Next Issue
Volume 9, October
Previous Issue
Volume 9, August
 
 

Inorganics, Volume 9, Issue 9 (September 2021) – 7 articles

Cover Story (view full-size image): The use of β-diketiminate (Nacnac) ligands in the stabilization of highly reactive complexes across the periodic table has been revolutionary. These are typically formed by the reaction of the Nacnac group 1 metal salts with the desired metal halide, followed by the reduction and/or functionalization of the newly synthesized complex. Recently, more sterically demanding Nacnac ligands have entered the field, allowing the isolation of complexes previously thought inaccessible. In this paper, the synthesis of four highly sterically encumbering β-diketiminato group 1 metal complexes, based on two ligands containing the 2,4,6-tricyclohexylphenyl moiety, are described. These compounds can be used to transfer the ligand fragment to other metal halides, allowing the easy synthesis of new highly sterically protected metal complexes. View this paper.
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
9 pages, 1416 KiB  
Article
Synthesis and Characterization of Super Bulky β-Diketiminato Group 1 Metal Complexes
by Dafydd D. L. Jones, Samuel Watts and Cameron Jones
Inorganics 2021, 9(9), 72; https://0-doi-org.brum.beds.ac.uk/10.3390/inorganics9090072 - 16 Sep 2021
Cited by 7 | Viewed by 3644
Abstract
Sterically bulky β-diketiminate (or Nacnac) ligand systems have recently shown the ability to kinetically stabilize highly reactive low-oxidation state main group complexes. Metal halide precursors to such systems can be formed via salt metathesis reactions involving alkali metal complexes of these large ligand [...] Read more.
Sterically bulky β-diketiminate (or Nacnac) ligand systems have recently shown the ability to kinetically stabilize highly reactive low-oxidation state main group complexes. Metal halide precursors to such systems can be formed via salt metathesis reactions involving alkali metal complexes of these large ligand frameworks. Herein, we report the synthesis and characterization of lithium and potassium complexes of the super bulky anionic β-diketiminate ligands, known [TCHPNacnac] and new [TCHP/DipNacnac] (ArNacnac = [(ArNCMe)2CH]) (Ar = 2,4,6-tricyclohexylphenyl (TCHP) or 2,6-diisopropylphenyl (Dip)). The reaction of the proteo-ligands, ArNacnacH, with nBuLi give the lithium etherate compounds, [(TCHPNacnac)Li(OEt2)] and [(TCHP/DipNacnac)Li(OEt2)], which were isolated and characterized by multinuclear NMR spectroscopy and X-ray crystallography. The unsolvated potassium salts, [{K(TCHPNacnac)}2] and [{K(TCHP/DipNacnac)}], were also synthesized and characterized in solution by NMR spectroscopy. In the solid state, these highly reactive potassium complexes exhibit differing alkali metal coordination modes, depending on the ligand involved. These group 1 complexes have potential as reagents for the transfer of the bulky ligand fragments to metal halides, and for the subsequent stabilization of low-oxidation state metal complexes. Full article
(This article belongs to the Special Issue Cornerstones in Contemporary Inorganic Chemistry)
Show Figures

Graphical abstract

14 pages, 2941 KiB  
Review
The Coordination Chemistry of Imidomethanedithiolate Di-anions: A Structural Comparison with Their Dithiocarbamate Analogs
by Peter J. Heard, Yee Seng Tan, Chien Ing Yeo and Edward R. T. Tiekink
Inorganics 2021, 9(9), 71; https://0-doi-org.brum.beds.ac.uk/10.3390/inorganics9090071 - 14 Sep 2021
Cited by 1 | Viewed by 2355
Abstract
A review of the coordination chemistry along with the structural features of heavy element complexes of dithiocarbimate di-anions in the form of [(R)C=NCS2]2− for R = CN, alkyl, and aryl are described. This class of compound is far less studied [...] Read more.
A review of the coordination chemistry along with the structural features of heavy element complexes of dithiocarbimate di-anions in the form of [(R)C=NCS2]2− for R = CN, alkyl, and aryl are described. This class of compound is far less studied compared with the well-explored dithiocarbamate mono-anions formulated as [R(R’)NCS2] for R/R’ = H, alkyl, and aryl. The coordination chemistry of dithiocarbimate di-anions is dominated by a S,S-chelating mode; rare examples of alternative modes of coordination are evident. When comparisons are available, the structural motifs adopted by metal dithiocarbimate complexes match those found for their dithiocarbamate analogs, with only small, non-systematic variations in the M–S bond lengths. Full article
Show Figures

Graphical abstract

48 pages, 11741 KiB  
Review
Copper Dithiocarbamates: Coordination Chemistry and Applications in Materials Science, Biosciences and Beyond
by Graeme Hogarth and Damian C. Onwudiwe
Inorganics 2021, 9(9), 70; https://0-doi-org.brum.beds.ac.uk/10.3390/inorganics9090070 - 10 Sep 2021
Cited by 28 | Viewed by 6398
Abstract
Copper dithiocarbamate complexes have been known for ca. 120 years and find relevance in biology and medicine, especially as anticancer agents and applications in materials science as a single-source precursor (SSPs) to nanoscale copper sulfides. Dithiocarbamates support Cu(I), Cu(II) and Cu(III) and show [...] Read more.
Copper dithiocarbamate complexes have been known for ca. 120 years and find relevance in biology and medicine, especially as anticancer agents and applications in materials science as a single-source precursor (SSPs) to nanoscale copper sulfides. Dithiocarbamates support Cu(I), Cu(II) and Cu(III) and show a rich and diverse coordination chemistry. Homoleptic [Cu(S2CNR2)2] are most common, being known for hundreds of substituents. All contain a Cu(II) centre, being either monomeric (distorted square planar) or dimeric (distorted trigonal bipyramidal) in the solid state, the latter being held together by intermolecular C···S interactions. Their d9 electronic configuration renders them paramagnetic and thus readily detected by electron paramagnetic resonance (EPR) spectroscopy. Reaction with a range of oxidants affords d8 Cu(III) complexes, [Cu(S2CNR2)2][X], in which copper remains in a square-planar geometry, but Cu–S bonds shorten by ca. 0.1 Å. These show a wide range of different structural motifs in the solid-state, varying with changes in anion and dithiocarbamate substituents. Cu(I) complexes, [Cu(S2CNR2)2], are (briefly) accessible in an electrochemical cell, and the only stable example is recently reported [Cu(S2CNH2)2][NH4]·H2O. Others readily lose a dithiocarbamate and the d10 centres can either be trapped with other coordinating ligands, especially phosphines, or form clusters with tetrahedral [Cu(μ3-S2CNR2)]4 being most common. Over the past decade, a wide range of Cu(I) dithiocarbamate clusters have been prepared and structurally characterised with nuclearities of 3–28, especially exciting being those with interstitial hydride and/or acetylide co-ligands. A range of mixed-valence Cu(I)–Cu(II) and Cu(II)–Cu(III) complexes are known, many of which show novel physical properties, and one Cu(I)–Cu(II)–Cu(III) species has been reported. Copper dithiocarbamates have been widely used as SSPs to nanoscale copper sulfides, allowing control over the phase, particle size and morphology of nanomaterials, and thus giving access to materials with tuneable physical properties. The identification of copper in a range of neurological diseases and the use of disulfiram as a drug for over 50 years makes understanding of the biological formation and action of [Cu(S2CNEt2)2] especially important. Furthermore, the finding that it and related Cu(II) dithiocarbamates are active anticancer agents has pushed them to the fore in studies of metal-based biomedicines. Full article
Show Figures

Graphical abstract

11 pages, 2255 KiB  
Article
Copper(II) Prevents the Saccarine-Dialkylcyanamide Coupling by Forming Mononuclear (Saccharinate)(Dialkylcyanamide)copper(II) Complexes
by Yulia N. Toikka, Dar’ya V. Spiridonova, Alexander S. Novikov and Nadezhda A. Bokach
Inorganics 2021, 9(9), 69; https://0-doi-org.brum.beds.ac.uk/10.3390/inorganics9090069 - 08 Sep 2021
Viewed by 2545
Abstract
The reaction in the system CuII/sacNa(H)/NCNR2 (sacNa(H) = sodium saccharinate (saccharin); R = Me, Et) results in the formation of the complexes [Cu(sac)2(NCNR2)(H2O)2] (R = Me 1, Et 2) instead [...] Read more.
The reaction in the system CuII/sacNa(H)/NCNR2 (sacNa(H) = sodium saccharinate (saccharin); R = Me, Et) results in the formation of the complexes [Cu(sac)2(NCNR2)(H2O)2] (R = Me 1, Et 2) instead of the expected products derived from the saccharin–cyanamide coupling. Complexes 1, 2, and hydrate 1·2H2O were characterized by IR, AAS (Cu%), TGA, and also by single-crystal X-ray diffraction for 1 and 1·2H2O. An integrated computational study of model structure 1 in the gas phase demonstrates that the Cu–Ncyanamide and Cu–Nsac coordination bonds exhibited a single bond character, polarized toward the N atom and almost purely electrostatic, with the calculated vertical total energies for the Cu–Ncyanamide and Cu–Nsac of 43.6 and 156.4 kcal/mol, respectively. These data confirmed that the copper(II) completely blocks the nucleophilic centers of ligands via coordination, thus preventing the saccharin–cyanamide coupling. Full article
(This article belongs to the Section Coordination Chemistry)
Show Figures

Graphical abstract

17 pages, 2597 KiB  
Article
Oxidoborates Templated by Cationic Nickel(II) Complexes and Self-Assembled from B(OH)3
by Mohammed A. Altahan, Michael A. Beckett, Simon J. Coles and Peter N. Horton
Inorganics 2021, 9(9), 68; https://0-doi-org.brum.beds.ac.uk/10.3390/inorganics9090068 - 31 Aug 2021
Cited by 2 | Viewed by 2667
Abstract
Several oxidoborates, self-assembled from B(OH)3 and templated by cationic Ni(II) coordination compounds, were synthesized by crystallization from aqueous solution. These include the ionic compounds trans-[Ni(NH3)4(H2O)2][B4O5(OH)4]. [...] Read more.
Several oxidoborates, self-assembled from B(OH)3 and templated by cationic Ni(II) coordination compounds, were synthesized by crystallization from aqueous solution. These include the ionic compounds trans-[Ni(NH3)4(H2O)2][B4O5(OH)4].H2O (1), s-[Ni(dien)2][B5O6(OH)4]2 (dien = N-(2-aminoethyl)-1,2-ethanediamine (2), trans-[Ni(dmen)2(H2O)2] [B5O6(OH)4]2.2H2O (dmen = N,N-dimethyl-1,2-diaminoethane) (3), [Ni(HEen)2][B5O6(OH)4]2 (HEen = N-(2-hydroxyethyl)-1,2-diaminoethane) (4), [Ni(AEN)][B5O6(OH)4].H2O (AEN = 1-(3-azapropyl) -2,4-dimethyl-1,5,8-triazaocta-2,4-dienato(1-)) (5), trans-[Ni(dach)2(H2O)2][Ni(dach)2] [B7O9(OH)5]2.4H2O (dach = 1,2-diaminocyclohexane) (6), and the neutral species trans-[Ni(en)(H2O)2{B6O7(OH)6}].H2O (7) (en = 1,2-diaminoethane), and [Ni(dmen)(H2O){B6O7(OH)6}].5H2O (8). Compounds 1–8 were characterized by single-crystal XRD studies and by IR spectroscopy and 2, 4–7 were also characterized by thermal (TGA/DSC) methods and powder XDR studies. The solid-state structures of all compounds show extensive stabilizing H-bond interactions, important for their formation, and also display a range of gross structural features: 1 has an insular tetraborate(2-) anion, 2–5 have insular pentaborate(1-) anions, 6 has an insular heptaborate(2-) anion (‘O+’ isomer), whilst 7 and 8 have hexaborate(2-) anions directly coordinated to their Ni(II) centers, as bidentate or tridentate ligands, respectively. The Ni(II) centers are either octahedral (1–4, 7, 8) or square-planar (5), and compound 6 has both octahedral and square-planar metal geometries present within the structure as a double salt. Magnetic susceptibility measurements were undertaken on all compounds. Full article
(This article belongs to the Special Issue Boron Chemistry: Fundamentals and Applications)
Show Figures

Graphical abstract

21 pages, 5938 KiB  
Article
2-Aminopyrimidinium Decavanadate: Experimental and Theoretical Characterization, Molecular Docking, and Potential Antineoplastic Activity
by Amalia García-García, Lisset Noriega, Francisco J. Meléndez-Bustamante, María Eugenia Castro, Brenda L. Sánchez-Gaytán, Duane Choquesillo-Lazarte, Enrique González-Vergara and Antonio Rodríguez-Diéguez
Inorganics 2021, 9(9), 67; https://0-doi-org.brum.beds.ac.uk/10.3390/inorganics9090067 - 30 Aug 2021
Cited by 11 | Viewed by 3042
Abstract
The interest in decavanadate anions has increased in recent decades, since these clusters show interesting applications as varied as sensors, batteries, catalysts, or new drugs in medicine. Due to the capacity of the interaction of decavanadate with a variety of biological molecules because [...] Read more.
The interest in decavanadate anions has increased in recent decades, since these clusters show interesting applications as varied as sensors, batteries, catalysts, or new drugs in medicine. Due to the capacity of the interaction of decavanadate with a variety of biological molecules because of its high negative charge and oxygen-rich surface, this cluster is being widely studied both in vitro and in vivo as a treatment for several global health problems such as diabetes mellitus, cancer, and Alzheimer’s disease. Here, we report a new decavanadate compound with organic molecules synthesized in an aqueous solution and structurally characterized by elemental analysis, infrared spectroscopy, thermogravimetric analysis, and single-crystal X-ray diffraction. The decavanadate anion was combined with 2-aminopyrimidine to form the compound [2-ampymH]6[V10O28]·5H2O (1). In the crystal lattice, organic molecules are stacked by π–π interactions, with a centroid-to-centroid distance similar to that shown in DNA or RNA molecules. Furthermore, computational DFT calculations of Compound 1 corroborate the hydrogen bond interaction between pyrimidine molecules and decavanadate anions, as well as the π–π stacking interactions between the central pyrimidine molecules. Finally, docking studies with test RNA molecules indicate that they could serve as other potential targets for the anticancer activity of decavanadate anion. Full article
Show Figures

Graphical abstract

16 pages, 1993 KiB  
Article
Study of DNA Interaction and Cytotoxicity Activity of Oxidovanadium(V) Complexes with ONO Donor Schiff Base Ligands
by Gurunath Sahu, Edward R. T. Tiekink and Rupam Dinda
Inorganics 2021, 9(9), 66; https://0-doi-org.brum.beds.ac.uk/10.3390/inorganics9090066 - 27 Aug 2021
Cited by 14 | Viewed by 2483
Abstract
Two new oxidovanadium(V) complexes, (HNEt3)[VVO2L] (1) and [(VVOL)2μ-O] (2), have been synthesized using a tridentate Schiff base ligand H2L [where H2L = 4-((E)-(2-hydroxy-5-nitrophenylimino)methyl)benzene-1,3-diol] and VO(acac) [...] Read more.
Two new oxidovanadium(V) complexes, (HNEt3)[VVO2L] (1) and [(VVOL)2μ-O] (2), have been synthesized using a tridentate Schiff base ligand H2L [where H2L = 4-((E)-(2-hydroxy-5-nitrophenylimino)methyl)benzene-1,3-diol] and VO(acac)2 as starting metal precursor. The ligand and corresponding metal complexes are characterized by physicochemical (elemental analysis), spectroscopic (FT-IR, UV–Vis, and NMR), and spectrometric (ESI–MS) methods. X-ray crystallographic analysis indicates the anion in salt 1 features a distorted square-pyramidal geometry for the vanadium(V) center defined by imine-N, two phenoxide-O, and two oxido-O atoms. The interaction of the compounds with CT–DNA was studied through UV–Vis absorption titration and circular dichroism methods. The results indicated that complexes showed enhanced binding affinity towards DNA compared to the ligand molecule. Finally, the in vitro cytotoxicity studies of H2L, 1, and 2 were evaluated against colon cancer (HT-29) and mouse embryonic fibroblast (NIH-3T3) cell lines by MTT assay. The results demonstrated that the compounds manifested a cytotoxic potential comparable with clinically referred drugs and caused cell death by apoptosis. Full article
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop