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PXRD analysis of BTOH 
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Figure S1. Rietveld fit to the PXRD data of the oxyhydride starting material BaTiO2.60H0.08□0.32 

(BTOH). 
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Sample Unit cell parameters (Å) Unit cell volume (Å3) χ2 RBragg RF 

BTOH 4.0220 (2) 65.062 (1) 9.86 4.42 2.73 
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1H-MAS NMR analysis of BTOH 

1H MAS NMR has been used earlier for the analysis of metal hydride reduced BaTiO3 

samples[1]. 1H MAS NMR is especially useful for unambiguously determining the hy-

dridic H content, which then allows the deduction of O defect concentrations from TGA 

measurements. Importantly, protonic H from (surface) hydroxyl and hydridic H as part 

of the bulk structure can be discriminated as positive and negative chemical shift contri-

butions, respectively, in the spectra. Hydridic H typically expresses itself as a single broad 

resonance peak at negative chemical shift whereas protonic resonances at ~1 ppm and in 

the region 6 – 7 ppm correspond to surface OH species and secondary water, respectively. 

The amount of hydridic H in reduced samples can be quantified by relating the 1H NMR 

signal of the BaTiO3 starting material to that of adamantane (C10H16) in the same rotor 

volume and under identical experimental conditions. From the density and molecular 

weights of adamantane (1.08g/cm3, 136.23 g/mol) and BaTiO3 (6.02 g/cm3, 233.2 g/mol) a 

molar ratio H/BaTiO3 can be established for reduced samples. With the knowledge of the 

hydridic H concentration, the corresponding weight increase for BaTiO3-xHx + 0.75x O2 → 

BaTiO3 + 0.5x H2O can be calculated. The difference to the actual weight increase in the 

TG experiment is then attributed to the simultaneous presence of O vacancies, x□, see Ta-

ble 1.  

 

 

Figure S2: 1H MAS NMR spectrum of BTOH. The proton signal is deconvoluted into a protonic 

(positive parts per million) and hydridic (negative parts per million) part [1]. The hydridic contri-

bution in turn constitutes two contributions, one centered at -4 ppm and one at -55 pm, with a ratio 

of 1:4 (according to the integrated proton signal intensity). The occurrence of two hydridic environ-

ments in reduced BaTiO3 is highly unusual and perhaps relates to the large O defect concentration 

of BTOH. Previously sharp signals with small negative shifts have been observed in reduced sam-

ples with high defect concentration (e.g. when using NaBH4 as reducing agent [1]). One may spec-

ulate that the two H- environments in BTOH are associated with a different number and/or different 

arrangement of O defects around H-. 
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Additional TG/DSC analysis 

 

Figure S3. Simultaneously measured TG and DSC traces for BTOH upon heating under a dry N2 

stream up to 700 °C with heating rate 10 °C/min (a) and to 600 °C with a heating rate 5 °C/min (b). 
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PXRD analysis of BTON 

Table S1. Refinement result summary for BTON samples using the tetragonal structure model 

Sample Unit cell parameters (Å) Unit cell volume (Å3) χ2 RBragg RF 

BTON-500-0h 
a= 4.0121 (2) 

c= 4.0177 (3) 
64.672 (2) 4.59 4.45 3.30 

BTON-500-2h 
a= 4.0074 (4) 

c= 4.0202 (6) 
64.562 (3) 4.30 6.09 4.48 

BTON-600-0h 
a= 4.0103 (7) 

c= 4.0192 (11) 
64.639 (6) 3.79 8.89 7.34 

BTON-600-2h 
a= 4.0086 (3) 

c= 4.0180 (5) 
64.565 (3) 4.32 5.34 3.62 

BTON-600-6h 
a= 4.0085 (3) 

c= 4.0184 (2) 
64.568 (2) 4.25 5.45 3.66 

 

Table S2. Refinement result summary for BTON samples using the cubic structure model 

Sample Unit cell parameters (Å) Unit cell volume (Å3) χ2 RBragg RF 

BTON-500-0h 4.0137 (1) 64.659 (1) 3.96 3.68 2.70 

BTON-500-2h 4.0119 (2) 64.575 (1) 4.87 5.25 4.20 

BTON-600-0h 4.0131 (3) 64.630 (2) 3.71 7.10 5.86 

BTON-600-2h 4.0118 (3) 64.569 (2) 5.07 4.90 3.52 

BTON-600-6h 4.0111 (2) 64.533 (2) 4.90 4.71 3.25 
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Figure S4. Refinement of BTON-500C-0h as tetragonal phase. 



Inorganics 2021, 9, 62 5 of 8 
 

 

20 40 60 80 100 120

0

30000

In
te

n
si

ty
 (

a
.u

.)

2-Theta (
o
)

 Yobs
 Ycalc
 Yobs-Ycalc
 Bragg position

 

Figure S5. Refinement of BTON-500C-0h as cubic phase. 
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Figure S6. Refinement of BTON-500C-2h as tetragonal phase. 
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Figure S7. Refinement of BTON-500C-2h as cubic phase. 
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Figure S8. Refinement of BTON-600C-0h as tetragonal phase. 
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Figure S9. Refinement of BTON-600C-0h as cubic phase. 
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Figure S10. Refinement of BTON-600C-2h as tetragonal phase. 
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Figure S11. Refinement of BTON-600C-2h as cubic phase. 
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Figure S12. Refinement of BTON-600C-6h as tetragonal phase. 
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Figure S13. Refinement of BTON-600C-6h as cubic phase. 



Inorganics 2021, 9, 62 8 of 8 
 

 

Band gap analysis 

 

Figure S14. Tauc plots for direct (upper figure) and indirect (lower figure) band gap evaluation of 

BaTiO3, BTOH, BTON-500C-0h, BTON-500C-2h, BTON-600C-0h, and BTON-600C-6h. 
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