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Abstract: Oral biofilms will build up within minutes after cleaning of the dental hard tissues. While
the application of remineralizing agents is a well-known approach to prevent dental caries, modern
oral care products offer also additional active agents to maintain oral health. Human saliva contains
many different organic and inorganic compounds that help to buffer organic acids produced by
cariogenic microorganisms. However, most oral care products only contain remineralizing agents.
To improve the benefit of those products, further active ingredients are needed. Books, review
articles, and original research papers were included in this narrative review. Putting all these data
together, we give an overview of oral biofilms and active compounds used in modern oral care
products to interact with them. The special focus is on inorganic compounds and their interaction
with oral biofilms. While organic compounds have several limitations (e.g., cell toxicity), inorganic
compounds based on calcium and/or phosphate (e.g., sodium bicarbonate, hydroxyapatite, calcium
carbonate) offer several advantages when used in oral care products. Calcium release can inhibit
demineralization, and the release of hydroxide and phosphate ions might help in the buffering of
acids. Therefore, the focus of this review is to summarize the scientific background of further active
ingredients that can be used for oral care formulations.

Keywords: amino acids; calcium carbonate; calcium phosphates; hydroxyapatite; pH value

1. Introduction

Biofilms and microorganisms are ubiquitous, and they mostly live as commensals
with human beings [1]. However, mutations can occur in every microorganism and
also changes in the composition of a biofilm, leading to a shift of a former commensal
to a pathogenic-dominated composition [1–4]. As evolutionary pressure also leads to
continuous changes in the characteristics of microorganisms, the co-existence between
humans and microorganisms is a steadily developing progress [4]. While previous studies
even reported that microbial cells exceed human cells, recent studies show an equilibrium
of human and microbial cells [5,6]. Nevertheless, these results represent the importance of
microbial cells for humans [5,6].

The oral cavity of man is generally believed to be sterile at birth, but shortly after
birth, it becomes colonized by oral microorganisms [7]. From then onward, significant
alterations in these microorganisms occurs before (predentate) and after (dentate) tooth
eruption. The cariogenic microorganisms, particularly Streptococcus mutans, have been
shown to infect the oral cavity of an infant as early as 3 months of birth [7]. Among the
oral microorganisms, the major organisms associated with caries in man are (on the genus
level), (a) Streptococcus (particularly S. mutans), (b) Lactobacillus, (c) Actinomyces, and more
recently emerging (d) Bifidobacteria, as well as (e) Veillonella and (f) Prevotella [8,9]. These
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organisms possess special characteristics that enable them to adhere well to the tooth
surface, produce higher amounts of acid from fermentable sugars than other oral bacterial
species, and survive better than other bacteria in an acid environment. Cariogenic biofilms
play important roles in the overall health of patients. The development and proliferation
of those biofilms can only occur when the teeth are not properly and frequently cleansed
using a toothbrush and toothpaste. While oral biofilms develop in every human being,
they only become cariogenic when fermentable sugars are consumed. As an end product of
the sugar metabolism, acids are produced that dissolve the enamel and dentin [10]. If this
process is not controlled, it leads to the manifestation of dental caries. However, biofilm
confers several beneficial properties to the patients. Dental plaque biofilm can play a role
to promote remineralization and inhibit demineralization by serving as a reservoir for the
targeted delivery of active agents to the plaque–tooth interface, to be released during an
acidic challenge [11]. Furthermore, biofilm may help to prevent colonization by exogenous,
and often pathogenic, microorganisms [12].

The oral cavity is a habitat where certain microorganisms co-exist with human cells
as commensals or pathogens. While microorganisms such as bacteria, viruses, fungi, and
protozoa are present in the oral cavity, human cells have developed several mechanisms
to fight pathogens in the oral cavity [13–16]. While single-cell microorganisms mostly do
not pose any harm, biofilm formation is more crucial for human health, as biofilms can be
resistant to antibiotics [17]. Biofilms comprise several microbial species, interacting with
each other [14,18–20]. This interaction can either positively or negatively influence the
biofilm growth. In short, biofilms are a mixture of several microbial species synthetizing
EPS (extracellular polymeric substances such as proteins, glycolipids, glycoproteins, and
extracellular DNA) that are able to protect the microbial community [1,21]. Biofilms prefer-
ably grow where shedding and mechanical forces would not inhibit their formation. In
the oral cavity, besides mechanical forces such as toothbrushing and abrasive diet, one
of the natural mechanisms that inhibit biofilm growth is the salivary flow and its compo-
sition [22–24]. Saliva contains organic and inorganic components. Organic compounds
such as proteins or enzymes (e.g., lactoferrin and lysozyme) with antimicrobial properties
can combat biofilm formation or inhibit the growth of an initial biofilm [25–27]. The main
inorganic compounds in saliva that interfere with the virulence of biofilms, particularly car-
iogenic biofilms, are phosphate and bicarbonate ions [28–33]. Bicarbonate and phosphate
ions in saliva buffer the acids produced from carbohydrates (e.g., sucrose) metabolized
by the bacteria in biofilms [29,34,35]. Acid buffering prevents demineralization of the
tooth tissues by the acids, thus preventing dental caries development [31]. Furthermore,
dietary intake of probiotics has been shown to control oral biofilm formation and growth
as well as mitigate against some of the virulence factors of bacteria in the biofilm [8,36,37].
Basically, oral biofilms that lead to dental caries can be controlled to a certain extend with
the help of the above mechanisms [28]. However, due to the modern diet and many plaque
stagnation niches in the oral habitat, additional measures need to be applied to prevent
dental caries and other plaque-associated diseases [38]. It is important to note that active
agents used in oral care products need to weaken the virulence or at best disrupt oral
biofilms, because plaque-free teeth would not develop dental caries [39]. In addition to
using toothbrushes, irrespective of hand brushes, powered oscillating toothbrushes, or
powered sonic toothbrushes [24], a straightforward way could be the incorporation of
active agents in toothpastes and mouth rinses that will penetrate and retain in the oral
niches to prevent biofilm growth, or at least reduce acidic biofilms and its potential to
demineralize dental hard tissues [28,30,31,40].

The aim of this review is to give an overview of active ingredients, besides the well-
known remineralizing agents such as fluorides or hydroxyapatite that can be incorporated
into oral care formulations to modify the cariogenic biofilms.
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2. Materials and Methods

The databases “BASE”, “PubMed”, and “SciFinder” were used for the literature
search on active compounds used in oral care. Search terms were the following: “Oral
care AND/OR active compounds AND/OR biofilm modification”. After screening the
1527 results (by 12 July 2021) from the three databases’ results for eligibility, none of the
listed references could be directly classified to oral care products. Consequently, this review
is articulated as a narrative review.

3. Results

The formation of biofilms, including oral biofilms, is a continuous process on any
surfaces that are in contact with liquid [20]. Dental caries can be prevented in two dif-
ferent ways: (a) inhibition and reduction of cariogenic biofilm development and growth
(antimicrobials) [41–45] and/or (b) using agents that can either buffer the microbial acids
or reduce the demineralization potential of the microbial acids [31,45,46]. In the oral cavity,
biofilm formation starts with the non-specific adhesion of bacteria to the pellicle. The
pellicle is a thin layer that contains mostly salivary proteins [47,48]. Mucins and statherins
are the main components of the pellicle to which bacteria can adhere [49,50]. Bacterial
colonization can be subdivided into early colonization, so-called bridge-colonization, and
late colonization [14,51]. Early colonizers (i.e., Streptococcus spp. and Actinomyces spp.)
adhere to the pellicle using their surface antigen (a protein called adhesin) to form the
initial layer of the biofilm, without the involvement of carbohydrates (so-called initial
attachment phase) [13,52,53]. With the intake of a fermentable carbohydrate, the bacte-
ria use its cell-bound and further extracelullar enzymes, mostly glucosyltransferases, to
polymerize the glucose into adhesive extracellular carbohydrate polymers called glucan
or extracellular polysaccharides (EPS). The bacteria use this adhesive EPS to bind to each
other and to the tooth surfaces (so-called colonization phase) [53]. Thus, the biofilm is
defined as a population of microorganisms growing on a surface, firmly attached to and
enmeshed in an extracellular polysaccharide matrix [54]. As the oral cavity is a habitat for
more than 700 different bacterial species, the bacterial colonization is followed by a biofilm
growth phase [13,55]. The biofilm itself is a distinct ecosystem where different species
and even taxa can positively or negatively influence each other, respectively [14,18,56,57].
Microorganisms can communicate by quorum sensing [57,58]. Quorum sensing is a mech-
anism where microorganisms produce certain molecules that can induce cell functions
(e.g., a motility) in recipient cells when a certain threshold (depending on the bacterial
strain and quorum-sensing molecule) has been reached [57,59]. Additionally, the EPS,
produced by several microorganisms in biofilms, form a protective surrounding around
the microbial colonies [1,17,60]. As the oral cavity is a small microcosm on its own and as
the biofilm growth follows the rules of ecological pressure, it follows that when a certain
kind of nutrition is available, the microorganisms that are best adapted to this food have
an advantage over those that are not. Consequently, biofilms can change their composition
and characteristics whenever the respective diet changes [61]. Thus, the biofilm growth
phase is referred to as the remodeling phase, which is characterized by early dominance
by the genus Streptococcus followed by a shift toward more anaerobic and filamentous
flora [53]. Hence, over time, the cariogenic biofilms will change, as cells are dying or
changing their properties because of ecological pressure [62].

It is well known that cariogenic biofilms develop and proliferate when the diet is
rich in fermentable carbohydrates. The cariogenic microorganisms such as Streptococcus
species, especially S. mutans, are very efficient in utilizing sucrose. These microorganisms
have two metabolic systems (phosphotransferase (PTS) and proton motive force (pmf)
systems) that are self-regulated to optimize glucose uptake with varying concentrations
(low or high) of sugar in oral environment [63]. The PTS is a high-affinity sugar uptake
mechanism driven by phosphoenol pyruvate (PEP) and operates at neutral pH. It enables
the bacteria to take up glucose under low extracellular glucose concentrations. The PMF is
a low-affinity sugar uptake system activated by a proton motive force (pmf) that operates at
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low pH, and it enables glucose uptake under high extracellular glucose concentrations [63].
Biofilm has reduced oxygen capacity, so as a survival mechanism, microorganisms produce
their energy via anaerobic glycolysis. Glycolysis leads to the metabolism of glucose to
adenosine triphosphate (ATP), which is the energy source for the bacteria cell growth and
metabolism [63]. Lactic acids and some other organic acids are produced as the by-products
of this glucose metabolism, and they diffuse from the biofilm to the tooth surfaces [64].
The acids cause the demineralization of enamel at a pH ≤ 5.5, which is the critical pH for
the dissolution of enamel [65]. When enamel (and dentin) are demineralized, calcium and
phosphate ions are released from the tooth tissue [10].

Interestingly, biofilms can imbibe calcium, acting as a calcium source for the reduction
of subsequent acid attack [31,66,67]. It is pertinent to mention that the mechanical removal
of the oral biofilms through oral hygiene procedures (e.g., toothbrushing) does not remove
all dental biofilm from the dental hard tissues [24,68]. Biofilms can remain subgingival,
supragingival, approximal, occlusal pits and fissures, and on the mucosa close to the
tooth [69]. These residual biofilms also imbibe the active ingredients such as calcium and
phosphate from oral care formulations in addition to the products of tooth dissolution.
Thus, oral biofilm can play a role to promote remineralization and inhibit demineralization
by serving as a reservoir for the targeted delivery of active agents to the plaque–tooth
interface, which are released during an acidic challenge [11]. Suffice to say, the active
ingredients in oral biofilm interact with the biofilm, changing it from pathogenic to healthy
(protective) biofilm.

4. Preventive Measures
4.1. Biomimetic Substances for pH-Buffering in Cariogenic Biofilms
4.1.1. Overview

In addition to mechanical plaque removal with the help of a toothbrush and toothpaste
that usually mostly contains antibacterial compounds (e.g., zinc ions) [28,70], another
concept can be applied to combat cariogenic biofilms [46,70–74]. Such a strategy uses
different basic substances to buffer an acidic plaque pH. An important prerequisite for the
use of these substances in oral care formulations such as toothpastes and mouth rinses is
their non-toxicity [75]. For example, strong bases such as sodium hydroxide (NaOH) (one
molar solution has a pH = 14) should not be used because of their non-physiological pH
value and its associated cell toxicity. Oral care formulations should be formulated with a
pH range of 6.8–7.4, as this is the physiological pH of saliva [76]. Consequently, to date,
there is only a limited number of potential buffering agents that can be used for oral care
formulations (Table 1).

Table 1. Overview of buffering systems for use under physiological conditions. The optimum
buffering conditions occur when the pH is at the pKa value.

Buffer Systems pKa Values

B(OH)3/B(OH)4
− (borate buffer) 9.25

NH3/NH4
+ (ammonium buffer) 9.24

HPO4
2−/H2PO4

− (phosphate buffer) 7.21 (other pKa values 2.16; 12.32)

Citric acid/citrate 3.13; 4.76; 6.4

Carbonic acid/hydrogen carbonate 6.1

CH3COO−/CH3COOH 4.76

In oral care formulations, mainly amino acids (e.g., arginine, C6H14N4O2) [77,78],
carbonates (e.g., calcium carbonate, CaCO3) [79,80], and calcium phosphates [29] (e.g., hy-
droxyapatite, Ca5(PO4)3(OH) [31]), casein phosphopeptide-amorphous calcium phosphate
(Cax(PO4)y n · H2O) [81], and α-tricalcium phosphate (α-Ca3(PO4)2) [82] are used as active
ingredients to act as a buffer in oral care formulations against cariogenic biofilms.
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4.1.2. Organic Substances Used in Oral Care Formulations

Different organic components are known to act as buffer for acids. However, organic
systems based on carboxylic acids (R-COOH) or amines (R-NH2) are not suitable for the
use as buffering agents in oral care formulations. Their pKa values are either too low
(carboxylic acids: 3–5) or too high (amines: 9–11).

Organic compounds that can be used in oral care formulations are amino acids.
Amino acids have (at least) one carboxylic acid group and one amino group per molecule.
Basic amino acids that may act as buffering agents in cariogenic biofilms are arginine
(pKa = 12.48) and lysine (pKa = 10.54). The pH range of buffering is well known to be
between pH = 8 and 10, as reported by Fitch et al. [83]. Thus, organic acids that are produced
by cariogenic biofilms can principally be buffered by both arginine and lysine. Studies
have also shown the buffering effect induced by the arginine metabolism (production of
ammonia via the arginine deiminase pathway by certain bacteria) [77,78]. Even though
arginine is already used in toothpaste formulations, there are limitations that need to be
taken into account. Arginine and other basic amino acids are mostly protonated at pH
= 7. This is important because most toothpaste formulations have a pH value around 7;
thus, the buffering capacities of arginine are significantly reduced in a toothpaste. From a
chemical viewpoint, the pH of such toothpaste formulations should be highly basic, i.e.,
pH > 10, where arginine could act as buffer for acids (H+ acceptor) [83]. Additionally,
arginine is highly soluble in water [84]. This means that the amino acid might be less
substantive and can be very quickly washed out from the oral cavity [73]. When used
regularly, arginine may cause some unwanted side effects such as diarrhea [85].

Arginine can be seen as prebiotic ingredient in oral care products, as some bacteria
are able to metabolize this amino acid, for instance Porphyromonas gingivalis. P. gingivalis
is known as a periodontogenic pathogen because it uses arginine via the protein arginine
deiminase pathway (PAD) for biofilm formation and the citrullination of arginine. It uses
the peptidyl arginine deiminase for the conversion of arginine to citrulline. Citrullination is
associated with several multifactorial diseases such as periodontitis or rheumatoid arthritis.
Consequently, the addition of arginine to a biofilm with P. gingivalis could lead to an
increase in inflammation [56,86].

In addition to pure amino acids, proteins and peptides with free NH2 groups may
also have buffering effects. One of those molecules is urea. However, studies have shown a
positive correlation between salivary urea concentrations and dental calculus as well as peri-
odontitis [87]. Although arginine can be used to lower the pH of cariogenic biofilms, its use in
oral care products should be critically examined due to its potential to increase inflammation.

4.1.3. Inorganic Particles Used in Oral Care Formulations

Solids with buffering effects are, for example, calcium carbonate (buffering effect by
carbonate ions) and calcium phosphates (buffering effect by phosphate ions) [29,31,80,82,88].
Shaw et al. have shown that a higher dental plaque calcium content is associated with less
dental caries [89]. In the case of calcium carbonate (CaCO3), there are several chemical
reactions that can occur under acidic conditions:

1. Reaction of the proton with anions on the solid surface:

2 CaCO3 (s) + 2 H+ (aq)→ Ca(HCO3)2 (s) + Ca2+ (aq)

2. Dissolution of calcium hydrogen carbonate:

Ca(HCO3)2 (s)→ Ca2+ (aq) + 2 HCO3
− (aq)

3. Protonation of hydrogen carbonate to carbonic acid:

HCO3
− (aq) + H+ → H2CO3 (aq)

4. Decomposition of carbonic acid into carbon dioxide and water:
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H2CO3 (aq)→ CO2 (aq) + H2O (l)

5. Outgassing of carbon dioxide if its solubility is exceeded:

CO2 (aq)→ CO2 (g)

All these reactions are equilibrium reactions and generally reversible. They depend
mainly on the concentration of the reactants, temperature, and pressure.

In addition to calcium carbonate, hydroxyapatite (Ca5(PO4)3(OH)) can also act as a
buffering agent in cariogenic biofilms as reported by Cieplik et al. [31]. Unlike calcium
carbonate, the mechanism of the buffering effect of hydroxyapatite is more complex because
OH− and PO4

3− both have buffering effects. A simplified chemical equation for the
buffering of acids would be [31]:

Ca5(PO4)3(OH) + 7 H+ → 5 Ca2+ + 3 H2PO4
− + H2O

In the case of hydroxyapatite, not only calcium ions will be released but also phos-
phate ions, both of which contribute to tooth remineralization (unlike in the case of calcium
carbonate) [30,31,90]. An important requirement for a buffering effect in cariogenic biofilms
is the adhesion of those particles (e.g., hydroxyapatite) to the tooth surface and the incorpo-
ration into biofilms as demonstrated in different research studies [41,43,91–94]. Particulate
hydroxyapatite can increase the pH value of cariogenic in vitro biofilms from about 4.3
to 4.8 [31]. Stronger buffering effects can be achieved with carbonated hydroxyapatite or
calcium carbonate [88]. Thus, a carbonated hydroxyapatite or a combination of hydroxyap-
atite/calcium carbonate may not only buffer organic acids but also release calcium and
phosphate ions for tooth remineralization [30,90,95,96].

Note that both calcium carbonate and calcium phosphates cannot be formulated with
soluble fluoride compounds (e.g., NaF or C27H60F2N2O3 (amine fluoride)) in toothpastes or
mouthwashes because of the precipitation of calcium fluoride, CaF2; i.e., an “inactivation”
of fluoride would occur under the release of carbonate or hydroxide ions [71,97,98]:

2 F− (aq) + CaCO3 (s)→ CaF2 (s) ↓ + CO3
2− (aq)

and
F− (aq) + Ca5(PO4)3OH (s)→ Ca5(PO4)3F (s) + OH− (aq)

However, this is not a limitation for the use of such mineral buffering agents, since
recent studies show that fluoride-free toothpastes based on biomimetic hydroxyapatite are
not inferior to fluoride toothpastes with regard to remineralization and caries prevention
in situ and in vivo [99–101]. Additionally, calcium phosphates can be used in caries
prevention in small children because they are safe if accidently swallowed and do not
induce dental fluorosis or other side effects [75,101]. Unlike soluble active ingredients for
oral care applications (e.g., fluorides or cetylpyridinium chloride), mineral particles such as
hydroxyapatite can occlude dentin tubules, resulting in a reduction of symptoms of dentin
hypersensitivity [30,102–107].

4.2. Biomimetic Substances Modifying Bacterial Attachment to Tooth Surfaces

In addition to the release of calcium and phosphate ions and moderate pH-buffering
properties in cariogenic biofilms [31], biomimetic hydroxyapatite can significantly reduce
bacterial attachment to tooth surfaces without killing bacteria, as demonstrated in in
situ studies [41,44]. In contrast, another calcium phosphate, i.e., casein phosphopeptide-
amorphous calcium phosphate (CPP-ACP) does not lead to a reduction of initial biofilm
formation in situ [81]. Interestingly, fluorides without an antibacterial counterion (NaF,
Na2PFO3) do not minimize bacterial colonization [108]. This also supports the applicability
of hydroxyapatite in oral biofilm control [41,44].
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4.3. Probiotics

Probiotics are bacteria that are able to live and perform cell proliferation for growth [37,109].
Probiotic formulations should, at least, contain 106 CFU mL−1 of live probiotic bacteria
when being used [110]. As oral care products such as toothpastes and mouth washes are
classified as cosmetic products in the EU, the use of living microorganisms can be criti-
cal [111]. However, other product classes are available such as medical devices. Probiotics,
such as Lacobacilli spp., have been shown to positively influence caries biofilms [112,113].
As bacteria are producing so-called bacteriocins, Lactobacilli strains that are not cariogenic,
but fighting acidogenic bacteria, can be used for oral care formulations. It is important to
note that the use, as with all other oral care products, needs to be on a regular basis so that
the oral homeostasis can be achieved [14].

4.4. Summary

Oral biofilms are ubiquitous and can develop in every individual. While change of
the diet to less fermentable carbohydrates and the mechanical removal of dental plaque
will reduce the potential of those biofilms to become cariogenic, active ingredients in
oral care formulations can also help to reduce the cariogenicity of the biofilm in various
ways, including but not limited to buffering the acidity. Scientific studies show biomimetic
approaches using calcium- and carbonate-containing actives as promising ingredients that
can be used to change the properties of cariogenic biofilms.

5. Conclusions

Cariogenic biofilms produce organic acids that can demineralize the tooth mineral.
Consequently, the mechanical removal of these biofilms is essential. However, a complete
removal of dental plaque is not possible in the daily oral care routine; therefore, active
ingredients are needed that can incorporate into biofilms, to help in reducing the adverse
effects of the acids produced by the bacteria. Basic amino acids have only a limited
buffering effect due to its marginal adhesion to the tooth surface and rapid clearance from
the oral cavity. In contrast to this, oral care formulations with buffering agents such as
calcium carbonate and/or (carbonated) hydroxyapatite can interact with the tooth surface
and have the potential to reduce the demineralization by cariogenic biofilms due to their
buffering properties and potential calcium and phosphate ion release.
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