containing molecules, in particular the ferrocifens [36], prompted the preparation of a series of
2-ferrocenylidene-4,5-dialkyl-4-cyclopenten-1,3-diones, 64. As shown in Scheme 20, these molecules
are formed, along with their isomeric benzoquinones, 65, when 4-ferrocenyl-ethynyl-4-hydroxy-2-
cyclobutenones, 66, undergo thermal rearrangement when heated at reflux in dioxane [43].
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Scheme 22. Meyer-Schuster rearrangement of an alkynol to form the potential push-pull allene, 69. 

Scheme 20. Rearrangement of 4-ferrocenylethynyl-4-hydroxy-2-cyclobutenones into 2-ferrocenylidene-
4-cyclopenten-1,3-diones and 5-ferrocenyl-1,4-benzoquinones.

Although this reaction does not start from a diazoketone, the intermediacy of a ketene, and the
role of the ferrocenyl unit in stabilizing adjacent cations or radicals, reveal some parallels to the Wolff
rearrangement. Upon heating, 66 undergoes electrocyclic ring opening to form the conjugated ketene
67 that can ring-close in two different ways. In each case, the diradical so-formed then proceeds by
hydrogen migration to yield the observed products.

Interestingly, when R , R’, the two geometric isomers 64a and 64b interconvert when heated at
125 ◦C, and it has been suggested that a zwitterionic contribution, 68, to the structure would facilitate
rotation about the C=CHFc linkage (Scheme 21).
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Scheme 22. Meyer-Schuster rearrangement of an alkynol to form the potential push-pull allene, 69. 

Scheme 21. Proposed mechanism for the interconversion of 42a and 42b via a zwitterionic structure.

In a somewhat comparable situation, the potential push-pull ferrocenylidene-fluorenyl allene,
69, that was synthesized by Meyer-Schuster rearrangement of the precursor alkynol with thionyl
chloride (Scheme 22), was investigated to test the possibility that the terminal groups might stabilize
the separate charges thus generating carbene character at the allene central carbon. Although the 13C
NMR spectrum of 69 revealed a peak at 198 ppm, in the normal range for the central carbon in an
allene, the molecule was stable only below −20 ◦C and readily dimerized [44].
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In a somewhat comparable situation, the potential push-pull ferrocenylidene-fluorenyl allene, 

69, that was synthesized by Meyer-Schuster rearrangement of the precursor alkynol with thionyl 

chloride (Scheme 22), was investigated to test the possibility that the terminal groups might stabilize 

the separate charges thus generating carbene character at the allene central carbon. Although the 13C 

NMR spectrum of 69 revealed a peak at 198 ppm, in the normal range for the central carbon in an 

allene, the molecule was stable only below −20 °C and readily dimerized [44]. 
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Scheme 22. Meyer-Schuster rearrangement of an alkynol to form the potential push-pull allene, 69. Scheme 22. Meyer-Schuster rearrangement of an alkynol to form the potential push-pull allene, 69.

5. Ferrocenyl Migration onto an Electron-Deficient Nitrogen Center

5.1. Beckmann Rearrangements

Oximes are readily preparable by reaction of the precursor aldehyde or ketone with hydroxylamine
hydrochloride [45]. When treated with reagents (e.g., H2SO4, PCl5, or SOCl2) that convert the hydroxyl
into a leaving group, it brings about migration of the anti substituent to form a nitrilium ion, 70;
typically, Beckmann rearrangement of the ferrocenyl oxime 71 and subsequent hydrolysis yielded the
secondary amide 72 (Scheme 23) [46]. This specific geometric requirement contrasts with the situation
in the pinacol rearrangement whereby the identity of the migrating group is controlled primarily by its
migratory aptitude rather than its geometric alignment. Interestingly, several carbamate derivatives of
ferrocenyl ketoximes have demonstrated acetylcholin-esterase activity [47].
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5.2. Curtius Rearrangements 

Thermolysis of acyl azides proceeds with loss of nitrogen to form isocyanates. Although they 

can be isolated, the reaction is often carried out in the presence of a nucleophilic solvent such as an 
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refluxing dry toluene furnished ferrocenyl isocyanate, 76. As shown in Scheme 25, reaction with 

ethanol or water produces ethyl ferrocenylcarbamate, 77, or ferrocenylcarbamic acid, prior to loss of 

CO2 and formation of ferrocenylamine, 78. In addition, ammonia, aniline, and ferrocenylamine react 

with ferrocenoyl isocyanate to yield N-ferrocenylurea, 79, N-ferrocenyl-N’-phenylurea, 80, and N,N’-
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While the Beckmann reaction was extensively explored in pioneering investigations by Schlögl
involving a range of alkyl- or aryl-substituted ferrocenyl oximes, probably the most explicit examples
are those derived from ferrocenocyclohexanones, as in Scheme 24. In these cases, the structures of the
resulting ferrocenocaprolactams, 73 and 74, are clearly controlled by the syn or anti orientation of their
precursor oximes [46].
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5.2. Curtius Rearrangements

Thermolysis of acyl azides proceeds with loss of nitrogen to form isocyanates. Although they
can be isolated, the reaction is often carried out in the presence of a nucleophilic solvent such as an
alcohol or amine to form esters or ureas. In contrast to the Wolff rearrangement that can proceed via a
carbene intermediate, the Curtius rearrangement is almost certainly a concerted process that does not
involve a discrete nitrene [25]. Rearrangement of ferrocenoyl azide, 75, by thermolysis in refluxing dry
toluene furnished ferrocenyl isocyanate, 76. As shown in Scheme 25, reaction with ethanol or water
produces ethyl ferrocenylcarbamate, 77, or ferrocenylcarbamic acid, prior to loss of CO2 and formation
of ferrocenylamine, 78. In addition, ammonia, aniline, and ferrocenylamine react with ferrocenoyl
isocyanate to yield N-ferrocenylurea, 79, N-ferrocenyl-N’-phenylurea, 80, and N,N’-diferrocenylurea,
81, respectively [48].Inorganics 2020, 8, x FOR PEER REVIEW 13 of 22 
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85. In the course of their pioneering studies of derivatives of ferrocene, the Nesmeyanov group 

attempted the benzidine rearrangement of hydrazoferrocene, 86, but to no avail (Scheme 26). The 

major products arose from disproportionation to form azoferrocene, 87, and ferrocenylamine [51]. 

When the ferrocenyl unit was instead incorporated as a substituent in hydrazobenzene, the major 

products upon treatment with HCl were ferrocenylazobenzene, ferrocenylaniline, and aniline, again 
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Scheme 25. Curtius rearrangement of ferrocenoyl azide to ferrocenyl isocyanate.

Several practical applications of this procedure have since been reported. Curtius rearrangement
of ferrocenoyl azide in the presence of a number of hydroxysteroids to form carbamates, such as 82
(Figure 4), has been used in high performance liquid chromatography using electrochemical detection.
Maximum sensitivity was achieved by using a silver–silver chloride reference electrode with a detection
limit of 0.5 pmol. This derivatization procedure has allowed the facile characterization of the products
of the bioconversion of digoxigenin [49]. Moreover, in a more recent study, it has been shown that
molecules in which the ferrocenyl carbamate unit is linked to a boronic acid ester, as in 83, provide a
very sensitive and rapid electrochemical detection technique for hydrogen peroxide and glucose; this
can be used to follow enzyme activity and cell signaling pathways [50].



Inorganics 2020, 8, 68 14 of 23

Inorganics 2020, 8, x FOR PEER REVIEW 13 of 22 

 

75

N=N=NFc

O

+ -

-N2
ClFc

O

NaN3

Fc-N=C=O

76

FcNH2

PhNH2

-CO2

NH3

LiAlH4 EtOH

H2O

FcNHC(=O)NH2

FcNHC(=O)NHPh

FcNHC(=O)NHFc

FcNHCO2Et

FcNHCH3

FcNHCO2H

FcNH2

77

79

80
8178

 

Scheme 25. Curtius rearrangement of ferrocenoyl azide to ferrocenyl isocyanate. 

Several practical applications of this procedure have since been reported. Curtius rearrangement 

of ferrocenoyl azide in the presence of a number of hydroxysteroids to form carbamates, such as 82 

(Figure 4), has been used in high performance liquid chromatography using electrochemical 

detection. Maximum sensitivity was achieved by using a silver–silver chloride reference electrode 

with a detection limit of 0.5 pmol. This derivatization procedure has allowed the facile 

characterization of the products of the bioconversion of digoxigenin [49]. Moreover, in a more recent 

study, it has been shown that molecules in which the ferrocenyl carbamate unit is linked to a boronic 

acid ester, as in 83, provide a very sensitive and rapid electrochemical detection technique for 

hydrogen peroxide and glucose; this can be used to follow enzyme activity and cell signaling 

pathways [50]. 

Fe

N
H

O

82

O

H

Me

OH

O

Fe

N
H O

B

O

O

83

O

O

Me

H

H
HO

 

Figure 4. Steroidal and boronic acid ester carbamates derived by reaction of alcohols with ferrocenyl 

isocyanate. 

5.3. Benzidine Rearrangement 

Protonation of hydrazobenzene, 84, brings about cleavage of the HN–NH linkage and coupling 

of the phenyl substituents, normally in the para-positions to form 4,4’-diaminobiphenyl (benzidine), 

85. In the course of their pioneering studies of derivatives of ferrocene, the Nesmeyanov group 

attempted the benzidine rearrangement of hydrazoferrocene, 86, but to no avail (Scheme 26). The 

major products arose from disproportionation to form azoferrocene, 87, and ferrocenylamine [51]. 

When the ferrocenyl unit was instead incorporated as a substituent in hydrazobenzene, the major 

products upon treatment with HCl were ferrocenylazobenzene, ferrocenylaniline, and aniline, again 

resulting from disproportionation rather than rearrangement [52]. 

Figure 4. Steroidal and boronic acid ester carbamates derived by reaction of alcohols with
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5.3. Benzidine Rearrangement

Protonation of hydrazobenzene, 84, brings about cleavage of the HN–NH linkage and coupling
of the phenyl substituents, normally in the para-positions to form 4,4’-diaminobiphenyl (benzidine),
85. In the course of their pioneering studies of derivatives of ferrocene, the Nesmeyanov group
attempted the benzidine rearrangement of hydrazoferrocene, 86, but to no avail (Scheme 26). The major
products arose from disproportionation to form azoferrocene, 87, and ferrocenylamine [51]. When the
ferrocenyl unit was instead incorporated as a substituent in hydrazobenzene, the major products upon
treatment with HCl were ferrocenylazobenzene, ferrocenylaniline, and aniline, again resulting from
disproportionation rather than rearrangement [52].
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6. Anionic Rearrangements of Ferrocenyl Compounds

6.1. Benzoins and Benzils

The cyanide-catalyzed condensation of aromatic aldehydes, with subsequent oxidation of the
benzoin so-formed, provides a convenient route to benzils [53]. However, when starting from
formylferrocene, this procedure failed. Moreover, the mixed benzoin condensation of benzaldehyde
and formylferrocene yields only a single product, Ph(C=O)–CH(OH)Fc, 88 [54]. As is evident from
the mechanism shown in Scheme 27, this situation arises because nucleophilic attack by cyanide at
the ferrocenyl carbonyl, followed by tautomerization, would generate a carbanionic site adjacent to
the sandwich moiety—evidently an unfavorable and unlikely circumstance. Instead, the cyanide
undergoes addition to the benzaldehyde carbonyl group. Oxidation with MnO2 yields the mixed
benzil Fc(C=O)(C=O)Ph, 89 [54].
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However, an indirect route to ferrocil (Scheme 28) was successfully achieved by Rinehart who found
that the Friedel–Crafts acylation of ferrocene with the acid chloride of ferrocenylacetic acid yielded
ferrocenylacetylferrocene (desoxyferrocoin), 90 [55]; subsequent oxidation with freshly prepared MnO2

furnished ferrocil, 91, in 86% yield [56].
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In a modification of this approach, the Nesmeyanov group showed that the MnO2-mediated
oxidation of 1,2-diferrocenylethane furnished trans-diferrocenylethene, 47, and small quantities of
ferrocil. Satisfyingly, further oxidation of the alkene gave 91 in 40% yield [57]. Unsurprisingly, ferrocil
does not undergo the benzil-to-benzilic acid rearrangement; once again, such a process would have
required the migration of a ferrocenyl unit under electronically unfavorable anionic conditions.

The ready availability of the mixed benzils 1-ferrocenyl-2-aryl-1,2-dioxoethane, 89 and 92, has
been shown to provide a convenient route to ferrocenyl-triaryl-cyclopentadienones, 93 that are
versatile precursors to the sterically hindered arenes C6R5Fc, where R = phenyl or β-naphthyl, and the
cycloheptatriene C7Ph6HFc (Scheme 29) [54,58,59].
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Scheme 30. Different Stevens rearrangements for analogous phenyl and ferrocenyl structures. 
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7.1. Quinone Methides 
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6.2. Stevens Rearrangement

In a conventional Stevens rearrangement, deprotonation of a quaternary ammonium salt
generates an ylid whereby one of the substituents undergoes migration from nitrogen. Typically,
as shown in Scheme 30, under these conditions the benzyltrimethylammonium salt, 94, is
converted to 2-methylbenzyldimethylamine, 95. In contrast, upon methylation to form 96,
N,N-dimethyl-aminomethylferrocene undergoes a quite different isomerization process to generate
N,N-dimethylaminoethylferrocene, 97 [60]. This may be rationalized on the basis that, as noted in
Section 6.1, the ferrocenyl moiety is less willing than phenyl to tolerate negative charge. We note,
however, that more recently, it has been suggested that the mechanism of the Stevens rearrangement
may actually involve radical coupling within a solvent cage [61].
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7. Ferrocenes in Bioorganometallic Chemistry

7.1. Quinone Methides

Bioorganometallic chemistry, a neologism introduced by a small group of us in the mid-1980s [62,
63], focuses on the bioactivity of complexes possessing at least one metal-carbon bond. It was developed
to extend the range and efficacy of metal-based systems beyond that of the widely-used platinum drugs.
Although many transition-metal complexes have been studied, ferrocifens, the ferrocenyl analogues of
tamoxifen, the current first-line treatment of hormone-dependent breast cancers, whereby a phenyl has
been replaced by ferrocenyl, have proved particularly successful against both hormone-dependent and
hormone-independent tumors [64].

Their activity is predicated on the reversible redox activity of the ferrocenyl moiety that mediates
conversion of ferrociphenols, 98, into the corresponding quinone methides, 99, that undergo Michael
additions with thiols or selenols of key proteins crucial to maintaining redox balance in the cell [65–67].
The net result is to inhibit the regeneration of thioredoxin that defends the cell from attack by reactive
oxygen species (ROS), such as hydroxyl radicals. The mode of action of thioredoxin is to trap the
ROS by abstraction of hydrogen from its vicinal cysteine thiols, which then form disulfides, a process
reversible only by thioredoxin reductase in conjunction with NADPH [67]. Generation of these quinone
methides can also be accomplished in vitro by chemical oxidation of ferrociphenols with silver oxide,
or enzymatically by using horseradish peroxidase (HRP/H2O2), as depicted in Scheme 31.
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7.2. Formation of Indenes

The rearrangement behavior of these bioactive ferrocenyl-containing molecules parallels that of
the more conventional systems discussed already. Protonation of ferrocenyl quinone methides brings
about rearomatization of the quinone ring and initially generates a doubly-benzylic carbocation, 100,
that readily cyclizes so as to place the electron deficiency adjacent to the ferrocenyl substituent, as in
101, leading ultimately to formation of indene 102 (Scheme 32) [68], entirely analogous to the reactions
described in Section 2.2.
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7.3. Formation and Rearrangement of a Ferrocenyl-Tetrahydrofuranyl Quinone Methide

A particularly interesting transformation occurs in the enzymatic or chemical oxidation of the
hydroxypropyl-ferrociphenol, 103, that yields, among other products, a spiro-bonded tetrahydrofuran
derivative, 104 (Scheme 33). When protonated, this molecule undergoes both ferrocenyl migration and
ring expansion to yield the dihydrofuran, 105, and the dihydropyran, 106, respectively (Scheme 34) [65].
Their X-ray crystal structures are shown as Figure 5.Inorganics 2020, 8, x FOR PEER REVIEW 17 of 22 
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7.4. Pinacol-to-Pinacolone Rearrangement of Ansa-Ferrociphenols

In yet another example in the bioorganometallic arena, the synthesis of an ansa-ferrociphenol
from [3]ferrocenophanone, 107, by McMurry coupling yields not only the desired alkene, 108, but also
the corresponding pinacolone, 109, (Scheme 35) both of whose X-ray crystal structures are shown as
Figure 6.Inorganics 2020, 8, x FOR PEER REVIEW 18 of 22 
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Figure 6. Molecular structures of the ansa-ferrociphenol, 108, and the pinacolone, 109.

In this case, there are two possible pinacolones: one derived by cation formation adjacent to the
ferrocenyl group, as in 110, the other at the doubly-benzylic position, 111, as illustrated in Scheme 36.
In the event it is the latter that succeeds, it is presumably to relieve the ring strain in the three-carbon
bridge thereby forming the pinacolone possessing a four-carbon link between the cyclopentadienyl
rings [69]. Moreover, in this strained system, the potential carbocation, 110, adjacent to ferrocene,
is unable to enhance its stability by bending towards the metal.
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8. Concluding Comments

The remarkable ability of the ferrocenyl moiety to stabilize a neighboring carbocationic site
manifests itself in a number of ways. In some cases, such as [(C5H5)Fe(C5H4-CPh2][BF4], the species is
sufficiently stable to be isolated and structurally characterized by X-ray crystallography. In others,
it directs the course of an isomerization or migration by stabilizing a transition state or intermediate by
alleviating the electron deficiency and tolerating any excess positive charge on the iron atom.

It is particularly gratifying that the incorporation of ferrocenyl units into bioactive materials
has been so successful. We have already discussed its role in enhancing the efficacy and range of
applicability of tamoxifen by replacing a phenyl substituent by ferrocenyl in the ferrocifens for the
treatment of a broad range of cancers [63]. Another spectacular advance has been the adoption of
ferroquine as a replacement for chloroquine in the world-wide fight against malaria [70]. It is evident
that the electronic control exerted by the ferrocenyl group continues to attract attention, and will
undoubtedly lead to additional practical applications.
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