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Abstract: The objective of this study was to develop a rapid technique to authenticate potato chip
frying oils using vibrational spectroscopy signatures in combination with pattern recognition analysis.
Potato chip samples (n = 118) were collected from local grocery stores, and the oil was extracted
by a hydraulic press and characterized by fatty acid profile determined by gas chromatography
equipped with a flame ionization detector (GC-FID). Spectral data was collected by a handheld
Raman system (1064 nm) and a miniature near-infrared (NIR) sensor, further being analyzed by
SIMCA (Soft Independent Model of Class Analogies) and PLSR (Partial Least Square Regression)
to develop classification algorithms and predict the fatty acid profile. Supervised classification by
SIMCA predicted the samples with a 100% sensitivity based on the validation data. The PLSR
showed a strong correlation (Rval > 0.97) and a low standard error of prediction (SEP = 1.08–3.55%)
for palmitic acid, oleic acid, and linoleic acid. 11% of potato chips (n = 13) indicated a single oil in the
label with a mislabeling problem. Our data supported that the new generation of portable vibrational
spectroscopy devices provided an effective tool for rapid in-situ identification of oil type of potato
chips in the market and for surveillance of accurate labeling of the products.

Keywords: rapid authentication; handheld Raman; NIR; fatty acid profile; oil qualification

1. Introduction

The potato chip was invented 167 years ago and has been the most popular snack food
in America for more than 50 years [1,2]. Oil represents between 25% and 35% weight of
the potato chip, serving as the heat transfer agent and providing the flavor and texture of
the product [3]. As reported by researchers, the main precursors of volatile compounds in
potato chips are polyunsaturated fatty acids in the frying oil [4–6]. The non-heterogeneous
oil distribution during the frying contributes to the surface color of potato chips [7].
The common types of oil utilized in potato chip manufacturing are corn, sunflower
(mid-oleic and high-oleic varieties), canola, high-oleic (HO) safflower, and cottonseed
oils [8].

As the trend toward wellness keeps gaining strength, the selection of oils can add value
as healthier alternatives. For example, systematic studies suggested that consuming foods
rich in monounsaturated or polyunsaturated fat positively affected blood glucose control,
compared with consuming saturated fat or dietary carbohydrate, and may help to prevent
metabolic diseases [9,10]. Accordingly, numerous potato chip manufacturers are selecting
oils with high-oleic traits to meet buyer healthier preferences. However, adulteration
of high-price oils is a prevalent source of economically-motivated fraud [11]. Canola,
soybean, and palm oils become common adulterants for high price oils like sunflower oil,
which has a higher content of unsaturated fatty acid [12]. Therefore, there is an urgent need
for authentication and prevention of adulteration for the sake of consumers and honest
companies.
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Accurate and appropriate analytical methods are required to identify the oil type
based on their components [13,14]. Traditionally, fatty acid methyl esters (FAMEs) are
analyzed by gas chromatography with flame ionization detector (GC-FID) to determine oil
types based on the fatty acid composition, and Iodine value (IV) is utilized to classify oils
according to their degree of unsaturation [15–17]. However, these conventional methods
are labor-intensive, time-consuming, high-priced, require the use of harmful reagents and
generate hazardous waste [18]. Hence, it is necessary to develop technologies that can
provide real-time screening and in-field applications to authenticate the oil used in potato
chip manufacturing. Vibrational spectroscopy (near-infrared (NIR), mid-infrared (mid-IR)
and Raman) are rapid methods to offer a high throughput, simple, sensitive and robust
technique for establishing reliable authentication for raw materials, based on their specific
signature profiles coupled with pattern recognition techniques [19].

Raman spectroscopy (50–8000 cm−1) is based on the inelastic scattering of monochromatic
light [20,21]. When the sample interacts with the monochromatic laser, in addition to the
relatively more pronounced elastic scattering effect in the mode of Rayleigh scattering,
an inelastic scattering can arise which results in new photon emissions with different
frequencies or a shift from that of the excitation light. This scattering is called Raman
scattering, whereby Raman shifts are directly related to the vibrational states of a molecule
structure [22]. Near-infrared (NIR) spectroscopy (800–2500 nm) is based on molecular
overtone and combination vibrations in the region of the electromagnetic spectrum [23].
For a molecule to be Raman active, the polarizability of the molecule needs to be changed
through incident radiation and a center of symmetry is required, while for NIR activity to
be dominant, the dipole moment of the molecule has to be changed and, thus, the molecule
ought not have a center of symmetry. Therefore, usually the molecules which are Raman
active are not IR active and vice versa [24].

Meanwhile, advancement in semiconductors has allowed the miniaturization of the
components such as solid-state lasers, wavelength selectors, and detectors leading to
commercially accessible and affordable portable, handheld, compact, and micro-vibrational
spectroscopy devices in the industry [19]. These portable/handheld spectrometers have the
tremendous potential capability to move from the confines of the comparatively steady and
controlled laboratory setting to the potentially more dynamic and complex environments
at- or in-line, at points of vulnerability along complicated food supply chains [25].

However, limited information is reported in the literature regarding the rapid
authentication of oils used in manufacturing potato chips using vibrational spectroscopy.
Aykas et al. [8] evaluated a portable MIR in conjunction with pattern recognition analysis
to develop classification methods for the authentication of potato chip oils. Nonetheless,
the measurement process needs heating for preventing oil solidification, which limits the
in-field application. Baeten et al. [26] assessed the oil and fat classification by Raman
spectroscopy (1064 nm) by using principal component analysis (PCA) that was applied
to 138 samples from 21 different sources and reported that stepwise linear discriminant
analysis can classify oils based on their unique monounsaturated and polyunsaturated
composition. Dong et al. [27] established a predictive model of the fatty acid composition
of vegetable oil based on least squares support vector machines (LS-SVM), by Raman
(785 nm) spectral data. McDowell et al. [24] built calibration models with four different
multivariate classifiers (soft independent modeling of class analogy (SIMCA), linear
discriminant analysis—k-nearest neighbor (LDA-KNN), partial least squares—discriminant
analysis (PLS-DA), and linear discriminant analysis—support vector machine (LDA-SVM))
based on either FT-IR and Raman spectral fingerprints to detect the oil addition in cold-
pressed rapeseed, achieving high sensitivity of 86% and 93%, respectively, when refined
sunflower oil is the adulterant. These studies have shown the potential capabilities of
vibrational spectroscopy to detect vegetable oil adulteration. However, they do not show
sufficient ability to classify based on different types of vegetable oils, and they have not
applied the analysis to oil expelled from the real food matrix. Moreover, most have been
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developed using a limited number of oil types, limiting their application as a reliable
method to detect oil adulteration of food products in the market [28].

The objective of this study was to develop a rapid detection method to identify the
type of oil used in the manufacturing of potato chips and to predict the fatty acid profile of
the oil based on the unique Raman and NIR spectral patterns.

2. Materials and Methods

A total of 118 potato chip samples, including 102 samples for generating the training
models and 16 samples serving as an independent external validation set, were collected
from local grocery stores in Columbus, OH. The potato chips (~10 g) were pressed to
expel oil (~3 g) by a manual hydraulic press (3851 Benchtop Laboratory Manual Press,
Carver, Inc., Wabash, IN, USA). The crushed potato chips filled a stainless-steel cylinder
container. The oil was expelled by applying pressure on the cylinder to 10,000 psi for
1 min. Oil is collected and stored at 3 ◦C in the glass vials for further analysis. Six different
reference vegetable oils, including corn, canola, sunflower (high-oleic and mid-oleic),
peanut, and cottonseed oils, were collected from online vendors and local stores.

2.1. Reference Method

The reference method for obtaining the fatty acid profile is based on a fatty acid
methyl ester (FAME) procedure with modification [29]. Methyl ester structures were
produced by dissolving 100 µL oil sample with 1 mL of hexane into a 2 mL centrifuge
tube, and the mixture was vortexed. Then 20 µL 2 N potassium hydroxide in methanol
was added to the centrifuge tube and vortexed for 1 min. The upper hexane part was
transferred to a new 2 mL centrifuge tube with one pinch of sodium sulfate anhydrous and
centrifuged at 4000 rpm for 10 min. After that, 500 µL supernatant was transferred into a
2 mL GC glass vial and mixed with 700 µL hexane thoroughly for further analysis. FAME
profile analysis was done in duplicate for all samples by an Agilent 6890 arrangement
(Agilent Technologies, Inc., Santa Clara, CA, USA) gas chromatograph (GC) equipped with
a flame ionization detector (FID), an Agilent 7693 autosampler (Agilent Technologies, Inc.,
Santa Clara, CA, USA), and a tray. The fatty acids were separated by utilizing an HP-88
60 m × 0.25 mm × 0.2 mm (Agilent 112-8867, Agilent Technologies, Inc., Santa Clara, CA,
USA)) GC column and utilizing helium as the carrier gas. The injection volume was 0.1 µL,
with a split ratio of 60.3: 1. The inlet and detector temperatures were 250 ◦C. The oven
temperature was set at 120 ◦C held for 1 min as the initial, then at 175 ◦C (10 ◦C/min)
held for 10 min, then at 210 ◦C (4 ◦C/min) held for 4 min and finally at 230 ◦C (4 ◦C/min)
held for 4.75 min. Based on the reference standards (Supelco® 37 Component FAME Mix,
Sigma Aldrich, Inc., St. Louis, MO, USA), through the comparison of each peak’s retention
times, fatty acids were identified [28]. All the samples (n = 118) were analyzed by GC-FID,
and if the fatty acid composition of the sample matched with the profiles of reference oils
or literature values, this sample was identified as being fried by the corresponding single
oil source; otherwise, it was determined as being fried using oil mixtures.

2.2. Spectral Data Acquisition
2.2.1. Raman Spectral Data Acquisition

A handheld Raman instrument, ProgenyTM (Rigaku Analytical Devices, Inc.,
Wilmington, MA, USA) equipped with a 1064 nm excitation laser (Figure 1a), was used to
analyze the oil (at least 500 µL required) in the transparent glass vial obtained from the
pressing process. The Raman device equipped with a thermoelectrically cooled
InGaAs 512-pixel detector operated at 8 cm–1 spectral resolution with a spectral range
of 200–2500 cm–1 [30]. The laser power and exposure time were set at 230 mW and 3 s,
respectively, with 15 averages to maximize the signal-to-noise ratio. A background was
collected after the spectrum was collected for each sample. The spectra were collected in
duplicate for all samples (n = 118).
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Figure 1. Potato chip oil spectrum acquisition by (a) using a handheld Raman instrument equipped with a 1064 nm
excitation laser and by (b) using a compact Fourier Transform Near-Infrared (FT-NIR) spectral sensor.

2.2.2. NIR Spectral Data Acquisition

The NIR spectral data was collected by the NeoSpectra Micro (Si-Ware Systems, Inc.,
Cairo, Egypt), which is a compact Fourier Transform Near-Infrared (FT-NIR) spectral sensor
with a single uncooled InGaAs photodetector utilizing a single-chip Michelson interfer-
ometer with monolithic opto-electro-mechanical structure based on Fourier Transform
Infrared (FT-IR) technology [31]. A 100 µL oil aliquot was deposited onto the sensor of the
spectrometer and the oil was covered with a reflectance accessory, NIRA Liquids Sample
Accessory (Perkin Emerto, Inc., Llantrisant, Pontyclun, UK) to perform the measurement
as shown in Figure 1b. An oil spectrum was collected in duplicate for all samples (n = 118)
over the range of 1350–2552 nm in absorbance mode and a resolution of 25 cm–1. To get the
best reproducibility and signal-to-noise ratio, the scanning time was set to 20 s.

2.3. Multivariate Data Analysis

The spectral data were analyzed by multivariate statistical analysis software, Pirouette®

(version 4.5, Infometrix, Inc., Bothell, WA, USA). Raman spectral data was transformed
by normalization (sample 2-norm), where each data value was divided by the sample’s
maximum value for SIMCA and PLSR analysis. NIR spectra were pre-processed by auto-
scaling to correct for different scaling and units, and transformed by Savitsky–Golay second
derivative (15 points with second-order polynomial filter) and Smoothing (to help reduce
baseline noise) in the NIR SIMCA analysis. In the Raman and NIR PLSR analysis, mean-
centering was utilized as the preprocessing method to alleviate “micro” but not “macro”
multicollinearity [32].

The classification algorithm of potato chip oil was generated using the SIMCA method,
a supervised classification method that clusters oil samples with common Raman or
near-infrared spectral features and distinguishes them into their vegetable oil sources
with different profiles based on principal component analysis (PCA) [33]. Samples were
divided into training (83 single vegetable oil source samples verified by their FAME
assignments) and external validation (16 samples, single oil and oil mixture samples)
sets. The training set is utilized to “teach” the system about the Raman and NIR spectral
features of each population (class) to determine whether discrimination differences are
present, which is accomplished by providing the model with the class assignments based
on GC-FID data. External validation of the SIMCA model’s performance was evaluated
by an unseen independent dataset (16 samples) using the trained model, generating an
unbiased estimation of the resembling model deployment for predictions in a real situation
and determining if these potato chip oils match their “market” labels [34]. SIMCA model
performance was evaluated in terms of misclassifications (percentage of samples correctly
assigned to their original groups), class projections, discriminating power (most significant
regions or wavenumbers for class separations), and interclass distances (ICD) describing
the similarity or dissimilarity of the different classes quantitatively, it being accepted
generally that samples can be well-differentiated when ICD > 3 [35].
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PLSR is a quantitative technique for generating quantitative training predictive mod-
els through combining characteristics from multiple linear regression and PCA [30]. Raman
and NIR spectra of all 102 samples (single oil source and oil mixture samples) were corre-
lated with their fatty acid profile for developing PLSR predictive models. The performance
of PLSR models for predicting fatty acid compositions were evaluated using leave-one-out
as the internal cross-validation and an unseen independent dataset (16 samples) was set
to validate the models externally. PLSR model performance was evaluated in terms of
correlation coefficients (R2), residual analysis, outlier diagnostics, leverage, standard error
cross-validation (SECV), and the standard error of prediction (SEP) [8]. If the leverage
and/or studentized residual is high for a sample, this sample has a high possibility to be
an outlier, and it was excluded from the model [28].

3. Results and Discussion
3.1. Characterization of Potato Chip Frying Oil (Fatty Acid Composition and Spectral Analysis)

To generate a training model for identifying the oil type used in the manufacturing,
all the oils extracted from the potato chip samples were profiled based on the GC-FID
method. Among all the samples (n = 102), based on their fatty acid profiles, 19 samples
were identified as being fried using oil mixtures, while 83 samples were manufactured with
a single vegetable oil source. The fatty acid compositions (C16:0, C18:0, C18:1 n-9, C18:2
n-6 and C18:3 n-3) of samples with single oil source were summarized in Table 1, including
corn oil (n = 22), canola oil (n = 8), mid-oleic sunflower oil (n = 14), high-oleic sunflower oil
(I) (n = 14), high-oleic sunflower oil (II) (n = 16), peanut oil (n = 4), and cottonseed oil (n = 5).
Overall, cottonseed oil (17.6–21.8%) and corn oil (8.4–14.1%) showed the highest content of
palmitic acid, while HO sunflower (I) oil (82.0–87.1%) showed the highest content of oleic
acid, and cottonseed (57.0–59.1%) and corn oil (54.5–58.5%) showed the highest content of
linoleic acid (Table 1).

Table 1. Fatty acid composition summary of oil from potato chip samples and oil references using gas chromatograph flame
ionization detector (GC-FID) method.

Corn Canola HO
SUN a (I)

HO
SUN a (II)

MO
SUN b Peanut Cottonseed

Palmitic (%)
C16:0

Range 8.4–14.1 2.9–4.7 2.4–5.2 2.5–4.9 3.5–5.9 3.0–5.0 17.6–21.8
Mean 11 3.9 4.2 3.9 4.5 4.2 20

SD 1.4 0.7 0.8 0.7 0.7 0.9 1.6
Reference oils 9.6 3.9 2.8 —— 3.4 8.1 16.8

Stearic (%)
C18:0

Range 1.6–2.3 1.9–2.1 2.9–3.8 1.7–4.3 2.1–4.2 2.5–3.3 2.6–3.2
Mean 1.9 2 3.4 3.2 3.5 2.9 2.9

SD 0.2 0.1 0.3 0.9 0.8 0.4 0.3
Reference oils 1.8 1.9 2.6 —— 3.5 3.1 2.9

Oleic (%)
C18:1 n-9

Range 28.3–32.3 66.6–68.7 82.0–87.1 70.9–78.9 64.1–69.9 75.6–81.4 18.9–20.1
Mean 30.5 67.6 83.9 74.3 67.6 78.5 19.2

SD 0.9 0.7 1.7 2.5 1.6 2.6 0.5
Reference oils 30 66.5 84.3 —— 66.6 66.6 20.6

Linoleic (%)
C18:2 n-6

Range 54.5–58.5 18.4–19.5 6.7–10.4 14–21.9 22.5–27.6 11.4–15.4 57.0–59.1
Mean 55.7 19.1 8.4 17.7 24.3 13.8 57.9

SD 1 0.4 1.2 2.5 1.3 1.7 0.9
Reference oils 57.6 19.4 10.3 —— 26 25.9 59.4

Linolenic (%)
C18:3 n-3

Range 0.6–1.0 6.2–9.1 0.0–0.8 0.2–2.4 0.1–1.4 0–0.8 0.0–0.2
Mean 0.9 7.5 0.2 0.8 0.4 0.4 0.2

SD 0.1 1.1 0.2 0.8 0.3 0.4 0.1
Reference oils 1.1 8.4 0 —— 0.5 0.4 0.2

a HO SUN: a high-range oleic, above 70% monounsaturated sunflower oil; b MO SUN: a mid-range oleic, around 65% monounsaturated
sunflower oil.
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To confirm the accuracy of oil type identification, fatty acid composition of oil from
potato chip samples was compared with reference oils (Table 1) and literature values. The
fatty acid profiles of corn, canola, high-oleic sunflower (I), mid-oleic sunflower and cotton-
seed oils were in agreement with our reference oils, and those reported by Caballero et al.,
Aykas et al., and Dubois et al. [8,36–38]. The peanut oil extracted from potato chip had a
higher content of oleic acid (75.6–81.4%) and a lower content of linoleic acid (11.4–15.4%),
compared to the values these researchers reported (around 52.1% and 32.9%, respectively).
However, their fatty acid values fell into the fatty acid composition range (oleic acid:
52.8–82.2%, linoleic acid: 2.9–27.1%) found by Worthington et al. [39] for most cultivated
peanuts. The discrepancies in the fatty acid composition under the same oil source can be
related to differences in geographic origin and variety of seed-cultivars, and in seed and oil
processes [40]. Interestingly, in the case of sunflower oil, three different fatty acid profiles
(MO sunflower, HO sunflower (I) and HO sunflower (II)) were found. Stability of oil is
directly related to its degree of unsaturation, and HO sunflower oils, which have over 70%
oleic acid, are more stable than their counterparts with higher content of polyunsaturated
fatty acids, linoleic and linolenic acids, fulfilling a better performance in the heating toler-
ance for a longer fry life [41–43]. The varieties of HO sunflower (I) oil containing over 80%
oleic acid and HO sunflower (II) oil containing from 70% to 80% oleic acid can come from
genetic selection, naturally occurring variation and trough mutagenesis [44].

Figure 2a showed the overlapped Raman spectra of seven different potato chip oils
(cottonseed, peanut, HO sunflower (I), HO sunflower (II), MO sunflower, canola, and corn
oils) and the corresponding band assignments. The band existing at 1745 cm–1 was the
stretching vibration of ester bond carbonyl. The band at 1659 cm−1 was associated with
C=C stretching (cis-R-HC=CH-R) from polyunsaturated fatty acids, while the band at
1263 cm–1 corresponds with in-plane =C-H deformation in an unconjugated cis (C=C),
which was associated with monounsaturated fatty acids. The band at 1443 cm–1 was
associated with CH2 scissoring deformation (δCH2), and the band at 1300 cm–1 was related
to in-phase methylene twisting motion. The band at 1080 cm–1 was associated with the
stretching vibration of the methylene chain skeleton [28,45]. As can be seen in Figure 2a,
the signal to noise ratio was excellent across the spectral region and the Raman spectra
patterns for these oils were similar to each other, but they appear to show an obviously
different intensity on the bands of stretching (cis-R-HC=CH-R), shear bending (-CH2) and
stretching (=C-H). An increase in the stretching (cis-R-HC=CH-R) and stretching (=C-H)
bands intensity is correlated to the increase of unsaturated fatty acids weight percentage in
oils [46], while the ratio of stretching (cis-R-HC=CH-R) to shear bending(-CH2) is inversely
correlated with the content of saturated fatty acid [47].

Figure 2b showed the characteristic NIR absorption spectra of the seven different
potato chip oil examples demonstrating the close similarity in their spectral characteristics.
The peaks in NIR spectra were much broader compared with Raman. Briefly, characteristic
NIR absorbance bands arise in four regions in the spectrum. Region A (1350–1490 nm)
results from the combinations of C-H stretching and bending. Region B (1640–1885 nm)
corresponds with the first overtone of the C-H stretching vibration of several chemical
groups (methyl, methylene and ethylene groups). Furthermore, Region C (2050–2230 nm)
is related to the C–H vibration of cis-unsaturation, and the intensity increasing in this region
reflects the increase in the degree of total unsaturation. The two peaks in attributed fat could
be observed clearly in the region D (2310–2350 nm), which represents the characteristic of
the combination of C-H stretching vibration and other vibrational modes [48–50].
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Figure 2. (a) Raman spectra and band assignments of some vegetable oil examples collected by
a handheld Raman instrument equipped with a 1064 nm excitation laser. (b) Near-infrared (NIR)
spectra and important absorbance regions of vegetable oils collected by a miniature NIR sensor.

3.2. Pattern Recognition Modeling for Raman and NIR Spectroscopy

The Raman and NIR spectral data were analyzed using SIMCA for the classification
and rapid authentication of different frying potato chip oils based on the FAME profile.
The class projection plot of the training SIMCA model generated with Raman spectral data
(Figure 3a) showed distinctive clustering patterns and seven well-defined groups for differ-
ent sole source oils in the three-dimensional (3D) environment. The interclass distances
(ICD) shown in Table 2a describes the similarity or dissimilarity of the different classes quan-
titatively, ranging from 0.9 (MO SUN and HO SUN(II)) to 10.1 (HO SUN(I) and Corn) and
it is generally accepted that samples can be differentiated when ICD > 3 [51]. Most of the
classes, such as HO SUN(I) and MO SUN, HO SUN(I) and Canola Oil, HO SUN(I) and Corn
oil, etc., are significantly differentiated between each other (ICD > 3), while some classes
HO SUN(I) and HO SUN(II), HO SUN(I) and Peanut, MO SUN and Canola, MO SUN and
HO SUN(II), HO SUN(II) and Peanut, and Corn and Cottonseed gave ICD < 3 because of
the limited compositional difference among them [8]. In order to discriminate between the
classes and minimize the overfitting problem, five principal components were employed
to explain 99% of the variance. The discriminating power graph (Figure 3c) in the SIMCA
model defines the variables (wavenumbers) mainly responsible for the potato chip oil
classification [33], which can be representative of specific chemical structures. The band
centered at 1659 cm–1 was associated with (cis-R-HC=CH-R) from polyunsaturated fatty
acids, which has the most significant influence on classifying the samples. The band
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at 1443 cm–1 corresponded to the CH2 scissoring deformation, and bands at 1252 and
1267 cm–1 were related to stretching(=C-H), monounsaturated fatty acids.
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Table 2. Interclass distance between 7 types of potato chip frying oil based on the SIMCA training
model generated by (a) the Raman spectral data collected in the 790–1782 cm–1 region and (b) NIR
spectral data collected in the 1350–2552 nm region.

Groups HO SUN (I) MO SUN Canola HO SUN (II) Peanut Corn Cottonseed

(a)

HO SUN (I) 0.0
MO SUN 3.6 0.0
Canola 7.1 1.5 0.0

HO SUN (II) 2.0 0.9 3.3 0.0
Peanut 1.3 3.1 6.5 1.3 0.0
Corn 10.1 4.5 3.2 5.8 9.7 0.0

Cottonseed 7.2 3.7 3.0 3.8 7.0 2.6 0.0

(b)

HO SUN (I) 0.0
MO SUN 3.8 0.0
Canola 44.8 11.8 0.0

HO SUN (II) 6.2 2.9 25.3 0.0
Peanut 8.7 10.5 34.7 7.2 0.0
Corn 13.0 5.5 15.5 14.5 39.0 0.0

Cottonseed 40.2 14.5 13.9 26.1 36.1 12.0 0.0
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The class projection of the SIMCA model generated by NIR spectral data (Figure 3b)
showed similar grouping patterns obtained from Raman, but it improved class separation
with larger interclass distances, yielding well-defined clusters using three to five principal
components. There was no misclassification under the cross-validation and the interclass
distances (Table 2b) among different classes of samples varying between 2.9 and 44.8. The
highest ICD (44.8) was between HO SUN(I) and Canola oil, while there was only one group
of classes that had an ICD < 3, which was between MO SUN and HO SUN(II). The SIMCA
discriminating plot (Figure 3d) illustrated that the clustering of different potato chip oils
was explained by the wavelength associated with 1707, 1729, and 1781 nm, corresponding
to the first overtone of the C-H stretching vibration of several chemical groups (methyl,
methylene, and ethylene groups).

The predictive accuracy of SIMCA training models generated by the Raman and NIR
spectral data was evaluated using an independent external validation set that included
16 commercial potato chip samples. Among them, only six samples were labeled with a
single oil as their frying sources, including cottonseed, sunflower and expeller-pressed
sunflower oils, and the remaining (n = 10) were labeled as having one or more type of oils.
Figure 4a,b showed the Raman and NIR SIMCA 3D projection for the external validation
set, respectively. Figure 4c summarized their label information, GC-FID analysis results,
and Raman and NIR SIMCA predictions. Our GC-FID results showed that 12 out of 16
samples were manufactured with one type of vegetable oil, including corn, HO SUN(I),
HO SUN(II) and cottonseed oils. Our Raman and NIR SIMCA predictions were consistent
with the GC-FID assignments for all these 12 samples. Besides, 4 samples (E, F, I and
M) were identified as having oil mixtures (two or more types of oils) based on their fatty
acid profiles. SIMCA predictions of both Raman and NIR instruments indicated Sample I
fried with oil mixtures and the GC-FID assignment confirmed; however, its label falsely
indicated it as containing only sunflower oil. GC-FID assignment showed that sample E
contained canola oil as its main component and at least one other type of oil. In the Raman
and NIR SIMCA projection plots, Sample E was clustered close to canola and MO SUN
classes in the 3D environment. Sample E was predicted as a mixture accurately in the NIR
SIMCA prediction. However, due to the small interclass distance (1.5) between canola
and MO SUN classes in the Raman SIMCA model, the oil from sample E was predicted
as canola oil instead of the oil mixture in the Raman SIMCA prediction. The oil from
Sample F was identified as a mixture based on its GC-FID result. In the Raman SIMCA
projection plot, this oil mixture was clustered very close to the canola group, which led to
the false prediction as canola oil. On the other hand, the NIR SIMCA model accurately
predicted sample F as the oil mixture, though this sample was clustered close to the canola
group in the NIR projection. Our results demonstrated some compositional similarities
between canola oil and sample E and F. Sample M was also identified as an oil mixture
based on GC-FID, and it was projected in the space closed to canola and corn clusters in the
Raman and NIR projection plots. Raman and NIR SIMCA models both predicted sample
M accurately as an oil mixture.

Sensitivity determined the ability of the classification model to identify the sole oil
type of potato chips, while specificity evaluated the capability of our model to discriminate
the oil mixture from the sole oil types [28]. The predictive performance statistics of the NIR
SIMCA model showed 100% sensitivity (ntrue positive = 12, nfalse negative = 0) and 100% speci-
ficity (nfalse positive = 0, ntrue negative = 4) (Table 3) in classifying the independent samples,
matching the results obtained from the GC-FID method. The Raman SIMCA model showed
100% sensitivity (ntrue positive = 12, nfalse negative = 0) and 50% specificity (nfalse positive = 2,
ntrue negative =2) (Table 3) since Sample E and F which are oil mixtures based on the GC-FID
results falsely predicted as samples using a sole oil source.
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Table 3. Specificity and sensitivity values of SIMCA models obtained from the handheld Raman
(1064 nm) and the miniature NIR spectral data.

Model Types Sensitivity (%) Specificity (%)

Raman 100 50

NIR 100 100

Similar to our research using the Raman approach, Yang et al. [50] used linear discrim-
inant analysis (LDA) and canonical variate analysis (CVA) to discriminate corn oil, peanut
oil, canola oil, safflower oil, etc., resulting in about 94% classification accuracy with their
FT-Raman equipment. In addition, Velioglu et al. [52] differentiated seven vegetable oils
successfully using principal component analysis (PCA) by Raman spectroscopic barcode.
Similar to our NIR approach, Yang et al. [50] differentiated oils using LDA and CVA with
93% accuracy with their FT-NIR equipment, and Bewig et al. [53] discriminated vegetable
oils successfully by NIR reflectance spectroscopy. Based on these previous studies, we ex-
plored a novel strategy to apply supervised pattern recognition that allows us to predict
the oil type in the further application, and we also analyzed the ability of our model to
predict the oil mixture. In addition, to our best knowledge, our study is the first in the
literature to apply Raman and NIR to the potato chip (food matrix) oil authentication.

Our model generated by using the Raman and NIR spectra coupled with pattern
recognition analysis has adequate ability to rapidly (~1 min for Raman, ~20 sec for NIR)
authenticate the mislabeling problem in potato chip products and be a potentially useful
tool to perform in-situ screening of potato chip oil types in the market.
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3.3. PLSR Models for Raman and NIR Spectroscopy

Saturated (SFA), monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA),
palmitic acid (C16:0), oleic acid (C18:1 n-9) and linoleic acid (C18:2 n-6), respectively,
were predominant in vegetable oils and their contents are related to oil and product
stability and quality [33]. Therefore, it is crucial to monitor the major fatty acid content in oil
during potato chip manufacturing and storage [54]. The quantitative models, partial least
squares regression (PLSR) models, were developed using the handheld Raman (1064 nm)
and NIR spectral data based on the reference value of fatty acid composition (Figure 5).
The performance statistics of PLSR models generated using a calibration (n = 102) and
external validation (n = 16) data set are summarized in Table 4. The number of samples and
the range in calibration models are not all the same because of the outlier exclusion [28].
Six factors were chosen to generate all the FTIR and Raman calibration models based on
the standard error of cross-validation (leave-one-out) result, achieving the best quality of
the models and avoiding the risk of overfitting at the same time [55].
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Table 4. The performance statistics of Partial Least Square Regression (PLSR) models developed using a training (n = 102)
and an external validation (n = 16) data set based on Raman and NIR spectral data for estimating palmitic, oleic, linoleic
acid composition in potato chip samples.

Approach Fatty Acid
Training Model External Validation Model

Range N a Factor SECV b Rcal Range N c SEP d Rval

Raman
Palmitic (%) 2.4–36.3 101 6 1.08 0.98 3.7–20.3 16 1.08 0.97

Oleic (%) 18.9–86.9 102 6 2.26 1 19.1–84.9 16 1.84 1
Linoleic (%) 5.3–62.4 102 6 1.48 1 7.5–57.5 16 1.31 1

NIR
Palmitic (%) 2.5–27.2 94 6 1.06 0.98 3.7–20.3 16 1.60 0.97

Oleic (%) 18.9–86.9 95 6 2.61 0.99 19.1–84.9 16 2.87 0.99
Linoleic (%) 5.3–62.4 101 6 2.47 0.99 7.5–57.5 16 3.55 0.99

a Sample number in the training models. b Standard error of cross validation. c Sample number in the external validation models.
d Standard error of prediction.

Our PLSR models showed a strong correlation (Rcal > 0.98 and Rval > 0.97) in pre-
dicting palmitic, oleic, and linoleic acid content in potato chip oils. The standard error of
prediction (SEP) values, ranging from 1.08%–1.84% for the three predominant fatty acids
in Raman validation models and ranging from 1.60%–3.55% for NIR external validation
models, are similar to the standard error of cross validation (leave-one-out) values in each
calibration model which demonstrate the robustness of the models. Overall, the Raman
regression models demonstrated superior performance than those generated by the NIR
sensor, especially for linoleic acid. The correlation coefficient of validation and SEP for
linoleic acid obtained from the Raman model was 1 and 1.31%, respectively. In contrast,
the NIR model gave a Rval of 0.99 and a SEP of 3.55%. Our handheld Raman units demon-
strated better performance for the prediction of the main fatty acids composition (higher
Rcal and Rval) than the study reported by Dong and others (2013) for vegetable oils using
a portable Raman spectrometer with a shorter wavelength laser (785 nm) coupled with
least squares support vector machines [27]. Meanwhile, our NIR models showed superior
performance on higher Rval in predicting oleic and linoleic acids when compared with the
past research on oils conducted by Casale et al. [56] and lower SEP in predicting oleic acid
compared with the study reported by Sato [57] using their benchtop NIR units.

4. Conclusions

This study showed that a handheld Raman device with 1064 nm excitation laser and a
miniature NIR sensor allowed for rapid authentication of the oil type used in potato chip
manufacturing. Based on the result of GC-FID analysis, a total of 83 (~70%) potato chip
samples were identified as having been manufactured with a single oil, including corn oil
(19%), canola oil (7%), mid-oleic sunflower oil (12%), high-oleic sunflower (I) (12%), high-
oleic sunflower (II) (14%), peanut oil (3%) and cottonseed oil (4%). Combining the pattern
recognition analysis, potato chip oils were successfully clustered into their corresponding
oil type used in frying and our external validation set demonstrated a 100% accuracy for
identifying single oils by using Raman and NIR models. Interestingly, pattern recognition
predictions showed that 11% of potato chips (n = 13) that indicated a single oil in the
label were mislabeled, which was corroborated by GC-FID analysis. In addition, the same
spectra allowed the prediction of the major fatty acid composition (palmitic acid, oleic acid
and linoleic acid) with strong correlation (Rval > 0.97) and low standard error of prediction.
The performance of the PLSR models obtained from the handheld Raman device were
superior to models from portable Raman units in other studies and comparable to results
from benchtop infrared systems. The handheld Raman spectrometer and miniature NIR
sensor can provide applicable tools to perform the rapid authentication of potato chip oil
type and in-situ determination of their main fatty acid composition in the market.
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