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Abstract: Poly(lactic acid) (PLA)/palygorskite (Paly) nanocomposites were prepared using the melt
compounding technique. Paly modified by 3-aminopropyltriethoxysilane (APTES) and vinyltrime
thoxysilane (VTMS) was used as nanofiller for PLA with concentrations in the 1–7 wt% range. It has
been found that the functionalization allows a covalent bond between the hydroxyl groups of the
Paly and the PLA matrix, evidenced by the improvement in mechanical properties. Paly modification
with VTMS has better properties compared with Pale modification with APTES. This indicates a
better adhesion between the Paly-VTMS and PLA matrix, and a good dispersion of the nanofiller in
the polymer matrix.

Keywords: palygorskite; coupling agent; poly(lactic acid); 3-aminopropyltriethoxysilane; vinyltrime
thoxysilane

1. Introduction

Poly(lactic acid) or polylactide (PLA) is a biodegradable polymer synthesized from
renewable resources such as corn, rice, potatoes, or sugarcane [1,2]. It is of greater interest
because of its manufacturability during heat treatment, high melting point, plasticity [2,3],
the possibility of recycling [4,5], biocompatibility, good biodegradation rate [6–8], as well
as relatively low cost [9]. Moreover, upon degradation, PLA breaks down into non-toxic
components [10]. This opens up prospects for the introduction of PLA in a wide range of
production areas, primarily in the food and agricultural sectors of the economy, as a mate-
rial for packaging, as well as in the pharmaceutical and medical industries [11]. However,
the use of PLA has limitations associated with its high brittleness, low elongation at break,
low impact strength, and poor crystallizability. Its low mechanical, barrier properties, and
low thermal stability in comparison with major industrial polymers limit the extensive use
of PLA in its native form [12–19]. The addition of reinforcing components into the PLA
polymer matrix allows expanding the possibilities of its application [20,21]. In this case,
the morphology of the filler and its compatibility with the polymer matrix play a key role
in improving the physical and mechanical properties of the nanocomposite [22]. In most
studies on the improvement of PLA properties, the researchers used layered aluminosili-
cates as a filler, in particular montmorillonite and its organomodified forms [23–26]. Still,
the question of the effect of morphology on the physical and mechanical properties of PLA
is insufficiently investigated [11]. In this respect, it is interesting to study palygorskite (also
known as attapulgite) with a fiber morphology (with diameter up to 25 nm and length up
to 1000 nm) and a porous structure (the size of nano-channels is 0.64 × 0.37 nm), having
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the following chemical formula: (Si,Al)8O20(Mg,Al,Fe)5(OH)2(OH2)44H2O, where H2O is
zeolitic water, OH2 is coordinated water, and OH is structural water [27]. A large surface
area and needle-like morphology of palygorskite (Paly) raise the possibility of obtaining
a pronounced reinforcing effect at polymer nanocomposites. Using organomodification
for Paly should not only provide dispersion of the mineral in the polymer matrix, but also
enhance their interaction. This is manifested in the improvement of the mechanical and
thermal properties of the nanocomposite containing Paly [28–32]. One of the strategies for
organomodification of clay minerals is the grafting silylation reaction. Silane is used as a
coupling agent because of its ability to react with clays by hydrolysis/condensation, and
its end groups can also react with polymers. The effect in this case is achieved owing to
the formation of covalent bonds [33,34]. In this case, it is interesting to evaluate the effect
of Paly modification with various silanes on the properties of PLA/Paly nanocomposites,
which has been poorly understood until recently. However, there are examples of successful
applications of silanes for other clay minerals [35–37].

The aim of this work is to carry out a comparative analysis of the effect of pre-modified
Paly on the morphological, mechanical, and thermal properties of PLA/Paly nanocom-
posites. 3-aminopropyltriethoxysilane (APTES) and vinyltrimethoxysilane (VTMS) were
chosen as Paly modifiers. The nanocomposites were prepared by melt blending. For com-
parative evaluation, a multiple research was performed using Fourier transform infrared
spectroscopy (FTIR), mechanical bending tests, transmission electron microscopy (TEM),
thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC).

2. Material and Methods
2.1. Materials

PLA (4032D) with a number average molecular weight of 200 kDa was obtained
from NatureWorks LLC (Minnetonka, MN, USA). Palygorskite (Cimsil G30) was pur-
chased from TOLSA S.A. (Madrid, Spain). The silanes (3-aminopropyltriethoxysilane and
vinyltrimethoxysilane) were purchased from MAS Albion Ltd. (Moscow, Russia). The
structures of chemical compounds are given in Table 1.

Table 1. Structure and chemical characteristics of poly(lactic acid) and silane molecules.

Label Chemical Name Structural Formula Molecular Weight (g/mol)

PLA Polylactide Ingeo 4032D
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2.2. Modification of Palygorskite

The Paly functionalization procedure is shown in Figure 1. For homogenization, Paly
(1 g) was mixed with ethyl alcohol (20 g). The resulting mixture was subsequently subjected
to 30 min of ultrasonic treatment (magnetostrictive emitter with the frequency of 22 kHz,
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amplitude of 50 µm, and output power of 500 W) and 30 min of mixing on a magnetic
stirrer (1500 rpm at room temperature) (Figure 1a). For modification, APTES or VTMS
(250 mg) was added to the mixture. Then, the mixture was brought to pH 4.5–5.5 by adding
a solution of acetic acid (1.25 mL) in deionized water (30 mL). The resulting mixture was
stirred for 4 h on a magnetic stirrer (1500 rpm, 65 ◦C) (Figure 1b). Finally, the sample
was centrifuged at 9000 rpm to obtain a solid substance, after which it was dried at room
temperature.
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2.3. Preparation of Poly(Lactic Acid)/Palygorskite Nanocomposites

PLA/Paly nanocomposites with 1, 3, 5, and 7 wt% filler content (Paly-APTES and
Paly-VTES) were prepared using the melt extrusion technique using LTE 26–48 co-rotating
twin-screw extruder, with a screw speed of 80 rpm. Before processing, the PLA and the
filler were dried for 12 h at 80 ◦C. This blending process was conducted with temperature
profiles of the extruder barrels; the ten zones of the hopper were 175, 180, 185, 185, 185, 190,
190, 195, 195, 195, and head 190 ◦C. The extrudate was then passed through a chilled water
bath and pelletized. The scheme for obtaining PLA/Paly-APTES or PLA/Paly-VTMS is
depicted in Figure 1c. The PLA, PLA/Paly-APTES, and PLA/Paly-VTMS paddle-shaped
samples (150 × 20 × 4 mm) were prepared in injection molding machine (Haibo HBT700L)
at 185, 195, 200, and head 190 ◦C cylinder temperature, and 35 ◦C mould temperature at 5 s
holding time under the pressure range of 1200–600 bar (Figure 1d).

2.4. Characterization Methods

Fourier transform infrared (ALPHA-E; Bruker, Billerica, MA, USA) spectroscopy was
used to analyze the chemical structures of the nanocomposites. The spectrum ranged from
500 to 4000 cm−1, the resolution was 4 cm−1, and the number of scans was 32. Flexural
modulus was measured according to ASTM D790-17 standard using ZwickiLine Materials
Testing machine 5 kN at a constant crosshead speed of 2 mm/min. By transmission electron
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microscopy (Tecnai Spirit G2; Philips, Amsterdam, The Netherlands), the dispersion of
Paly-APTES or Paly-VTMS in PLA/Paly nanocomposite was observed. A synchronous
thermal analyzer (STA 449 F3; NETSCH, Selb, Germany) combining thermo gravimetric
analysis with differential scanning calorimetry was used. The effect of Paly-APTES or
Paly-VTMS on the thermal stability of the nanocomposite was studied. In synchronous
mode (TGA and DSC), we used the sample weighing about 6–9 mg, and the temperature
was raised from 40 ◦C to 500 ◦C with a heating rate of 10 ◦C/min. Argon (air) was used as
the purge and protection gas, and the flow rate of argon (air) was 30 mL/min. Corundum
crucibles with a hole in the lid were used for measurements. In DSC mode, the test volume
was about 6–9 mg, and the temperature was raised from 25 ◦C to 300 ◦C with a heating
rate of 10 ◦C/min. It was cooled from 300 ◦C to 25 ◦C at a cooling rate of 5 ◦C/min. Sealed
aluminum crucibles were used for measurements.

3. Results and Discussion
3.1. FTIR Analysis

The FTIR spectra of pristine Paly and silane-functionalized Paly are displayed in Figure 2.
FTIR spectrum of Paly demonstrates tetrahedral (Si–O–Si, 950–1250 cm−1) [38,39] and oc-
tahedral (Al–Al–OH, 913 cm−1; Al–Fe–OH, 865 cm−1; and Mg–Mg–OH, 647 cm−1 [40])
vibrations with bands connected with hydroxyl groups and water molecules in the range
3200–3400, 3562 cm−1 [41], and 1668 cm−1 [42], respectively.

Surface modification of the Paly using APTES is revealed in a decrease in the intensity
of Si–O vibrations due to the response of APTES and Paly [38,39] (Figure 2a). The vibra-
tional frequencies of silane molecules interacting with fibrous silicates are in the range
of 1200–2000 cm−1. The band at 1630 cm−1 is associated with the stretching vibration
C=C, and the band at 1720 cm−1 is associated with the stretching vibration C=O [42,43]. In
addition, new peaks at 1566, 1496, and 690 cm−1(Figure 2b), which correspond to bending
vibrations of –NH2, –CH2, and deformation of –CH out of plane, once again confirm this
conclusion [44,45]. All these observations are consistent with the APTES grafting onto the
Paly surface [46]. In Paly modification with silane (Figure 2c), there occurs a new peak at
2930 cm−1, and one more small hump at 2850 cm−1, associated with C–H asymmetric and
symmetric stretching of the –CH2 groups, which confirms the presence of silane on the
mineral surface [47].

Surface modification of the Paly surface using VTMS is characterized by new Si–O–Si
bands appearing in the FTIR spectrum at 1120, 1080, 1031, and 790 cm−1 [48–51] (Figure 2a).
Moreover, stripes with asymmetric stretch –CH2 at 3062 cm−1, C=C stretch at 1600 cm−1,
and –CH in-plane band at 1274 cm−1 (Figure 2b,c) [52]. Thus, the presence of silane bands
in all spectra of functionalized clays confirms that the OH group on the inner/outer surface
and edge of clays can chemically react with alkoxysilane Si–OR groups.

FTIR spectra of PLA, PLA/Paly-APTES, and PLA/Paly-VTMS are shown in Figure 3.
For PLA, there are stretching frequencies for C=O, asymmetric, and symmetric vibrations
of –CH3 group at 1746, 2997, and 2943 cm−1, respectively. At 1180 cm−1, one can observe
a band associated with the O–C–O groups, as well as three peaks at 1128, 1081, and
1042 cm−1 belonging to the C–C–O group. In addition, bending frequencies for –CH3 are
determined at 1452, 1380, and 1359 cm−1 [53,54]. In Figure 3a, the excess of the intensity of
the maximum in the region of 1650 cm−1 is observed, related to the hygroscopic water of
Paly oscillation, for PLA/Paly-APTES with 5 wt% filler content over a sample containing
7 wt% filler; this can be attributed to the heterogeneity of filler distribution in the PLA
matrix witnessed in TEM images (Section 3.3).
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This finding shows that there is less accessibility of surface hydroxyl groups because
of the modification of the Paly surface with a silane. The carbonyl group that appears at
1745 cm−1 for pure PLA shifts slightly towards the higher wavenumber (1746 cm−1) in
the PLA/Paly-APTES and PLA/Paly-VTMS nanocomposites in the case of 7 wt% content
of Paly-APTES (Paly-VTMS), indicating a certain degree of chemical interaction between
Paly-APTES (Paly-VTMS) and PLA matrix. In this case, the largest number of surface-
active groups of the Paly-APTES (Paly-VTMS) filler interacting with the PLA matrix may
be retained.
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3.2. Mechanical Properties

The flexural modulus of PLA, PLA/Paly-APTES, and PLA/Paly-VTMS nanocom-
posites is shown in Figure 4. The increase in flexural strength modulus with increasing
silylated Paly concentration to 7 wt% indicates a positive effect of silanization on nanofiller
dispersion in the PLA polymer matrix. The overall flexural strength of PLA/Paly-VTMS
composites is higher than that of PLA/Paly-APTES. This happens owing to better inter-
facial adhesion between the matrix and filler, which improves stress transfer and leads
to higher flexural strength values. The presence of agglomerates with an increasing con-
centration of Paly-APTES is also the reason for underestimated values of the flexural
modulus of PLA/Paly-APTES composites. A simultaneous increase in the flexure modulus
for PLA/Paly-APTES and PLA/Paly-VTMS nanocomposites with the addition of 1 wt%
silylated Paly compared with pure PLA from 3.3 GPa to 3.392 and 3.394 GPa, respectively,
was witnessed. This indicates that Paly intrinsic stiffness has a positive effect on the
overall stiffness of the PLA/Paly nanocomposites, which increases the flexural modulus
of nanocomposites. Improving the flexural modulus for PLA and its nanocomposites is
important for sustainable packaging applications [55] as it is a measure of the stiffness of
a material. The positive effect of functionalization with silanes APTES and VTMS of clay
minerals such as montmorillonite, halloysite, and sepiolite on the mechanical properties of
thermoplastic polymers was also scrutinized by Raji et al. [39].
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3.3. Morphology Analysis

Paly-VTMS particles are dispersed in the PLA polymer matrix, which can be clearly
seen in Figure 5a. Despite the concentration of 7 wt% Paly-VTMS in the polymer matrix,
no signs of particle agglomeration are detected, which indicates a clear interaction between
Paly-VTMS and the PLA matrix. In contrast, for Paly-APTES particles in the PLA matrix for
the case of 7 wt% concentration, areas of particle agglomeration are observed (Figure 5b).
This indicates a reduced interaction between the modified APTES Paly and polymer matrix.
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(7 wt%) nanocomposites.

3.4. Thermogravimetric Analysis

Figure 6 displays the TGA curves of PLA, PLA/Paly-VTMS, and PLA/Paly-APTES
samples. At temperatures up to 300 ◦C, the mass of PLA/Paly-VTMS (Figure 6a,c) and
PLA/Paly-APTES (Figure 6b,d) samples is stable in both argon atmosphere and air. At
temperatures above 300–305 ◦C in argon atmosphere and in air, there is pyrolytic decom-
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position of all samples, with an almost complete loss of weight by 380 ◦C. Closer to 500 ◦C,
the residual mass of PLA/Paly-VTMS and PLA/Paly-APTES samples increases. This is
due to the increase in the content of the Paly-APTES and Paly-VTMS filler remaining after
heating (Table 2).Inorganics 2020, 8, x FOR PEER REVIEW 9 of 12 
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with different proportions of PPV (Paly-VTMS) and PPA (Paly-APTES) addition in air (a,b) and in argon atmosphere (c,d).

Table 2. Thermal parameters obtained from thermogravimetric analysis (TGA) and differential scanning calorimeter (DSC)
analysis (in argon). PPV, Paly-VTMS.

Sample Glass Transition
Temperature, Tg (◦C)

Melting Temperature,
Tm (◦C)

Crystallinity Index,
Xc (%) Weight Loss (%)

PLA 59 170 0.9 94.2
PPV (1 wt%) 59 170 17.6 98.0
PPV (3 wt%) 60 170 34.0 91.7
PPV (5 wt%) 60 170 41.2 90.4
PPV (7 wt%) 61 163 11.4 86.1
PPA (1 wt%) 59 170 15.6 92.2
PPA (3 wt%) 57 168 29.1 88.1
PPA (5 wt%) 58 168 42.4 88.0
PPA (7 wt%) 61 164 23.5 85.2

3.5. Differential Scanning Calorimetry

Figure 6 represents the DSC curves of PLA, PLA/Paly-VTMS, and PLA/Paly-APTES
samples. With an increase in the content of silanized Paly from 1 to 5 wt%, an augmentation
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in the crystallinity index (Xc) is detected, which indicates that the clay filler can act as
a nucleation agent to induce the PLA crystallization [56,57]. Adding 7 wt% silanized
Paly diminishes this effect (Table 2). An increase in crystallinity results in a higher glass
transition temperature (Tg). The addition of silanized Paly to PLA did not significantly
affect the melting temperature (Tm), except for samples with 7 wt% filler content, indicating
a better packaging and organization caused by the clay filler [58]. Similar behavior was also
observed in the work of Lai et al. for PLA nanocomposites filled with organic-modified
montmorillonite clay [56].

4. Conclusions

Nanocomposites based on PLA and modified palygorskite were prepared by melt
blending. Palygorskite was modified with two organosilanes (APTES and VTMS), which
promoted the formation of covalent bonds between the polymer and the clay through
reactive extrusion, allowing strong interactions between the clay and the PLA matrix.
Spectral studies were performed to characterize the successful grafting of silanes onto
palygorskite. It has been found that the functionalization method allows a covalent bond
between the hydroxyl groups of the clay minerals and the polymer matrix, as evidenced by
the improvement in mechanical properties. Thus, for the flexural modulus, PLA increases
from 3300 MPa to 3930 MPa at 7 wt% for Paly-VTMS. The obtained results prove that
silylation of palygorskite is an important method for increasing the interfacial adhesion
between palygorskite and the PLA matrix.
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