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Metal–Organic Frameworks (MOFs) and Coordination Polymers (CPs) are at the
forefront of contemporary coordination chemistry research, as witnessed by the impres-
sive (and ever-growing) number of publications appearing in the literature on this topic
in the last 20 years (Figure 1), reaching almost 4000 papers in 2020. Among them, sev-
eral recent review articles and books clearly illustrate the huge potential of this class of
compounds [1–6].
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Metal–Organic Frameworks (MOFs) and Coordination Polymers (CPs) are at the 
forefront of contemporary coordination chemistry research, as witnessed by the impres-
sive (and ever-growing) number of publications appearing in the literature on this topic 
in the last 20 years (Figure 1), reaching almost 4000 papers in 2020. Among them, several 
recent review articles and books clearly illustrate the huge potential of this class of com-
pounds [1–6]. 

 
Figure 1. The number of publications in the 2002–2020 time period whose titles or keywords con-
tain “MOF”. Data from Web of Science. 

The virtually infinite combination of tailored organic linkers and inorganic metal 
nodes (in the form of isolated ions or more complex cluster structures) generates a wide 
variety of functional materials for assorted applications. With a specific application in 
mind, chemists and materials scientists devoted to MOFs synthesis “play LEGO©” [7] 
every day in their laboratories to reach their targets, choosing the most suitable pairs to 
create valuable MOFs. 

The present Special Issue collects a total number of 10 papers: 8 original articles and 
2 review articles covering multiple aspects of MOFs and CPs chemistry. 

Two fundamental synthetic studies are part of this collection. Armelao et al. (Padova, 
Italy) [8] examined the solvent effects in the structures of CuII-4,4′-bipyridyl CPs coupled 
to different coordinating solvents, such as DMA, DMF and DMSO. The CP dimensionality 
(either 2D sheet or 1D chain) strongly depends on the solvent of choice. Thus, the coordi-
nating solvent approach (CSA) can be used as an effective tool to modulate and control 
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Figure 1. The number of publications in the 2002–2020 time period whose titles or keywords contain
“MOF”. Data from Web of Science.

The virtually infinite combination of tailored organic linkers and inorganic metal
nodes (in the form of isolated ions or more complex cluster structures) generates a wide
variety of functional materials for assorted applications. With a specific application in
mind, chemists and materials scientists devoted to MOFs synthesis “play LEGO©” [7]
every day in their laboratories to reach their targets, choosing the most suitable pairs to
create valuable MOFs.

The present Special Issue collects a total number of 10 papers: 8 original articles and
2 review articles covering multiple aspects of MOFs and CPs chemistry.

Two fundamental synthetic studies are part of this collection. Armelao et al. (Padova,
Italy) [8] examined the solvent effects in the structures of CuII-4,4′-bipyridyl CPs coupled
to different coordinating solvents, such as DMA, DMF and DMSO. The CP dimension-
ality (either 2D sheet or 1D chain) strongly depends on the solvent of choice. Thus, the
coordinating solvent approach (CSA) can be used as an effective tool to modulate and
control the dimensionality, composition and network of CPs. Galli and co-workers (Como,
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Italy) [9] proved the versatility of the 1,3-bis(1,2,4-triazol-4-yl)adamantane (tr2ad) linker
in the synthesis of new CdII, CuII and ZnII CPs of assorted dimensionality (ranging from
1D to 2D) and featured by excellent thermal stability. The high thermal robustness is
quite common in MOFs and CPs built with N-donors like pyrazolates, triazolates and
imidazolates, and it stems from the strength of the metal-nitrogen coordination bond.

This Special Issue though is focused on applications, collecting contributions covering
many different applicative contexts. In the field of heterogeneous catalysis, an excellent and
comprehensive review article by Zhou et al. (College Station, TX, USA) [10] summarizes the
most recent advances in organometallic functionalization of MOFs from both linker-centric
and metal-cluster-centric perspectives. MOFs can function as a tailorable platform for
traditional organometallic transformations, including reaction of alkenes, cross-coupling
reactions and C–H activations.

The timely CO2 adsorption topic [at the core of contemporary Carbon Capture and Se-
questration (CCS) technology to reduce carbon dioxide levels in the Earth’s atmosphere and
concomitant greenhouse effect] is developed by Bonino and co-workers (Torino, Italy) [11].
The research team in Torino reports on the synthesis, spectroscopic characterization and
adsorption properties of the CeIII MOF Ce5(BDC)7.5(DMF)4, containing the simple tereph-
talic acid (H2BDC) as linker. The coordinated DMF solvent can be removed from the metal
nodes generating open metal sites, as confirmed by FTIR spectroscopy. The interaction
of the desolvated material with CO2 was characterized by volumetric and calorimetric
measurements, finding a relevant heat of adsorption (Qst) for the very first dose, typical of
MOFs with open metal sites. Another contribution focused on the same topic comes from
Taddei et al. (Swansea, Wales, UK) [12]. The team reported a systematic approach aimed at
identifying the optimal conditions for the compaction (i.e., pellets preparation) of MOF-801,
a small-pore zirconium-based MOF containing fumaric acid as linker. The MOF pellets
(prepared under different experimental pressure conditions and in the presence of assorted
binders) were tested in CO2 adsorption, retaining as much as 90% of the CO2 working
capacity of the powder, while displaying unaffected sorption kinetics. This work provides
a starting point for future exploration of shaping of MOF powders, which is becoming
a progressively more important aspect as MOFs move towards commercialization and
employment in industrial applications.

Another application of growing interest for MOFs and CPs is luminescence. As chem-
ical sensors, luminescent MOFs possess a number of advantages over other luminescent
materials. Analyte adsorption within MOF pores allows for its pre-concentration, increas-
ing sensor sensitivity. Selectivity in MOFs can be achieved by tuning pore dimensionality
and/or by proper functionalization of the linkers. Porosity allows for adsorption of chro-
mophores which can be luminescent themselves or act as antennas, this enlarging the num-
ber of mechanisms beyond luminescence. Given my long-lasting interest in the design and
synthesis of thiazole-containing linkers and related MOFs/CPs in Firenze (Italy) [13–20], I
have personally contributed to this Special Issue with a mini-review article describing the
luminescent features of thiazole- and thiadiazole-based MOFs and CPs [21]. Thiazoles are
intrinsically fluorescent heterocycles, and their exploitation in the construction of MOFs is
still at its infancy. Within this Special Issue, there are two additional contributions on the
luminescence topic. Cepeda, Rodríguez-Diéguez et al. (País Vasco/Granada, Spain) pub-
lished two new ZnII and CdII CPs based on 1H-indazole-6-carboxylic acid, along with their
photoluminescence (PL) properties [22]. Both CPs present emission spectra similar to the
free ligand, confirming that the electronic transitions of the polymers are ligand-centered
(of π–π * type). This kind of emission is typical of MOFs and CPs built with an electronically
inert metal ion (like ZnII or CdII, with a d10 closed-shell electronic configuration). The
Russian team of Artem’ev and colleagues (Novosibirsk, Russian Federation) has synthe-
sized a 1D AgI-based CP with 4,6-bis (diphenylphosphino)pyrimidine [23]. The material
exhibits pronounced thermochromic luminescence, expressed by reversible changing of
the emission chromaticity from yellow (at ambient temperature) to orange (at the liquid ni-
trogen temperature). The detailed temperature-dependent photophysical study has shown
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that the ambient temperature photoluminescence may be tentatively ascribed to thermally
activated delayed fluorescence (TADF) caused by formation of (M + L’)LCT excited states.
This class of materials find promising application in luminescent thermometry.

The water tolerance of MOFs is an essential feature for many practical applications
when operating under ordinary humid atmosphere. Resistance toward hydrolysis in such
environment is not common, given the intrinsically reactive metal-ligand coordination
bond. The most important MOF family that is resistant to hydrolysis is that of the zirco-
nium based “UiOs”. Water stability opens greener synthetic routes, and aqueous synthesis
of MOFs at room temperature offers many advantages such as reduction in the genera-
tion of toxic byproducts and operation costs, as well as increased safety in the material’s
production. The American team of Islamoglu and Farha (Chicago, US) has reported an
aqueous solution-based synthesis of the robust zirconium MOF UiO-66-NO2 at room tem-
perature [24]. Water vapor sorption isotherms at room temperature indicated high uptake,
suggesting the potential of this MOF for adsorption-based cooling applications or water
harvesting systems. Water can also be considered a substrate for heterogeneous catalysis.
In this regard, the team of Macchioni and Costantino (Perugia, Italy) has functionalized
UiO-66 post-synthetically with the organometallic IrIII complex [Ir(HEDTA)Cl]Na, placing
it on the defective MOF sites occupied by formate linkers [25]. Anchoring of the complex
occurs through an exchange of formate with the free HEDTA carboxylate group. The
modified material was tested as a heterogeneous catalyst for the water chemical oxidation
reaction (water splitting with concomitant O2 production) by using cerium ammonium
nitrate as sacrificial agent.

In conclusion, I hope that these open-access contributions will serve as guiding lights
for future MOFs and CPs development in still undiscovered applications. I thank the
authors for their original contributions for the Special Issue, and I thank the reviewers
for their tireless enthusiasm, insightful comments and revisions. Last but not least, my
warmest acknowledgments go to the Inorganics Editorial Staff for its constant dedication,
support and patience in collecting so many excellent papers over a time period of two years.

Conflicts of Interest: The author declares no conflict of interest.
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