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Abstract: Metal–organic frameworks (MOFs) are a family of porous crystalline materials that serve in
some cases as versatile platforms for catalysis. In this review, we overview the recent developments
about the use of these species as heterogeneous catalysts in olefin epoxidation and carbon dioxide
cycloaddition. We report the most important results obtained in this field relating them to the presence
of specific organic linkers, metal nodes or clusters and mixed-metal species. Recent advances obtained
with MOF nanocomposites were also described. Finally we compare the results and summarize the
major insights in specific Tables, outlining the major challenges for this emerging field. This work
could promote new research aimed at producing coordination polymers and MOFs able to catalyse a
broader range of CO2 consuming reactions.

Keywords: heterogenous catalyst; metal–organic framework (MOF); olefin epoxidation; carbon
dioxide cycloaddition

1. Introduction

International Union of Pure and Applied Chemistry (IUPAC) defines MOFs as a
coordination network with an open framework containing potential voids [1]. This emerg-
ing class of porous coordination polymers are formed by metal ion or cluster nodes and
functional organic ligands, all connected through coordination bonds to form 1D, 2D o
3D networks (Figure 1) [2–6]. MOFs can be easily obtained by several different synthetic
methods, such as electrochemical [7], solvothermal [8] and mechanochemical [9], slow
diffusion [10], and more recently also by microwave-assisted heating [11].

The crystal structures of MOFs can be customized depending on the metal and ligand
choice as also on the solvents and reaction conditions employed. [12] Due to the high
surface areas [13] and ultrahigh porosity they are attractive for CH4, CO2, and H2 sorption
and storage. Most MOFs have higher volumetric H2 and CH4 storage capacities concerning
traditional porous materials.

In recent years nanoscale MOFs have been also investigated for their potential ap-
plications in biomedicine, for example for drug delivery [14] and biological imaging [15],
mainly for the possibility to use biocompatible building blocks. MOFs were employed as
electrode materials for supercapacitors using Co-based coordination polymers [16], for
magnetic and electronic devices [17], for water harvesting where H2O is extracted from the
air by solar energy [18], and finally also for non-linear optics [19].

The use of MOFs as a catalyst has been widely explored and several applications have
been developed, for example in the production of fine chemicals [20], or the definition
of possible new green protocols replacing non-eco-friendly catalysts [21]. Differences in
activity and selectivity toward specific organic reactions are significantly dependent on the
MOFs structure [22]. The main MOFs advantage, when we consider their use in catalysis, is
in the possibility to design and predict the structural properties based on of linker features,
coordination number and geometry of the metal.
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Figure 1. Schematic representation of MOFs frameworks with different dimensionalities (3D, 2D, 1D). 

The presence of coordinatively unsaturated metal sites, the variety of basic linkers 
available, the stability to solvents and to reaction conditions, the possibility to host guest 
molecules within the pores makes MOFs perspective materials for heterogenous catalysis. 
They have also a lot of advantages concerning other inorganic systems as zeolites and 
aluminophosphates, i.e., they can be modified using organic synthesis, being possible to 
decorate their pores with catalytic sites. MOFs can be tailored by a simple change in the 
initial synthetic conditions or by using post-synthetic reactions. These modifications make 
MOFs excellent candidates for designing functional materials to allow the attachment of 
different catalysts [23]. 

While the characterization of deposited species upon conventional catalyst supports, 
such as metal oxides, tends to be challenging due to the non-uniform surface and pore 
structures of the support, the crystalline nature of MOFs enables visualization of the cat-
alytically active species within the framework, which leads to a detailed characterization 
of active catalytic sites and provides insight into structure−activity relationships. 

In this review we want to focus on the most recent progress in two reactions MOFs-
catalyzed, i.e., the olefin epoxidation and the cycloaddition of CO2 to epoxides to yield 
organic carbonates as a final product, by performing a rigorous analysis of the best MOFs 
in terms of conversion and selectivity. Specifically, we examined MOF-based catalytic ma-
terials producing epoxide and cyclic carbonates with percentages of conversion and selec-
tivity exceeding 70, in the 2015 to 2021 period. Moreover, few relevant papers on the het-
erogeneous MOFs catalysts published before 2015, for a useful comparison have been con-
sidered. 

Epoxides are important species and intermediates in the production of pharmaceuti-
cals, agrochemicals, and relevant industrial chemicals. In the global market, the produc-
tion of propylene oxide achieves 8 million tons per year with an expected annual increase 
of 5% [24]. Due to the industrial relevance of catalytic oxidation of olefins to fine chemi-
cals, numerous studies have been devoted to the development of efficient homogeneous 
[24] and heterogeneous catalysts [24]. However, high selectivity and enantioselectivity in 
epoxidation reactions remain a challenge. While recovery and product separation are the 
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The presence of coordinatively unsaturated metal sites, the variety of basic linkers
available, the stability to solvents and to reaction conditions, the possibility to host guest
molecules within the pores makes MOFs perspective materials for heterogenous catalysis.
They have also a lot of advantages concerning other inorganic systems as zeolites and
aluminophosphates, i.e., they can be modified using organic synthesis, being possible to
decorate their pores with catalytic sites. MOFs can be tailored by a simple change in the
initial synthetic conditions or by using post-synthetic reactions. These modifications make
MOFs excellent candidates for designing functional materials to allow the attachment of
different catalysts [23].

While the characterization of deposited species upon conventional catalyst supports,
such as metal oxides, tends to be challenging due to the non-uniform surface and pore
structures of the support, the crystalline nature of MOFs enables visualization of the
catalytically active species within the framework, which leads to a detailed characterization
of active catalytic sites and provides insight into structure−activity relationships.

In this review we want to focus on the most recent progress in two reactions MOFs-
catalyzed, i.e., the olefin epoxidation and the cycloaddition of CO2 to epoxides to yield
organic carbonates as a final product, by performing a rigorous analysis of the best MOFs
in terms of conversion and selectivity. Specifically, we examined MOF-based catalytic
materials producing epoxide and cyclic carbonates with percentages of conversion and
selectivity exceeding 70, in the 2015 to 2021 period. Moreover, few relevant papers on
the heterogeneous MOFs catalysts published before 2015, for a useful comparison have
been considered.

Epoxides are important species and intermediates in the production of pharmaceuti-
cals, agrochemicals, and relevant industrial chemicals. In the global market, the production
of propylene oxide achieves 8 million tons per year with an expected annual increase of
5% [24]. Due to the industrial relevance of catalytic oxidation of olefins to fine chemicals,
numerous studies have been devoted to the development of efficient homogeneous [24]
and heterogeneous catalysts [24]. However, high selectivity and enantioselectivity in
epoxidation reactions remain a challenge. While recovery and product separation are the
main drawbacks for homogenous catalysts, MOFs used as heterogeneous catalysts in the
oxidation of olefins have attracted significant attention (Figure 2) [25].
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A significant number of MOFs has been recently reported to catalyse the CO2 cy-
cloaddition reaction to epoxides to give cyclic organic carbonates (OCs) and several pa-
pers describe the potential and effectiveness of MOFs in this important process, so it is 
necessary to identify better strategies to build new advanced materials as MOFs or MOF-
based species to grow selectivity, capacity, and conversion of this catalytic reaction. 

2. Olefin Epoxidation 
C=C bond epoxidation is an attractive reaction for industrial process to obtain raw 

materials for epoxy resin, polymers, and pharmaceutical intermediates. Although homog-
enous catalysts in the epoxidation of alkene have been largely studied in the past few 
decades, the separation from the reaction mixture and its subsequent reusability remain 
open challenges [26,27]. 

Figure 2. General mechanism of epoxidation of alkenes with peroxycarboxylic acid as co-catalyst.

CO2 is the primary greenhouse gas in the atmosphere, and it is the cause of envi-
ronmental and energy-related problems in the world. Nowadays, the development of
new methods is fundamental to capture and convert CO2 into useful chemical products
to improve the environment and promote sustainable development. Several studies have
been carried out on MOF’s efficiency to capture CO2. The linkers that connect the MOFs
metal nodes are the major sites for CO2 binding. The linkers that connect the MOFs metal
nodes are the major sites for CO2 binding, and they can be chemically modified with
functional groups to increase their interaction with CO2. Moreover, unsaturated metals
ions can be introduced in the MOFs structure. A significantly benefit generated from the
possibility to have adequate quantities of CO2 in concentrated form within a MOF is the
possible use of CO2 as a chemical reagent (Figure 3).
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A significant number of MOFs has been recently reported to catalyse the CO2 cy-
cloaddition reaction to epoxides to give cyclic organic carbonates (OCs) and several papers
describe the potential and effectiveness of MOFs in this important process, so it is necessary
to identify better strategies to build new advanced materials as MOFs or MOF-based
species to grow selectivity, capacity, and conversion of this catalytic reaction.

2. Olefin Epoxidation

C=C bond epoxidation is an attractive reaction for industrial process to obtain raw
materials for epoxy resin, polymers, and pharmaceutical intermediates. Although ho-
mogenous catalysts in the epoxidation of alkene have been largely studied in the past few
decades, the separation from the reaction mixture and its subsequent reusability remain
open challenges [26,27].

Very recently, taking advantage of the tunability of MOFs, several transition metal-
based epoxidation catalysts have been developed using MOFs synthesis in combination
with post-synthetic modification. Several literature reports require utilization of expensive
transition metals, but in the last period also metals like Cu, a classic non-noble transition
metal, abundant, inexpensive, and non-toxic, become appealing catalyst sources.
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2.1. Metal Nodes/Clusters as Catalytically Active Sites

MOFs can be applied as ideal platforms for heterogeneous catalysis towards olefin
epoxidation thanks to several structural features with intrinsic catalytic activity such as
the coordinatively unsaturated sites on MOFs nodes, defects, and catalytically active
organic linkers.

Three pillared-layered Co6-MOFs were utilized as heterogeneous catalysts for the
selective oxidation of styrene using air, and benzyl alcohol with oxygen. The hexaprismatic
[Co6(µ3−OH)6] cluster with different variable valences activate the oxygen molecule for
aerobic epoxidation of alkenes [28]. In Co6-MOF-3, large pores facilitated the mass transfer
giving the fastest reaction rate with high conversion and good selectivity for oxidation of
both styrene and benzyl alcohol [29].

The 2D-cobalt (II)-based coordination polymer, {(Co(L2)H2O))2·H2O)}n, have been
obtained by hydrothermal synthesis using the histidine derivative 4-((1-carboxy-2-(1H-
imidazol-4-yl)ethylamino)methyl)benzoic acid (H2L2) as ligand. It has been investigated
as heterogeneous catalysts on the allylic oxidation of cyclohexene (Appendix A).

The presence of a Co(II) open site on the surface maximizes the catalytic productivity,
giving 82.56% of conversion and 71% of ter-butyl-2-cyclohexenyl-1-peroxide. Moreover, a
Co(II)-based catalyst exhibits similar activity over five cycles without metal leaching [30]
(Table 1).

The static and rotary hydrothermally synthetic method could affect significantly
both the process of crystallization and heterogeneous catalytic activity of MOFs in the
epoxidation reaction. For example, Co-MOF-150-2, hydrothermally synthesized by rotary
crystallization at 150 rpm for 2 h, has reached 95.7% yield of 2,3-epoxypinane from α-pinene
in aerobic conditions. The high catalytic activity of Co-MOF-150-2 is due to the better
exposure of the metal active in the high crystalline structure, where the lamellar layer was
more homogenous. The thinner Co-MOF-150-2 was also investigated in the epoxidation
of the other olefins. Additionally, the catalytic activity was relevant for cyclic olefins like
cyclooctene (78.5% of conversion after 5h of reaction) and for linear olefins (after 12 h 87.2%
of 1-decene was transformed into the epoxide) [31].

A Co-MOF has been prepared under surfactant-thermal condition: NTUZ30 has been
obtained with two different secondary building units (SBU), i.e., the unusual trinuclear
[Co3(µ3-OH)(COO)7] and [Co(COO)4]. The cobalt sites onto the surface can convert trans-
stilbene into the corresponding epoxide with excellent selectivity and high conversion [32].

A new 8-connected cobalt network (NH4)2[Co3(Ina)(BDC)3(HCOO)] has been gen-
erated from dicarboxylate (BDC = 1,4-benzenedicarboxylate) and pillar isonicotinate
(Ina = isonicotinate) ligands with unusual Co3 paddle-wheel cluster. The high number
of unsaturated Co active sites available and the regular crystalline structure gave a great
catalytic performance for cyclooctene epoxidation with a satisfactory TOF (turnover fre-
quency) of 1370 [33].

Cu-containing MOFs look like promising catalysts for selective oxidation reactions.
Generally, the selective oxidation of alkene goes through a radical reaction pathway in
which molecular oxygen, or an oxidizing agent is present. Upon coordination of the
oxidizing agent to Cu(II) (Figure 4), peroxyl radicals are formed which then react with
olefin to form the oxidized products [34,35].
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radicals (tBuO) catalyzed by the Cu(II) sites of MOF.

By using Cu4O(OH)2(Me2trz-pba)4 (Me2trz-pba = 4-(3,5-dimethyl-4-H-1,2,4-triazol-
4-yl)benzoate) and Cu(Me-4py-trz-ia) (Me-4py-trz-ia = 5-(3methyl-5-(pyridine-4-yl)4H-
1,2,4-triazol-4-yl)isophthalate) a significantly higher catalytic activity in the epoxidation of
cyclooctane with respect to Cu3(BTC)2 (HKUST-1) has been found, due to the different co-
ordination environment at the catalytically active Cu sites [36]. The catalytic performances
of Cu-MOF nanosheets for cyclooctene and 1-hexene epoxidation were nearly twice higher
than that of bulk Cu3(BDC)2 crystals. This behaviour is attributed to the better exposure of
a greater number of active sites on the surface of the Cu(BDC) nanosheets, which become
more available during the reaction. The synthetic procedure must regulates the nanosheet
thickness by controlling the dissolution rate of Cu2+ from Cu(OH)2 precursor and tun-
ing the solvent composition. Moreover, the epoxide yield, after 5 cycles with CuMOF
nanosheets, remains 96% [37] (Table 1).

In Cu4O(OH)2(Me2trz-pba)4, the Cu4(µ4-O)(µ2-OH) tetrahedral node possesses two
Cu2+ ions bridged by hydroxyl group, which take part in the activation of oxidating
agent TBHP, promoting a quicker formation of tert-butoxyl and tert-butylperoxyl radicals,
whereas in Cu(Me-4py-trz-ia) the asymmetric unit contains two crystallographically inde-
pendent Cu2+ ions. One of them possesses two unsaturated sites that could cause a change
in Lewis acidity and generate different redox properties [36].

Oxidation of nonterminal olefin, such as cis-stilbene and cyclooctene, occurs with
94% and 98% conversion, when the activated {[Cu(L3-H)(DMA)]·DMA·2H2O}∞ MOF
(H3L3 = tris(4′-carboxybiphenyl)amine; DMA = N,N-dimethylacetamide) was used. The
activation was carried out at 200◦ C for 8 h under vacuum to remove DMA coordinated
molecules and produce unsaturated Cu sites that act as Lewis acid [38].

Nbo-type Cu-MOFs, synthesized from the meta-substituted ligand 2,2′,6,6′-tetramethoxy-
4,4′-biphenyldicarboxylic acid (H2L4) and copper nitrate [Cu3(L4)3(H2O)2(DMF)]n, possess
a high density of catalytic sites in optimal position within the channels, in which oxidation
of nonterminal olefins (e.g., norbornene, trans-β-methylstyrene, cis-β-methylstyrene, and
trans-stilbene) occurs with 99% conversion and 99% selectivity [39]. Moreover, the less
reactive aliphatic alkenes such as 1-octene and trans-4-octene showed moderate conversions
with good selectivity.

Epoxidation of cyclohexene achieves the 100% of conversion in presence of H2O2
after 8h when 2D metal carboxylate framework {2(Him)·[Cu(pdc)2]}n has been involved
as a heterogeneous catalyst. {2(Him)·[Cu(pdc)2]}n (H2pdc = pyridine-2,5-dicarboxylic
acid, Him = imidazole) was obtained through structural inter-conversions starting from
{[Mg(H2O)6][Cu(pdc)2]·2H2O}n increasing the imidazole concentration by hydrothermal
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treatment. The structure of {2(Him)·[Cu(pdc)2]}n derives from the connection of {[Cu(pdc)2]}n
-

ribbon-like 1D chains by intermolecular H-bonding between hydrogen in the imidazolium ion
and the free carboxylate oxygens of pdc2−, this 2D supramolecular structure being crucial to
ensure the reaction heterogeneity. Likewise, 1-hexene showed almost complete conversion but
increasing the chain length of alkene, the double bond becomes sterically hindered limiting
the approach to the active site, and the catalytic activity decreases [40] (Table 1).

High stable zirconium-based MOFs are largely used as active and recyclable catalysts
for a variety of catalytic transformations. The catalytic activity of UiO-66 and other Zr-
MOFs can be greatly attributed to the presence of random defects in their crystalline
structure [41–43]. These accessible Lewis acid centers, sometimes in conjunction with
Lewis basic sites (e.g., amine groups) in functionalized linker, lead to a significant increase
in the catalytic activity [44,45].

Recently, the reaction mechanism underlying both thioether oxidation in nonprotic
solvents and epoxidation of electron-deficient C=C bonds in α,β-unsaturated ketones,
catalysed by UiO-66 and UiO-67 has been exhaustively investigated [46]. This study
suggests the formation of hydroperoxo zirconium species as an oxidant. As already known,
the oxidation of less-reactive α,β-unsaturated carbonyl compounds was accompanied by
oxidation of MeCN solvent and H2O2 under basic conditions [47], but this nucleophilic
peroxo species derived from H2O2 and Zr-MOF can contribute to the epoxidation of the
electron-deficient C=C bonds because the reaction readily proceeds even in ethyl acetate.

Table 1. MOFs with metal Nodes/clusters active in olefin epoxidation.

MOF Substrate Reaction Data T (◦C)
P (atm) Time (h)

Oxidant/Cocatalyst/
Solvent a

Conversion
%

Epoxide
Selectivity% Ref.

Co6-MOF-3 Styrene 100 1 14 Air/-/DMF 99 90 [29]

Co-MOF-150-2 α-Pinene 90 1 5 Air/CHP/- 99.5 96.2 [31]

Cyclooctene 90 1 5 Air/CHP/- 78.5 - [31]

1-Decene 90 1 5 Air/CHP/- 87.2 - [31]

NTUZ30 trans-Stilbene 100 7 1 O2/-/- 98.2 95.6 [32]

(NH4)2[Co3(Ina)(BDC)3(HCOO)] Cyclooctene 35 1.5 1 IBA/-/CH3CN 98 92 [33]

Cu3(BTC)2 Cyclooctene 75 1 24 Air/TBHP/Toluene 20 - [36]

1-Hexene 25 1 Air/TBHP/Toluene 30.5 - [36]

Cu-MOF nanosheets Cyclooctene 25 1 12 O2/-/CH3CN 100 - [37]

1-Hexene 25 1 O2/-/CH3CN 67.2 - [37]

Cu4O(OH)2(Me2trz-pba)4 Cyclooctene 75 1 24 Air/TBHP/Toluene 90 80 [36]

Cu(Me-4py-trz-ia) Cyclooctene 75 1 24 Air/TBHP/Toluene 38 60 [36]

{[Cu(L3-H)(DMA)]·DMA·2H2O}∞ cis-Stilbene 60 1 24 t-BuOOH/-/CH3CN 94.4 - [38]

Cyclooctene 60 1 24 t-BuOOH/-/CH3CN 98 - [38]

{2(Him)·[Cu(pdc)2]}n Cyclohexene 60 1 8 Air/H2O2/EtOH 100 - [38]

Cyclooctene 60 1 8 Air/H2O2/EtOH 100 - [38]

[Cu3(L4)3(H2O)2(DMF)]n Styrene 40 1 6 O2/TMA/CH3CN 90 88 [39]

Cyclooctene 40 1 6 O2/TMA/CH3CN 99 99 [39]

{(Co(L2)H2O))2·H2O)}n Cyclohexene 60 1 6 t-BuOOH/-/- 82.56 71.93 [30]

UiO-66 2-Cyclohexen-1-one 70 1 1 H2O2/-/CH3CN 20 60 [46]

2-Cyclohexen-1-one 70 1 2 H2O2/-/EtOAc 18 45 [46]

Chalcone 70 1 0.5 H2O2/-/EtOAc 30 50 [46]

UiO-67 2-Cyclohexen-1-one 70 1 1 H2O2/-/CH3CN 20 55 [46]

2-Cyclohexen-1-one 70 1 2 H2O2/-/EtOAC 20 55 [46]

Chalcone 70 1 0.5 H2O2/-/CH3CN 40 40 [46]
a tBuOOH = tert-butyl hydroperoxide; CHP = cumene hydroperoxide; TBHP = tert-butylhydroperoxide; IBA = isobutyraldehyde;
TMA = trimethylacetaldehyde.
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2.2. Mixed-Metal Species

Many efforts have been made to improve the catalytic performance of MOFs, and one pos-
sible way is the construction of bimetallic clusters by functionalization of metal nodes/clusters
with active transition metals to afford MOF-based catalysts with high performance.

A hydrothermal reaction has been used to synthesise Cux-Coy-MOF, where Co(NO3)2·6H2O
and Cu(NO3)2·3H2O inorganic metal salts have been one-pot added to a ligand solution in
different molar ratios. In addition to the high catalytic activity by doping Cu-MOF with Co,
a better selectivity to produce styrene oxide is achieved. At the optimal reaction conditions,
the conversion and the selectivity of styrene to styrene oxide increased to 97.81% and
83.04%, respectively, by using Cu0.25-Co0.75-MOF, the catalyst of this series with higher
content of Co2+ [48]. Another study showed how the conversion of styrene-to-styrene oxide
increased rapidly when Mn ions were introduced into a Cu-MOF with the two ligands
2,5-dihydroxyterephthalic acid (H4DHTA) and 2-picolinic acid (PCA). Mn0.1Cu0.9-MOF
exhibits interesting catalytic activity for the epoxidations of various aromatic and cyclic
olefins and a weak activity on decomposition of H2O2. Styrene can be oxidized by H2O2,
through peroxybicarbonate-assisted catalysis, the styrene oxide yield achieving 85% in the
presence of Mn0.1Cu0.9-MOF at 0 ◦C for 6 h [49].

To increase conversion and selectivity in the solvent-free aerobic oxidation of olefins,
MOF catalysts based on 3d metal copper (II), cobalt (II) and H2ODA (oxydiacetic acid)
containing lanthanum (III) as 4f ions {[La2Cu3(µ-H2O)(ODA)6(H2O)3]·3H2O}n (LaCuODA)
and {[La2Co3(ODA)6(H2O)6]·12H2O}n (LaCoODA) were employed. Catalytic studies
pointed out the difference in aerobic oxidation of cyclohexene performances due to different
physicochemical properties, surface area and redox properties of the metals (Table 2). [50]
LaCoODA, based on Co(II), showed better conversion and selectivity for 2-cyclohexen-1-
one. This is due to the structural differences between the square planar LaCuODA and the
octahedral LaCoODA, in the latter case the water molecules could easily leave the channels
to foster interaction between the active sites and the oxidant/catalyst. Moreover, the acid
properties of the copper(II) ions are less effective than the redox properties of cobalt(II)
ones, as far as the catalytic performances [34,51].

In NU-1000 single-ion-based iron(III) species have been incorporated using solution-
phase post-synthetic metalation with two different iron(III) precursors. The resulting NU-
1000-Fe-NO3 and NU-1000-Fe-Cl frameworks show two crystallographically independent
Fe sites (Fe1 resides in the c-pore and Fe2 in the hexagonal mesopore), coordinated to
the bridging and terminal oxygens of the Zr6 node, with Fe−O distances in NU-1000-
Fe-Cl being much longer than those of NU-1000-Fe-NO3 (Figure 5) [52]. Epoxidation of
cyclohexene in vapour H2O2 with NU-1000-Fe-NO3 as catalysts initially yields cyclohexene
epoxide derived from heterolytic activation of H2O2, which in turn hydrolyzes rapidly
to trans-cyclohexanediol. Otherwise, NU-1000-Fe-Cl yields a mixture of products and
by-products, derived from the radical oxidation products due to homolytic activation of
H2O2 [53,54]. This behaviour is probably due to the difference in the metal−node distance
between the frameworks, the active site rearranging differently.
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One-step template-free synthesis of ultrathin (∼5 nm) mixed-valence {V16} clusters-
based MOF nanosheets [Ni(4,4′-bpy)2]2 [V7

IVV9
VO38Cl]·(4,4′-bpy)·6H2O (NENU-MV-1)

has been also reported. A large number of vanadium catalytically active sites in the NENU-
MV-1 nanosheet allowed excellent cyclohexene oxidation under air exhibiting a conversion
of 95%. Moreover, the nanometer scale of the catalyst increased the catalytic activity 2.7
times compared to the bulk crystal (0.25 mm) for olefin epoxidation. Excellent catalytic
performances have been shown for different olefin substrates [55].

Table 2. Mixed Metal MOFs in Olefin Epoxidation.

MOF Substrate Reaction Data
T (◦C) P (atm) Time (h) Oxidant/Cocatalyst/Solvent a Conversion

%
Epoxide

Selectivity% Ref.

Mn0.1Cu0.9-MOF Styrene 0 1 6 H2O2/-/DMF 90.2 94.3 [49]

Cu0.25-Co0.75-MOF Styrene 80 1 8 Air/TBHP/t-BuOH/H2O2 97.81 83.4 [48]

Zn1Co1-ZIF Styrene 100 1 24 TBHP/-/DMF 99 71.31 [56]

LaCoODA Cyclohexene 75 1 24 O2 flow/-/- 85 75 [50]

LaCuODA Cyclohexene 75 1 24 O2 flow/-/- 67 55 [50]

NENU-MV-1 Cyclohexene 35 1 4 Air/IBA/CH3CN 95 86 [55]

NU-1000-Fe-Cl Cyclohexene 120 0.03 3 H2O2/-/- - 70 [52]

NU-1000-Fe-Cl Cyclohexene 120 0.03 3 H2O2/-/- - 70 [52]
a tBuOH = tert-butyl alcohol; TBHP = tert-butylhydroperoxide; IBA = isobutyraldehyde.

2.3. Organic Linkers with Functional Catalytically Active Sites

Functional groups such as amino, pyridyl, amide, sulfonic acid, etc. present in organic
linkers serve as active sites for catalysis and strongly influence the intrinsic catalytic activity
of the MOFs through inductive effects. In addition, organic linkers can be catalytically
active when organic functional groups and/or functional molecular catalysts (e.g., metallo-
porphyrins, salen and related ligands, chiral molecules, Schiff-base complexes, etc.) are
introduced by post-synthetic ways. Alternatively, the same functional molecular catalysts
can also be used as building units to fabricate MOFs.

Molybdenum complexes have been widely applied as homogeneous catalysts for the
epoxidation of alkenes by H2O2 and organic hydroperoxide, a complete conversion and
selectivity being reported. To overcome the recoverability and reusability issues correlated
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to the use of homogeneous molybdenum catalysts, molybdenylacetylacetonate has been
supported on TMU-16-NH2 [Zn2(NH2-BDC)2(4-bpdh)]·3DMF, an amine-functionalized
two-fold interpenetrated MOF via dative and combined covalent and dative post-synthetic
modification [57].

A high porous NU-1000 MOF has been post-modified with the chiral L-tartaric
acid, by SALI (solvent-assisted ligand incorporation) to build a chiral Zr-based MOF
[C-NU-1000] [58]. Moreover, another active catalytic site, molybdenyl acetylacetonate,
MoO2(acac)2, was incorporated on chiral NU-1000 to explore catalytic performance in
the asymmetric epoxidation of olefins (Figure 6a) [59]. When olefins approach by pro-S-
or R-face to the catalytic active center, they interact with the OH group of the tartrate
through H-bond which induces chirality generating two chiral intermediates. The [C-NU-
1000-Mo] catalyst, used in the epoxidation of styrene and 1-decene, can discriminate the S
configuration in epoxides (Figure 6b).
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The free amine group available on UiO-66-NH2 has been post-synthetically modified
with salicylaldehyde (SA) or thiophene-2-carbaldehyde (TC) to graft a Schiff base in which
MoO2(acac)2 could be immobilized. Efficient olefin epoxidation catalysed by UiO-66-
NH2-SA-Mo and UiO-66-NH2-TC-Mo has been described and no Mo active site leaching
was detected [60]. In the same way, MoO(O2)2·2DMF was immobilized onto UiO-66(NH2)
functionalized with salicylaldehyde (Sal) (UiO-66-sal-MoD), pyridine-2-aldehyde (PI) (UiO-
66-PI-MoD) and 2-pyridine chloride (PC) (UiO-66-PC-MoD). All of them allowed a high
dispersion of Mo catalyst, the large pores of MOFs guarantee adequate contact between
the substrate and the catalytic active center, thus improving the efficiency of cyclic olefins
epoxidation [61].

Molybdenum(VI) oxide was deposited on the eight-connected Zr6(µ3-O)4(µ3-OH)4
(H2O)4(OH)4 nodes connected by 1,3,5,8-(p-benzoate) pyrene linkers (TBAPy4−) of the
mesoporous NU-1000, via condensation phase through solvothermal deposition in MOF
(SIM) [62]. The stable Mo-SIM system exhibits a high conversion for cyclohexene epoxida-
tion without leaching of molybdenum catalyst compared to Mo supported on bulk zirconia
(Mo-ZrO2), in which significant leaching of the catalytic species has been observed [60].
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Molybdenum tricarbonyl complexes are known to be effective catalysts for the epoxi-
dation of olefins. They form an oxomolybdenum (VI) species in the presence of tert-butyl
hydroperoxide (TBHP) as an oxidant which acts as highly active catalytic sites for the
epoxidation of olefin. M(CO)6 was deposited on UiO-66 and UiO-67 by chemical vapor
deposition (CVD) treatment, UiO-66-Mo(CO)3, and UiO-67-Mo(CO)3 heterogeneous cat-
alysts being fabricated. Herein, the larger tetrahedral and octahedral cavities of UiO-67
enable more accessibility of cyclooctene to catalytically active sites showing higher catalytic
activity for the cyclooctene conversion than UiO-66-M(CO)3 [33].

Several attempts have been made to immobilize oxovanadium(IV) complexes on differ-
ent solid materials and create heterogeneous catalytic systems for the epoxidation of allylic
alcohols [63–66]. A catalyst has been designed by immobilizing oxovanadium(IV) species
on UiO-66(NH2) via post-synthetic modification and by using two different pathways. At
first, the amino-functionalized UiO-66(NH2) was modified with salicylaldehyde to produce
salicylideneimine modified UiO-66 (UiO-66-SI), subsequently [VO(acac)2] was reacted
with UiO-66-SI to give UiO-66-SI/VO(acac). In another pathway, UiO-66(NH2) directly
reacted with [VO(acac)2] to produce UiO-66-N/VO(acac)2 [67]. Excellent catalytic activity
in the regioselective epoxidation of geraniol was obtained when UiO-66-SI/VO(acac) and
UiO-66-N/VO(acac)2 systems were employed by using reaction times of 60 and 120 min,
respectively. The proper pore size of and the high dispersion of the catalytic sites on
UiO-66-SI/VO(acac) and UiO-66-N/VO(acac)2 guarantee good access of the substrate to
the active sites.

Metallosalen-based crystalline porous materials have been realized for heterogeneous
catalytic applications towards cyclopropanation, alkene epoxidation and hydrolytic kinetic
resolution of epoxides with interesting enantioselectivities [5]. UiO-68-Me has been modi-
fied via post-synthetic exchange (PSE) with single- and mixed-M(salen) linker (M = Cu, Fe,
Cr, V, Mn) to fabricate UiO-66(NH2) attractive species for heterogeneous asymmetric cataly-
sis, useful to overcome the problem of metal leaching. It was found that the single-M(salen)
chiral MOFs (R)-UiO-68-Mn and (R)-UiO-68-Fe catalyse the epoxidation of alkenes to
epoxides with up to a 98% ee of epoxide and 97% ee, respectively. The different catalytic
metal centers in the mixed-(M)salen species UiO-68-Mn-Cr gave consecutive reactions
starting from the epoxidation of alkene followed by ring–opening reaction of epoxide to
produce the desired amino alcohol in 80−85% yields with 80−99.5% ee. Catalytic activity
and enantioselectivity of all chiral UiO-68 catalysts remain unchanged for 10 cycles [68].

Encapsulation of Cu- or Ni-salen species in NH2-MIL-101(Cr) through one-pot method
gave a series of effective heterogeneous catalysts in the styrene oxidation under mild
conditions. Specifically, the styrene conversion obtained using TBHP was 98.78%. The
concentrated electronic density around Cu(II) in the Cu salen@NH2-MIL-101(Cr) catalyst
promoted the formation of tBuOOCu(III)-salen enhancing the selectivity to epoxide [69].

A recent synthetic strategy resides in the incorporation of different functionality in
one single framework to generate a multivariate MOF (MTV-MOFs). On this basis, a
chiral MOF based on multiple metallosalen bridging ligands has been synthesised. Firstly,
M(salen)-derived dicarboxylate ligands H2L5M [M = Cu, VO, CrCl, MnCl, Fe(OAc), and
Co(OAc)] were synthesized by reactions of N,N′-bis(3-tert-butyl-5-(carboxyl)salicylide
(H4L5) and the corresponding metal salts in MeOH at room temperature. Secondly, the
crystals of binary or ternary MTV-MOFs (CuV, CuMn, CuCr, CuFe, and CuCo) were
obtained by heating a 1:1 or 1:1:1 mixture of H2LM with Zn(NO3)2·6H2O at 80 ◦C in DMF,
[Zn4O(L5M,M′ )3] species is obtained. Both [Zn4O(L5Cu,Mn)3] and [Zn4O(L5Cu,Fe)3] showed
efficient catalytic performances for asymmetric epoxidation of alkenes, affording up to
93% and 90% ee of the epoxides, respectively. Moreover, in the ternary heterogeneous
catalyst [Zn4O(L5Cu,Mn,Co)3], the combination of Mn3+ and Co3+ promotes the epoxidation
of alkene followed by enantioselective hydrolysis of epoxide to afford diols [70].

The achiral Zr-MOF, [PCN-224(Mn(Cl)], based on tetratopic ligand [manganese (chlo-
ride) tetrakis(4-carboxyphenyl)porphyrin [Mn(Cl)-TCPP], has been post-synthetically mod-
ified with tartrate anion, as a chiral auxiliary. The final chiral PCN-224-Mn(tart) contains
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two active metal sites (Zr and Mn) as Lewis acid centers and the chiral tartrate counterion,
as Brønsted acid sites (OH functional group) has been investigated as chiral nucleophile
catalyst towards both asymmetric epoxidation and CO2 fixation. Asymmetric epoxidation
of several aromatic and aliphatic olefins like styrene, trans-stilbene, 4-methylstyrene, α-
methylstyrene, 1-phenyl-1-cyclohexene, 1-decene, and 1-octene has been tested by using
PCN-224-Mn(tart) with aldehyde as co-catalyst, CH3CN, and O2. The all-reaction conver-
sions were completed with an optimum range of epoxide selectivity 83–100% and high ee
(84−100%). Several factors allow high enantioselectivity in the formation of the epoxide:
the framework porosity, the active Mn center, a preferred face of the olefin (pro-S or -R face)
close to produce the more stable configuration, and the noncovalent interactions between
H atom of the olefinic double bond of the preferred face and chiral centers (Table 3) [71].

Table 3. MOFs with functionalized organic linker in olefin epoxidation.

MOF Substrate Reaction Data
T (◦C) P (atm) Time (h)

Oxidant/Cocatalyst/
Solvent a

Conversion
%

Epoxide
Selectivity% Ref.

UiO-66-SI/VO(acac) Geraniol 40 1 1 TBHP/-/CH2Cl2 100 100 [67]

UiO-66-
N/VO(acac)2

Geraniol 40 1 2 TBHP/-/CH2Cl2 100 100 [67]

UiO-66-sal-MoD cis-Cyclooctene 80 24 1 TBHP/-/CH3CN 99 99 [61]

PCN-224-Mn(tart) Styrene 60 1 4 O2/IBA/CH3CN 100 89 [71]

trans-Stilbene 60 1 4 O2/IBA/CH3CN 80 100 [71]

1-Phenyl-1-cyclohexene 60 1 4 O2/IBA/CH3CN 75 100 [71]

1-Octene 60 1 4 O2/IBA/CH3CN 70 100 [71]

UiO-67-Mo(CO)3 Cyclooctene 55 3 1 TBHP/-/toluene 100 99 [33]

UiO-66-Mo(CO)3 Cyclooctene 55 3 1 TBHP/-/toluene 92 99 [33]

[C-NU-1000-Mo] Styrene 120 0.03 5 H2O2/-/CH2CH2Cl2 100 86 [58]

1-Octene 120 0.03 8 H2O2/-/CH2CH2Cl2 72 100 [58]

UiO-66-NH2-SA-Mo Cyclooctene 83 0.75 1 TBHP/-/CH2CH2Cl2 97 100 [60]

Cyclohexene 83 1.5 1 TBHP/-/CH2CH2Cl2 93 100 [60]

Styrene 83 5 1 TBHP/-/CH2CH2Cl2 87 92 [60]

1-Octene 83 8 1 TBHP/-/CH2CH2Cl2 78 100 [60]

1-Decene 83 10 1 TBHP/-/CH2CH2Cl2 79 100 [60]

UiO-66-NH2-TC-Mo Cyclooctene 83 1 1 TBHP/-/CH2CH2Cl2 94 100 [60]

Cyclohexene 83 2 1 TBHP/-/CH2CH2Cl2 90 100 [60]

Styrene 83 5 1 TBHP/-/CH2CH2Cl2 86 90 [60]

1-Octene 83 8 1 TBHP/-/CH2CH2Cl2 75 100 [60]

1-Decene 83 10.5 1 TBHP/-/CH2CH2Cl2 75 100 [60]

[Zn4O(L5Cu,Fe)3] 2,2-Dimethyl-2H-chromene −20 1 36 MesPhIO/-/CHCl3 94 87 ee [70]

[Zn4O(L5Cu,Mn,Co)3] 3-Chloropropene 0 1 10 sPhIO/-/CHCl3 92 - [70]

Styrene 0 1 24 sPhIO/-/CH2Cl2 63 - [70]

UiO-66-PC-MoD cis-Cyclooctene 80 24 1 TBHP/-/CH3CN 90.7 99 [61]

Mo-SIM Cyclohexene 60 1 7 TBHP/-/toluene 93 99 [59]

(R)-UiO-68-Mn 2,2-Dimethyl-2H-chromene 0 1 10 sPhIO/-/CH2Cl2 91 88 ee [68]

UiO-66-PI-MoD cis-Cyclooctene 80 24 1 TBHP/-/CH3CN 77.5 99 [61]

(R)-UiO-68-Fe 2,2-Dimethyl-2H-chromene −20 1 36 MesPhIO/-/CHCl3 84 86 ee [68]

Cusalen@NH2-MIL-
101(Cr) Styrene 80 1 6 TBHP/-/CH3CN 98.78 89.58 [69]

[Zn4O(L5Cu,Mn)3] 2,2-Dimethyl-2H-chromene −20 1 36 MesPhIO/-/CH2Cl2 86 86 ee [70]

PCN-224-Mn(tart) Styrene 60 ◦C 1 4 O2/IBA/CH3CN 100 89 [71]
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Table 3. Cont.

MOF Substrate Reaction Data
T (◦C) P (atm) Time (h)

Oxidant/Cocatalyst/
Solvent a

Conversion
%

Epoxide
Selectivity% Ref.

trans-Stilbene 60 ◦C 1 4 O2/IBA/CH3CN 80 100 [71]

1-Phenyl-1-cyclohexene 60 ◦C 1 4 O2/IBA/CH3CN 75 100 [71]

1-Octene 60 ◦C 1 4 O2/IBA/CH3CN 70 100 [71]

TMU-16-NH2 Cyclohexene 60 1 40 TBHP/-/CHCl3 66 74 [57]

Styrene 60 1 51 TBHP/-/CHCl3 88 98 [57]

Cyclooctene 60 1 24 TBHP/-/CHCl3 83 83 [57]
a sPhIO = 2-(tertbutylsulfonyl)iodosylbenzene; IBA = isobutyraldehyde; CHP = cumene hydroperoxide; TBHP = tert-butylhydroperoxide.

3. Epoxidation with MOF-Based Composites

One possible way to improve the chemical and mechanical stability of MOFs as
potentially heterogeneous catalysts is their immobilization onto/into supports. In this
contest, solid polymer, graphene, and inorganic particles [72] or inorganic polymers [73]
are largely employed as supports.

To overcome the poor hydrostability of [Cu3-BTC2] [74], a porous dendrimer-like
porous silica nanoparticles (DPSNs) has been utilized as a carrier to support Cu-BTC Nps.
The nanocomposites DPSNs@Cu-BTC were prepared by growing Cu2O NPs in the center-
radial porous channels of DPSNs. After that, Cu2O NPs were dissolved in the presence of
acid, oxidant and 1,3,5-benzenetricarboxylic acid (H3BTC) [75]. The obtained Cu-BTC NPs
have shown limited growth and a uniform distribution without agglomeration. The small
size of Cu-BTC NPs (40 ± 25 nm) is useful in the aerobic epoxidation of various cyclic
olefins achieving high catalytic activity without by-products. Good yield and selectivity
were detected with inert terminal linear alkenes. Otherwise, epoxidation of styrene only
achieved 65% of conversion due to the kinetic instability of styrene oxide (Table 4) [76].

The amphiphilic MIL-101-GH, a porous hierarchical material, has been explored as
catalyst for the biphasic epoxidation reaction of 1-octene with H2O2. MIL-101-GH hydrogel
was obtained by dispersing MIL-101 nanoparticles homogeneously in aqueous graphene
oxide (GO) solutions. The TS-1 catalyst, commercially used in this biphasic reaction,
was then introduced in MIL-101-GH. The resulting system, MIL-101-GH-TS-1, overcame
the lower activity toward olefin epoxidation of TS-1, and the amphiphilic MIL-101-GH
increased the contact areas of TS-1 with both H2O2 and 1-octene. The catalytic performance
of MIL-101-GH-TS-1 has been much higher than that of single TS-1 and the 1,2-epoxyoctane
was obtained without other by-products [77].

Polyoxometalate-based (POMs) heterogeneous catalysts are attractive species in the
catalytic epoxidation of olefin. They have got great catalytic activity, selectivity, and easy
separation but their leaching mainly due to the strong complexing capability of solvent
and H2O2 oxidants, represents the major obstacle in the possible applications [78,79]. To
overcome the stability issue of POMs, the polyoxomolybdic cobalt (CoPMA) and polyoxo-
molybdic acid (PMA) species were incorporated into UiO-bpy, a Zr-based MOFs, through
self-assembly process under solvothermal condition [80]. CoPMA@UiO-bpy showed the
highest catalytic activity for cyclooctene oxidation with H2O2 and also for the oxidation
of styrene and 1-octene with O2 as oxidant and tert-butyl hydroperoxide (t-BuOOH) as
initiator. This is due to the uniform distribution and better immobilization of POM clusters
within the size-matched cages of Zr-MOFs owing to the presence of bipyridine groups in the
UiO-bpy framework. It is noteworthy that CoPMA@UiO-bpy shows excellent recyclability
and stability against the leaching of active POM species.

Composite material has been obtained by encapsulating H5-PMo10V2O40 polyox-
ometalates (POMs) and 1-octyl-3-methylimidazolium bromide, ionic liquids (ILs), in the
mesoporous cages and large surface area of MIL-100 (Fe). The synergic effect of ILs, Lewis
and Brønsted acid sites in both PMo10V2 species and MOF created a PMo10V2-ILs@MIL-
100(Fe) hybrid with significant catalytic properties in cycloolefins epoxidation. Indeed,



Inorganics 2021, 9, 81 13 of 29

the PMo10V2 was activated by the imidazolium cations originated from ILs and the incor-
poration on MIL-100(Fe) prevented the leaching of POMs [81]. This composite is easily
regenerated for 12 cycles without loss catalytic performance [82].

MIL-100(Fe) combined with the polyoxometalate (C16H36N)6K2[γ-SiW10O36] has
been reported to catalyse epoxidation of 3Z,6Z,9Z-octadecatriene to the corresponding
6,7-epoxide with high site selectivity (82.35%). The conversion catalysed by POM/MIL-
100(Fe) exhibits a greater performance when the MOF contains unsaturated Lewis acid
iron ions [83]. The main product of this epoxidation is a sex pheromone of E. obliqua Prout
and can be potentially used in pest insect control with environmental friendliness.

Two POMs-based MOFs, [Cu6(bip)12(PMoVI12O40)2(PMoVMoVI11O40O2)]·8H2O and
[Co3

IICo2
III(H2bib)2(Hbib)2(PW9O34)2(H2O)6]·6H2O (H2bip = 1,3-bis(imidazolyl)propane;

bib = 1,4-bis(imidazol)butane)), have been fabricated using a flexible N-containing biden-
tate ligands via hydrothermal condition. They have been employed in the catalytic pro-
cesses for selective alkene epoxidation and recycled four times without loss of quality
(Figure 7) [84].
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11O40O2)]·8H2O; (b) the coordination environ-
ment of the Cu(II) cations. Hydrogens and hydroxyls are omitted for clarity. Light-blue polyhedral correspond to the
(PMo12) polyanion.

Metal nanoparticles can grow without agglomeration in a porous matrix to produce a
stable and active heterogeneous catalyst. Pd NPs have been loaded on the pre-synthesized
UiO-66-NH2 using a simple solution impregnation method and NaBH4 reduction. The
amino groups in the linkers allow a strong interaction with Pd (II) ions which is essential
to yielding well-dispersed Pd/UiO-66-NH2 catalyst. The experiments suggest that the
best catalytic activity for styrene epoxidation has been found under Pd NPs loadings of
3.69 wt% [85].

A dually functionalized catalytic system for the tandem H2O2-generation/alkene-
oxidation reaction has been realized. A microcrystal of UiO-66-NH2 has been used as a
platform to encapsulate Au and Pd metal NPs and later Pd/Au@UiO-66-NH2 surfaces
have been post-synthetically modified with a (sal)MoVI (sal = salicylaldimine) molecular
epoxidation catalyst. The porosity of Pd@UiO-66-sal(Mo) allows H2 and O2 gases to
come into contact with the encapsulated NPs to generate H2O2. The synergic effect of the
generated H2O2 and (sal)MoVI in a MOF enhanced epoxide productivity reducing alkene
hydrogenation side reaction. This study showed that (sal)Mo moieties in Pd@UiO-66-NH2
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epoxidize cis-cyclooctene substrate faster, leading to the more effective usage of the H2O2
oxidant [86].

Systems composed of a magnetic uniform Fe3O4(PAA) microspheres core and of a
copper-doped MOF shell demonstrated an easily catalyst recovery approach improving
turnover number and turnover frequency. In addition, these magnetic core–shell hetero-
geneous catalysts improve both stability of the metal active site and dispersity of catalyst
materials reducing the metal leaching. Two interesting magnetic core-shell copper-doped
catalysts, Fe3O4@P4VP@ZIF-8 and Fe3O4/Cu3(BTC)2 have been prepared by combining
the solvothermal method with layer-by-layer assembly. Initially, monodispersed PAA-
modified Fe3O4 particles were synthesized by solvothermal methods [87]. In the case
of Fe3O4/Cu3(BTC)2, Fe3O4 particles were alternately immersed in solutions containing
Cu(CH3COO)2·H2O and H3BTC such that Cu3(BTC)2 nanocrystals grow layer-by-layer on
the surface of PAA- modified Fe3O4 particles. This nanosized porous structure increases
the contact between the Cu(II) active sites present in the Cu3(BTC)2 shell and the catalytic
substrates [88]. In Fe3O4@P4VP@ZIF-8 catalyst, on the other hand, the Fe3O4(PAA) core
has been coated with P4VP middle layer to adsorb a large number of Zn2+ for the growth
of the ZIF-8 shell thickness on the surface of the core–shell Fe3O4(PAA)@P4VP. Then, the
Zn2+ ions were partially substituted by Cu2+ ions in the ZIF-8 shell framework. The ions
exchange allowed a well-dispersed copper active site in the resulting copper-doped ZIF-8
structure, avoiding their leaching [89].

Aerobic epoxidation of cyclic olefins (e.g., cyclohexene, norbornene) using both mag-
netic core–shell copper-doped Fe3O4@P4VP@ZIF-8 and Fe3O4/Cu3(BTC)2 as heteroge-
neous catalyst achieved high conversion and selectivity (99%) in the formation of the epox-
ide under mild reaction conditions. Epoxidation of styrene by using Fe3O4@P4VP@ZIF-8
as a catalyst has brought only 54% selectivity of the desired epoxide owing to the kinetic
instability of styrene oxide and its oxidation into benzaldehyde [90].

A series of Zr-based core-shell MOF composites with mesoporous cores and microp-
orous shells have been synthesized by solvothermal under kinetic control. PCN-222(Fe)
crystals have been synthesized and used as seed crystals to grow the Zr-BPDC(UiO-67)
crystals. Meso- and micro-porosity inside of PCN-222(Fe)@Zr-BPDC(UiO-67) drives the
catalytic performances for olefin epoxidation reaction [91]. Indeed, the core MOF with
Fe-porphyrin moieties represents the catalytic center, while the shell controls the selectivity
of the substrate through tuneable pore size. This size-selective catalyst showed almost
complete conversions for small olefins.

Table 4. MOF-based composites for epoxidation reaction.

MOF Substrate Reaction Data
T (◦C) P (atm) Time (h)

Oxidant/Cocatalyst/
Solvent a

Conversion
%

Epoxide
Selectivity% Ref.

DPSNs@Cu-BTC Cyclooctene 40 1 4 O2/TMA/CH3CN 99 99 [75]

Styrene 40 1 6 O2/TMA/CH3CN 62 65 [75]

Fe3O4@P4VP@ZIF-8
Cyclohexene
Cyclooctene
Norbornene

60 1 12 O2/TMA/CH3CN 99 99 [90]

Fe3O4/Cu3(BTC)2

Cyclohexene
Cyclooctene
Norbornene

40 1 6–8 O2/IBA/CH3CN 99 99 [88]

Styrene 40 1 6–8 O2/IBA/CH3CN 99 84 [88]

PCN-222(Fe)@Zr-BPDC(UiO-67) 1-Hexene r.t 1 12 PhIO/-/CH3CN 99 - [91]

Cyclopentene r.t 1 12 PhIO/-/CH3CN 99 - [91]

Cyclohexene r.t 1 12 PhIO/-/CH3CN 99 - [91]

CoPMA@UiO-bpy Cyclooctene 70 1 6 H2O2/-/CH3CN 91 99 [80]

Styrene 80 1 6 O2/t-BuOOH/- 80 56 [80]

PMo10V2-ILs@MIL-100(Fe) Cyclohexene 60 1 4 H2O2/-/CH3CN 92 93 [91]
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Table 4. Cont.

MOF Substrate Reaction Data
T (◦C) P (atm) Time (h)

Oxidant/Cocatalyst/
Solvent a

Conversion
%

Epoxide
Selectivity% Ref.

[Cu6(bip)12(PMoVI12O40)2
(PMoVMoVI11O40O2)]·8H2O Cyclooctene 20 1 4 H2O2/tBuOH/CH3CN >99 74.1 [84]

1−Hexene 20 1 4 H2O2/tBuOH/CH3CN >99 91.9 [84]

1−Octene 20 1 4 H2O2/tBuOH/CH3CN >99 71.5 [84]

Pd/UiO-66-NH2 Styrene 80 1 12 N2/TBHP/CH3CN 90.8 96.5 [85]

[Co3
IICo2

III(H2bib)2(Hbib)2
(PW9O34)2(H2O)6] ·6H2O

Cyclohexene 20 1 4 H2O2/tBuOH/CH3CN 72.9 95.3 [84]

1−Hexene 20 1 4 H2O2/tBuOH/CH3CN >99 85.9 [84]

1−Octene 20 1 4 H2O2/tBuOH/CH3CN 95.5 70.1 [84]

POM/MIL-100(Fe) 3Z,6Z,9Z-
Octadecatriene 40 1 24 H2O2/-/CH3CN 30 82 [83]

MIL-101-GH-TS-1 Octane 40 1 12 H2O2 (30%)/-/- 15 - [77]

Pd@UiO-66-sal(Mo) cis-Cyclooctene r.t 1 6 H2O2/CH3OH/H2O - - [86]
a tBuOH = tert-butyl alcohol; TMA = trimethylacetaldehyde; IBA = isobutyraldehyde.

4. CO2 Epoxide Cycloaddition to Cyclic Carbonates

Cycloaddition reaction of CO2 with epoxides represents one of the most economically
efficient approaches in the production of cyclic organic carbonates with relevant applica-
tions ranging from raw materials in the pharmaceuticals industry, polar aprotic solvents,
electrolytes in lithium batteries, lubricants, precursors for polycarbonate materials, and
other fine chemicals.

CO2, being a C1 feedstock has, in fact, a high potential from the chemical point of
view [92]. CO2 can be employed in the highly atom-economical acid-catalysed epoxides
cycloaddition to give cyclic organic carbonates, relevant species for industrial applica-
tions [93]. The cyclic carbonates (OCs) have been also used as intermediates for engineered
polymers, as a lubricant (in 1987 Agip Petroli added dialkylcarbonates as lubricant in a
formulation of semisynthetic gasoline engine oil components), and more recently found
application in varnish production, green solvents or electrolytes in lithium-ion batteries.

The CO2 cycloaddition mechanism involves an acid catalyst (Lewis or Brønsted acid)
that coordinates to the epoxide substrate activating it toward nucleophilic attack by the
co-catalyst (e.g., typically a tetraalkylammonium halide). The resulting halo-alkoxide
intermediate reacts with carbon dioxide to generate the cyclic carbonate and subsequently
regeneration of both catalyst and co-catalyst [93].

The CO2 fixation reaction catalysed by homogeneous or heterogeneous catalysts has
been extensively investigated, however some drawbacks remain. Differently from the
homogeneous, heterogeneous catalysts (e.g., ionic liquid-supported solids [94–96], poly-
mers [96,97], and porous organic frameworks [98]) have the advantages of easy separation
and regeneration of the catalyst, but they often required rough conditions (high tempera-
ture, pressure, and time) due to a lack of accessible surface area for accelerating interactions
of CO2 and reagents with active sites. Therefore, the high surface area, tunability, and
CO2 sorption capacity of MOFs can be beneficial for improving the efficiency of the CO2
cycloaddition reaction. Lewis acid metal centers and Brønsted acid groups in MOFs can
promote the activation of the epoxide ring, while the functional groups in the ligands can
act as Lewis/basic sites improving not only the CO2 affinity inside the pore but also can
fulfil the role of co-catalyst (Figure 8) [99].
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The Hf-cluster-based NU-1000 (Hf-NU-1000) demonstrated excellent catalytic activity,
greater than the Zr-cluster-based NU-1000 under the same mild reaction conditions [100].
Indeed, the presence of high density stronger acidic Brønsted sites, due to stronger M−O
bonds, gave a complete and quantitative conversion of styrene oxide and propylene oxide
to form cyclic carbonates. Moreover, high yields have been detected for the cycloaddition re-
action of CO2 with industrially important epoxide divinylbenzene dioxide (DVBDO) [101].

Large pores in the MOFs, easily functionalized by polar groups, can promote CO2
fixation in a short reaction time under ambient CO2 pressure and moderate temperature
without the use of solvent. Within the mesoporous M-MOF-184 series (M = Co, Ni, Mg,
Zn), Zn-MOF-184 achieved efficient catalysis performances to convert CO2 to cyclic car-
bonates under ambient conditions for several epoxy substrate, due to the presence of high
concentration of accessibly acidic metals, basic 2-oxidobenzoate anion sites and to the
high polarity induced by C≡C bonds and π systems from the phenyl rings in the linkers.
Low conversion has been detected for larger epoxides due to limit diffusion into the MOF
pores of reactants toward the active sites [102]. The hydrothermally synthesized flexible
Zn-based {[Zn2(TBIB)2(HTCPB)2]·9DMF·19H2O}n, has been synthesized employing two
types of large linkers 1,3,5-tri(1H-benzo[d]imidazol-1-yl)benzene (TBIB) and 1,3,5-tris(4′-
carboxyphenyl-)benzene (H3TCPB). A porous structure with 1D channels was generated
via noncovalent supramolecular interactions between the layers. The presence of free
protonated carboxylic acid groups(−COOH), carbonyl groups (−C=O), and the presence
of Lewis basic sites from the rich N-containing TBIB on the surface pores enhance the selec-
tivity toward CO2. Moreover, the COOH group helps in catalysing the CO2 cycloaddition
reaction efficiently through noncovalent interaction with the epoxide substrate, followed
by ring-opening upon nucleophilic attack of co-catalyst [103].

Excellent conversions of epichlorohydrin and 2-vinyloxirane have been obtained using
as heterogeneous catalyst [Zn4OL43]n based on the meta-substituted 2,2′,6,6′-tetramethoxy-
4,4′-biphenyldicarboxyate ligand [39].

Zeolitic imidazolate frameworks are known for their high CO2 solubility and capture
ability [104], especially the chloro-functionalized ZIF-95 [105]. The CO2 cycloaddition
to propylene oxide by using ZIF-95 and a quaternary ammonium salt as cocatalyst pro-
cured over 99% selectivity to the desired propylene carbonate product under moderate
conditions [106]. Also the imidazolate-containing species Im-UiO66(Zr)MOF reacts with
methyl iodine to produce (I−)MeIm-UiO-66 that demonstrate efficiency in the CO2 cycload-
dition reaction toward a broad range of substrates, in this case without the addition of
co-catalyst [107].

Conversely, imidazolium-based IL units were grafted and immobilized into UiO-67 via
direct ligand functionalization that, considering the post synthetic approach, is a quantitative
method. The obtained species show a high density of IL sites. UiO-67-IL converts epichloro-
hydrin substrate in 95% yield under co-catalyst and solvent-free conditions. The yield in-
creases to 99% in a shorter time when TBAB was employed (TBAB = tetrabutylammonium
bromide) [108] (Table 5).

UiO-66-NH2 pores were modified with ILs such as methylimidazolium bromide
and methylbenzimidazolium bromide by coupling reactions, to generate ILA@U6N and
ILB@U6N MOFs. The Lewis acid sites (for activation of the epoxide) and the IL functional
sites (for epoxide ring-opening) efficiently catalyse the epichlorohydrin conversion under
mild conditions [109].
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A linear ionic polymer was inserted inside the MIL-101(Cr) via in situ polymerization
to form polyILs@MIL-101(Cr) stable heterogeneous composites. This polyILs@MIL-101
is able to catalyse the CO2 cycloaddition reaction with various epoxides with good to
excellent conversions, including terminal epoxides with both electron-withdrawing and
electron-donating substituents without the need of co-catalyst [110].

A new multimodal catalytic system has been designed via two steps post-synthetic
modification of the metal nodes in the NU-1000 framework. A tandem functionalization
was performed starting from the incorporation of ortho-, meta-, and para-pyridinecarboxylic
acids into the framework of NU-1000(M), then the pyridine moieties were alkylated with
various haloalkanes (CH3I, C4H9I, C4H9Br, and C6H4F9I) to introduce co-catalyst moieties
near to the inorganic node [111]. Among catalysts, NU-1000(Zr) functionalized with
4-PyCOOH and CH3I, i.e., SALI-4-Py-I-(Zr), showed the highest styrene carbonate yield
without co-catalyst, the epoxy ring being activated upon coordination to Zr4+ center (Lewis
acid site) and the halogen anion opening the epoxy ring by nucleophilic attack on the less
sterically hindered carbon atom [111].

Two 3D metal-cyclam-based zirconium MOFs [Zr6(µ3-OH)8(OH)8(M-L)4] (where
M = Cu(II) or Ni(II), L1 = 6,13-dicarboxy-1,4,8,11-tetraazacyclotetradecane) were prepared,
namely VPI-100 (Cu) and VPI-100 (Ni) (VPI = Virginia Polytechnic Institute), respectively.
A two-step solvothermal synthesis has been necessary to build the MOFs. Initially, a
zirconium-oxo cluster was assembled, then cyclam was added. The presence of accessible
Cu2+/Ni2+ metal active sites in the metallocyclams and of the coordinatively unsaturated
Zr4+ sites in the equatorial plane of the Zr6 cluster in VPI-100 improved their catalytic
activity toward CO2 cycloaddition to various organic epoxides [112].

Another strategy developed to increase the catalytic performances is based on the
incorporation of an amine group in MOFs. Essentially, the amino group has the dual
advantage of acting as an electron donor (Lewis base) toward CO2 and increasing the local
concentration of CO2 near catalytic centres through a high CO2 adsorption [113,114].

The amine-functionalized NH2-MIL-101(Al) has been synthesized using a solvother-
mal or microwave method and its catalytic activity in the solvent-free cycloaddition of
CO2 to styrene oxide achieved nearly total conversion and selectivity in 96% yield, with
a TOF of 23.5 h−1 [115]. The coordinatively unsaturated aluminium centers present in
the SBUs (Lewis acidic sites) bind the epoxides and activate them toward ring-opening,
this step is immediately followed by the attack of the bulky bromide ions of TBAB. The
pendant amino groups polarize the CO2 molecules, through the nucleophilic attack at the
carbon atom, and facilitate CO2 insertion and cycloaddition (Figure 9). During the catalytic
reaction, the micro and mesoporous of the framework facilitate the diffusion of substrates
and reactants to enhance their interactions [116].

Recently, the acid-base pair UiO-66-NH2 has been used to synthesize bio-based five-
membered cyclic carbonate from vegetable oil methyl ester by CO2 fixation. At first, 95%
of double bonds in the O-acetyl methyl ricinoleate starting material were converted to
epoxide through an enzyme-catalyzed process. Then, the cycloaddition of epoxy fatty
acid methyl esters was performed in the presence of UiO-66-NH2 as catalyst and TBAB as
co-catalyst for CO2 fixation. At 120 ◦C under 3 MPa CO2 pressure for 12 h, the reaction
conversion reached 94.4% [117] (Table 5).

A series of diamino-tagged zinc bipyrazolate MOFs have been investigated as het-
erogeneous catalyst in the reaction of CO2 with the epoxides epichlorohydrin and epi-
bromohydrin to give the corresponding cyclic carbonates at 393 K and pCO2 5 bar under
relatively mild conditions (solvent and co-catalyst-free) [118]. The presence of amino group
in the MOFs pores increased the CO2 storage capacity as well as the catalytic performances.
The epoxide has been activated through halogen-amine interaction which was observed
in structure of the [epibromohydrin@Zn(3,3′-(NH2)2BPZ)] adduct. The isomeric Lewis
basic site (NH2) in Zn(3,5 NH2-Bpz) (64% yield) improves more than twice the catalytic
transformation of epichlorohydrin compared to its mono(amino) parent Zn(BPZNH2) (32%
yield) [118].
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Post-synthetic metalation of organic linkers is employed strategically to tailor the
MOFs’ properties. In Hf-Bipy-UiO-67, the 2,2-bipyridine-5,5-dicarboxylate ligand was
grafted with Mn(OAc)2 and the resulting Hf-Bipy-UiO-67(Mn(OAc)2 showed that synergy
of the binary Lewis acid function significantly enhances the CO2 uptake capacity and
catalytic performance of the cycloaddition reaction under mild conditions [119].

Vanadium chlorides have been used to produce the post-metalated Zr-based MOF-VCl3
and MOF-VCl4, with biphenyl-4,4′-dicarboxylic acid, and 2,2′-bipyridine- 5,5′-dicarboxylic
acid, respectively, which provide Lewis basic sites. Their high catalytic activity in the CO2
cycloaddition to various organic epoxides was attributed to the accessible Cu2+/Ni2+ metal
active sites in the metallocyclams and the presence of coordinatively unsaturated Zr4+ sites in
the equatorial plane of the Zr6 cluster in VPI-100 MOFs [112].

UiO-type MOFs become susceptible to water and alkaline solution when the length
of the carboxylic linker increase. A series of UiO-type MOF named ZSF, incorporating
chiral metallosalen as linker has been produced. The chemically stable ZSF-1 MOF, syn-
thesized by dissolving a mixture of ZrCl4, Cy-salen-Ni, and modulators (trifluoroacetic
acid), showed excellent catalytic performance for the conversion of CO2 with epoxides
into cyclic carbonates. The tetrahedral cages of ZSF-1 decorated with salen-Ni moieties
entrap efficiently CO2 and activate the substrate. ZSF-1 catalyses efficiently the asymmetric
cycloaddition of CO2 with styrene oxide giving 94% yield of the resulting cyclic carbon-
ate [120]. With other epoxides, specifically epichlorohydrin, the catalytic activity of ZSF-1
increases until to 99% of conversion thanks to the presence of electron-withdrawing Cl
group, which promotes the nucleophilic attack of Br− during the ring-opening process.

The chiral PCN-224-Mn(tart) (see Section 2.3) has been used in asymmetric CO2
cycloaddition to styrene epoxide, its derivative showing conversions of 96% and 87%,
respectively. The missing-linker defects in the Zr cluster and in the Mn center are Lewis
acids inducing catalytic ability into the framework for CO2 chemical fixation. In addition,
the auxiliary chiral tartrate anions, and the co-catalyst (Bu4NBr) act as nucleophiles gener-
ating a chiral epoxide, semi-intermediate, starting from prochiral styrene substrate. The
CO2 addition leads asymmetrically to cyclic carbonate with a high ee, and it is related
to the interaction of the chiral centers and substrate pro R/S face. Moreover, catalytic
reactions with PCN-224-Mn(tart) were performed at low energy and ambient pressure and
temperature [71].
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Table 5. MOF-based composites for cycloaddition reaction.

MOF Substrate Reaction Data T (◦C)
CO2 P (atm) Time (h) Cocatalys a Conversion

%
Cyclic Carbonate

Selectivity% Ref.

Hf-NU-1000 Styrene epoxide r.t. 1 56 TBAB 100 100 [101]

Propylene oxide r.t. 1 26 TBAB 100 100 [101]

Epoxide divinylbenzene
dioxide r.t. 1 19 TBAB 100 100 [101]

PCN-224-Mn(tart) Styrene epoxide 60 1 15 TBAB 96
94 ee (S) 100 [71]

(2,3-Epoxypropyl)benzene 60 1 15 TBAB 87
90 ee (S) 100 [71]

Propylene oxide 60 1 15 TBAB 99
98 ee (S) 100 [71]

1,2-Epoxybutane 60 1 15 TBAB 91
97 ee (S) 100 [71]

1,2-Epoxyoctane 60 1 15 TBAB 78
96 ee 100 [71]

polyILs@MIL-101(Cr) 1-Butene oxide 45 1 48 - 94 100 [110]

1,2-Epoxyhexane 70 1 24 - 89 100 [110]

3-Hydroxy-1,2-epoxypropane 70 1 24 - >99 100 [110]

1,2-Epoxy-3-phenoxypropane 70 1 24 - 95 100 [110]

NH2-MIL-101(Al) Styrene oxide 120 18 6 TBAB 93.6 99 [115]

UiO-66-NH2 Epoxy fatty acid methyl ester 120 30 12 TBAB 94 80 [117]

ILB@U6N Epichlorohydrin 80 118 4 - 94 99 [109]

(I−)Meim-UiO-66 Epichlorohydrin 120 1 24 - 100 93 [107]

VPI-100 (Ni) Epichlorohydrin 90 10 6 TBAB 96 - [112]

VPI-100 (Cu) Epichlorohydrin 90 10 6 TBAB 94 - [112]

[Zn4OL43]n Epichlorohydrin 50 1 4 - 96 99 [107]

2-Vinyloxirane 50 1 4 - 99 81 [107]

Hf-Bipy-UiO-
67(Mn(OAc)2

Epichlorohydrin 25 1 12 TBAB 83.2 99 [119]

Zn-MOF-184 Styrene oxide 80 1 6 TBAB 96 85 [102]

Propylene oxide 80 1 6 TBAB 100 75 [102]

Epichlorohydrin 80 1 6 TBAB 100 70 [102]

Cyclohexene oxide 80 1 6 TBAB 69 85 [102]

SALI-4-Py-I-(Zr), Styrene oxide 80 4 4 - 99 98 [111]

ILA@U6N Epichlorohydrin 80 118 4 - 65 99 [109]

UiO-67-IL Epichlorohydrin 90 1 3 TBAB 99 100 [108]

Epichlorohydrin 90 1 3 - 99 96 [108]

{[Zn2(TBIB)2(HTCPB)2]·
9DMF·19H2O}n

Epichlorohydrin r.t 1 24 TBAB 99 100 [105]

ZIF-95 Propylene oxide 120 118 24 TBAB 91 99 [106]

ZSF-1 Styrene oxide 100 1 20 TBAB 93 - [120]

Epichlorohydrin 100 1 20 TBAB 99 - [120]

Zn(3,5-NH2-Bpz) Epichlorohydrin 120 5 24 - 98 50 [118]

Zn(BPZNH2) Epichlorohydrin 120 5 24 - 96 33 [118]
a TBAB = tetrabutylammonium bromide.
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5. Conclusions

MOF-based catalysts are now a very promising class of compounds as they merge
relevant characteristics of both homogeneous and heterogeneous catalysts. They can be
easily modified by changing linkers substituents to increase affinity for reactants, or by
growing the number of active catalytic sites.

In this review, we have explored the ability of MOFs, MOF nanocomposites and mixed
metal species toward olefin epoxidation and carbon dioxide cycloaddition.

We have observed that the olefin conversion and the epoxide selectivity are strongly
dependent on the metal nodes/clusters, Co and Cu species being the most efficient, in some
cases as for the epoxidation of a-pinene by Co-MOF-150-2 a conversion and an epoxide
selectivity close to 100% being found.

Mixed metal MOFs can be also successfully employed in styrene and cyclohexene
epoxidation, the best results being obtained with Cu/Co, Mn/Cu, and Ni/V species.

Selected functional groups introduced in organic linkers can also act as catalytically
active sites. Amino, pyridyl, amide and sulfonic acid groups, but also metalloporphyrins,
vanadium and molybdenum acetylacetonate, tartaric acid, salen and analogous molecules
can be inserted or deposited to obtain also greater selectivity. UiO-66, UiO67, and PCN-224,
appropriately functionalized can induce a complete conversion and selectivity as in the
case of the geraniol epoxidation.

MOF-based composites are often employed to increase the hydrostability of selected
MOFs or to perform epoxidation also of specific substrates as norbornene or octadecatriene.
Specifically, a porous dendrimer-like porous silica nanoparticles (DPSNs) used as a carrier
to support Cu-BTC NPs overcame the poor hydrostability of [Cu3-BTC2] MOF achieving
high catalytic activity without by-products under mild reaction conditions.

Finally, MOFs and MOF-based composites show a great efficiency toward CO2 cy-
cloaddition to epoxides, conversion being generally in the range 70–100% and selectivity
close to 100%. The use of chiral ligands and amine-functionalized ligands seems to be very
promising. The CO2 binding mode can in fact open new strategies for activation of CO2
and its transformation.

However, the low reactivity and inert nature of CO2 make its incorporation and
activation into organic substrates still a challenge. Currently, the heterogeneous MOFs-
based catalysts, as well as the technical system, remain at the laboratory scale and that
makes the costs of productions of these materials extremely pricey. It is desirable that
the improvement of MOFs-based catalysts might lead to technically viable efficiencies to
industrial production to allow their large-scale application, in the next future. This review
clearly shows that MOFs are now perspective materials and valid candidates for catalytic
epoxidation and CO2 cycloaddition reactions.

Author Contributions: Conceptualization, A.T. and C.P.; methodology, A.T. and C.P.; software, A.T.
and C.P.; validation, A.T. and C.P.; data curation, A.T. and C.P.; writing—original draft preparation,
A.T. and C.P.; writing—review and editing, A.T. and C.P.; funding acquisition, C.P. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by University of Camerino.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

MOFs
Co6-MOF-3 [(Co6(OH)6(TCA)2(BPB)3]n
Co-MOF-150-2 [Co(BDC)]n
Cu0.25-Co0.75-MOF [(Cu0.25-Co0.75)3(BTC)2]n
HKUST-1 [Cu3(BTC)2]n
LaCoODa {[La2Co3(ODA)6(H2O)6]·12H2O}n
LaCuODA {[La2Cu3(µ-H2O)(ODA)6(H2O)3]·3H2O}n
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MIL-100(Fe) [Fe3O(OH)(H2O)2(BDC)3]n
MIL-101 [Cr3O(H2O)2F(BDC)]n
Mn0.1Cu0.9-MOF [(Mn0.1-Cu0.9)3(BTC)2]n
NENU-MV-1 {[Ni(4,4′-bpy)2]2[V7

IVV9
VO38Cl]·(4,4′-bpy)·6H2O}n

NH2-MIL-101(Al) [Al3O(OH)(H2O)2(BDCNH2)3]n
NH2-MIL-101(Cr) Cr3O(H2O)2F(NH2-BDC)
NTUZ30 {[Co3(µ3-OH)(HBTC)(BTC)2Co(HBTC)]·(HTEA)3·H2O}n
PCN-222 [Zr6(µ3-OH)8(OH)8-(TCPP)2]n
PCN-224 [Zr6(µ3-OH)12(OH)16-(TCPP)1.5]n
TMU-16-NH2 {[Zn2(NH2-BDC)2(4-bpdh)]·3DMF}n
UiO-66 [Zr6O4(OH)4(BDC)6]n
UiO-66-NH2 [Zr6O4(OH)4(NH2-BDC)6]n
UiO-67 [Zr6(µ3-O)4(µ3-OH)4(BPDC)6]n
UiO-68 [Zr6(µ3-O)4(µ3-OH)4(TPDC)6]n
UiO-bpy [Zr6O4(OH)4(bpy)6]n
VPI-100(Cu) [Zr6(µ3-OH)8(OH)8(Cu-L1)4]n
VPI-100(Ni) [Zr6(µ3-OH)8(OH)8(Ni-L1)4]n
ZIF-67 [Co(MeIm)2]n
ZIF-8 [Zn(MeIm)2]n
ZIF-95 [Zn(cbIm)2]n
Zn-MOF-184 [Zn2(EDOB)]n
Zr-NU-1000 ([Zr6(µ3-O)4(µ3-OH)4(OH)4(H2O)4(TBAPy)2]n
ZSF-1 [Zr6O4(OH)4(metallosalen)6]n
Hf-NU-1000 [(Hf6(µ3-O)4(µ3-OH)4(OH)4(OH2)4(TBAPy)2]n
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