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Abstract: Legumes are not valued by all consumers, mostly due to the prolonged soaking and
cooking process they require. This problem could be solved by preparing legume-based ready-to-eat
snacks. In this study, the effect of two different dies (circular and star-shaped, with cross-sections of
19.6 and 35.9 mm2, respectively) on the physico-chemical properties, anti-nutritional compounds,
and sensory features of extruded breakfast snacks was determined. Extruded products were obtained
from 100% legume flours of red lentil, faba bean, brown pea, and common bean. The extrusion-
cooking conditions were 2.5 g/s feed rate; 160 ± 1 ◦C die temperature; 16 ± 1 g/100 g feed moisture,
and 230 rpm screw speed. Star-shaped extrudates showed a lower expansion ratio, degree of starch
gelatinization, and water solubility index, as well as higher bulk density, hardness, crunchiness, and
lightness (L*) values. The oligosaccharides showed non univocal variations by changing the die,
whereas phytates did not vary at all. The extrudates from lentil flour (richer in fiber) were the least
preferred by sensory panelists, due to their hard texture. However, the spherical extrudates were
preferred over the star-shaped product. These results emphasize the possibility of improving the
physico-chemical and sensory properties of legume extrudates by selecting a proper die.

Keywords: extrusion-cooking; legumes; extruder die; texture profile; phytates; oligosaccharides

1. Introduction

Appreciated by vegetarians, vegans, and suitable for coeliac patients, legumes play an
important role in human health due to their nutritional composition [1]. Rich in proteins
and complex carbohydrates, legumes are also characterized by their low-fat content [2].
Furthermore, they are an excellent source of dietary fiber, B-group vitamins and minerals [3].
However, legumes preparation is a time-consuming step, mainly due to the prolonged
soaking and cooking process these grains require. This problem, which reduces their
consumption by consumers, could be solved by developing new food products, such as
legume-based ready-to-eat snacks [1].

Extrusion-cooking is a low cost, multifunctional and versatile food processing tech-
nique, which subjects raw materials to heat, pressure, and shear forces causing, among
major biochemical effects, starch gelatinization, protein denaturation, fiber degradation,
amylose-lipid complex formation, and Maillard reaction [4]. This technique is largely used
for the development of ready-to-eat expanded snacks with different shapes, textures, and
colors, characterized by enhanced flavor [5].

In recent years extensive research has been carried out to develop extruded products
from legumes [6,7], in most cases blended with cereals [1,8–10]. Specific studies evaluated
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the effect of extrusion-cooking parameters, such as feed moisture, extrusion temperature,
and screw speed on the nutritional [11], physico-chemical [8,10], textural [12,13], and
sensory characteristics [14] of the final product, also by means of trials directly carried
out at industrial level [15]. However, no studies were carried out on the effect of the die,
which determined the shape and size of the finished products during the extrusion of
the legumes.

Food shape and size are particularly important in capturing consumer attention [16].
These characteristics strongly influence the implicit associations that individuals make
regarding an object and its value [17]. In addition, shape and size may significantly
influence the physico-chemical characteristics [18] and even the sensory properties of
food [19].

The aim of this study was, therefore, to determine the effect of two different die config-
urations (circular and star-shaped, with cross-sections of 19.6 and 35.9 mm2, respectively)
on the physico-chemical properties, anti-nutritional compounds, and sensory features of
extruded breakfast snacks prepared from 100% legume flour (red lentil, faba bean, brown
pea, and common bean).

2. Materials and Methods
2.1. Materials

Dehulled legume flours from four different species, specifically red lentil (Lens culinaris
Medik.), faba bean (Vicia faba L.), brown pea (Pisum sativum L.), and common bean (Phaseolus
vulgaris L.) were used to obtain extruded snacks. Red lentil flour was purchased from a
local market, the faba bean and brown pea flours were supplied by Ltd. Aloja-Starkelsen
(Ungurpils, Latvia), and the common bean flour was supplied by the Priekuli Research
Centre (Institute of Agricultural Resources and Economics, Priekuli district, Latvia). All
flours were sieved on a 0.25 mm screen. The nutritional characteristics of these flours (as
reported on the labels) are shown in Table 1.

Table 1. Proximate composition and energy value of red lentil, faba bean, brown pea and common
bean flours. All values are expressed on fresh matter.

Red Lentil Faba Bean Brown Pea Common Bean

Fats (g/100 g) 1.10 1.39 1.97 1.51
Carbohydrates (g/100 g) 29.50 58.90 47.80 49.88
Total dietary fibers (g/100 g) 30.50 8.40 10.50 15.50
Proteins (g/100 g) 25.80 17.80 25.10 21.40
Energy value (kcal/100 g) 292.10 336.00 330.00 329.71

2.2. Flour Conditioning

Flours were conditioned to reach the optimal moisture content for extrusion (16 g/
100 g), as determined in the preliminary experimental tests. Considering the moisture
content of each flour type (12.95 ± 0.01, 10.87 ± 0.01, 12.54 ± 0.06 and 11.46 ± 0.06 g/100 g
for red lentil, faba bean, brown pea, and common bean flour, respectively), the amount
of water to be added was calculated. Water was then progressively added to flour in a
dough mixer (BEAR Varimixer AR10, Wodschow & Co., Brondby, Denmark) at a medium
speed, to avoid the formation of lumps, until an evenly hydrated flour was obtained (about
20 min).

2.3. Extrusion-Cooking Process

The extrusion-cooking process was carried out using a DSE30 Lab Twin-screw extruder
(Jinan Sunward Machinery Co., Ltd., Jinan City, China) with an extrusion capacity of
12 kg/h. The extruder, which had a 5-kW motor, was equipped with two 38CrMoAl
screws (32 mm diameter, 660 mm length, 500 rpm maximum screw speed). The operating
conditions, selected in the preliminary experimental tests, were as follows: feed rate,
2.5 g/s; barrel temperature of the three heating zones = 55, 95, and 125 ◦C, respectively; die
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temperature, 160 ◦C; feed moisture, 16 g/100 g; screw speed, 230 rpm. Two different dies,
with a circular and a star-shaped hole, were used (Figure 1). The cross-section of the circular
die nozzle was 19.6 mm2, whereas the star cross-section area accounted for 35.9 mm2.
Both die holes had a length of 6.35 mm. To analyze the water absorption index, water
solubility index, starch gelatinization degree, color, phytate and oligosaccharides content,
the extrudates were ground by using an electric grinder HM-5735 (Hoomei Electrical
Appliance Co., Monza, Italy), to pass through a 0.25 mm sieve. The other analyses were
carried out on the entire extrudates.
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Figure 1. Circular (a) and star-shaped (b) dies used in the experimental trials.

2.4. Bulk Density and Expansion Ratio

Bulk density (BD) of the extruded products was determined by a rapeseed displace-
ment method, and calculated according to the Equation (1) reported by Koksel and Masat-
cioglu [20]. Randomly selected whole pieces (10 ± 0.1 g) of each type of extruded product
were weighted:

BD (g/cm3) = We × Ve−1 = We × (ρs × Ws−1) (1)

where, We and Ve are the weight (g) and the equivalent volume (cm3) of the extruded
products, respectively. Ve coincides with the ratio between the rapeseed density (ρs) and
the rapeseed weight (Ws), with the same volume as the extrudates. Five replicates for each
sample were carried out.

The expansion ratio (ER) was calculated as the ratio of extruded product diameter
(measured using a calliper) to extruder die hole diameter, as reported by Koksel and
Masatcioglu [20]. Ten replications were carried out.

2.5. Water Absorption Index and Water Solubility Index

The water absorption index (WAI) and the water solubility index (WSI) of the extruded
products were determined according to Equations (2) and (3), reported by Janve and
Singhal [21].

WAI (g/g) = (weight of sediment)/(sample weight) (2)

WSI (g/100 g) = [(weight of dry solids in supernatant)/(sample weight)] × 100 (3)

The WSI is the weight of dry solids in the supernatant, whereas WAI is the weight of
sediment without the supernatant per unit weight of the sample analyzed. The determina-
tion was carried out in triplicate.

2.6. Degree of Starch Gelatinization (DG)

The degree of starch gelatinization (DG) of the extruded products was determined
using the method reported by Liu et al. [22], based on the formation of a blue iodine
complex with amylose released during gelatinization, with slight modifications. Then,
40 mg of sample was dissolved in 50 mL of 0.15 M KOH, the suspension was mixed for
15 min, and then centrifuged for 10 min at 4032× g to remove the insoluble sediment.
After centrifugation, 1 mL of supernatant was neutralized with 9 mL of 0.017 M HCl.
Subsequently, 0.1 mL of iodine reagent (prepared by dissolving 1 g iodine and 4 g potassium
iodine in 100 mL of water) was added to the neutralized solution. After mixing, the
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absorbance was measured at 600 nm (A1) using a Cary 60 UV–VIS spectrophotometer
(Agilent Technologies Inc., Santa Clara, CA, USA). For each sample, a control was prepared
by using 1 M KOH and 0.1 M HCl instead of KOH (0.15 M) and HCl (0.017 M). The average
of three measurements was taken and the DG was computed using the Equation (4):

DG = A1/A2 (4)

where A1 and A2 are the absorbance at 600 nm of sample and control, respectively.

2.7. Texture Analysis

Texture analysis was carried out using the TA.HD. Plus texture analyzer (Stable
Microsystems Ltd., Godalming, UK) equipped with a cylindrical probe, with a diameter of
4.5 cm and a back extrusion cell with an inner diameter and height of 5.0 and 7.0 cm (Stable
Microsystems Ltd.), respectively. The cell was filled with 100 mL of extruded products
and the sample was compressed to 50% of the original height, as described by Smith and
Hardacre [23]. The test was conducted at the following conditions: 1.0 mm/s pre-test
speed; 5.0 mm/s test speed; 10 mm/s post-test speed; 0.049 N trigger force; 1 kN load
cell. Hardness value was considered as the maximum compression force and expressed
in Newtons (N). Crispiness was the number of positive peaks in the force versus time
graph, while crunchiness (N·s) was the linear distance of the rugged lines obtained from
the same graph. A greater number of positive peaks indicated a greater number of fracture
events, thus, crisper extrudates. A longer linear distance resulted in a longer drop from
the peak for each fracture event on average, and thus, resulted in crisper extrudates [24].
Data acquisition was performed using the “Exponent” software (Stable Microsystems Ltd.).
Five replications for each sample were carried out.

2.8. Bowl Life Analysis

The bowl life analysis was carried out using the method reported by Oliveira et al. [25],
with slight modifications. Briefly, 100 mL of extruded products were soaked in milk (fat
content 2.5 g/100 g) at 5 ◦C for 3 min, and then drained for 10 s. Subsequently, texture
analysis of the milk-soaked extruded products was performed under the same conditions
as described above for the dry products. Five replications were carried out.

2.9. Color Determination

The color of the flours and the extruded products were determined using the CM-600d
colorimeter (Konica Minolta Sensing Inc., Osaka, Japan) equipped with the SpectraMagic
NX software (Konica Minolta, Tokyo, Japan). Lightness (L*), redness (a*), and yellowness
(b*) were determined. Five replications were carried out.

2.10. Determination of Total Phytates Content

Total phytate content of flours and extruded products was determined according to
the method reported by Summo et al. [26]. In order to express the phytate content in the
sample, expressed as mg/g of phytic acid on dry matter, the results were multiplied by
0.282 (molar ratio of phytate-phosphorus in a molecule of phytate). Three replications were
carried out.

2.11. Determination of Oligosaccharides

Oligosaccharides (verbascose, stachyose and raffinose) of flours and extruded products
were determined by high-performance liquid chromatography (HPLC) (Agilent Technolo-
gies, Santa Clara, CA, USA), equipped with a 300 × 7.8 mm cation exchange column (Rezex
RCM column, Ca2+, 8 µm, Torrance, CA, USA) and Refractive Index Detector (RID 1260,
Agilent Technologies), as previously reported in De Angelis et al. [27] with few modifi-
cations. Then, 10 mg of flour or ground sample were dispersed in 10 mL of deionized
water, stirred for 5 min and filtered through 0.22 µm cellulose acetate filter. The HPLC
separation was conducted isocratically at a flow rate of 0.8 mL/min, a column tempera-



Foods 2021, 10, 3015 5 of 16

ture of 80 ◦C and a RID temperature of 40 ◦C. Deionized water was used as the mobile
phase. The identification was carried out by comparing the retention time with that of
the corresponding standard (Merck KGaA, Darmstadt, Germany). A calibration curve for
each oligosaccharide was prepared for the quantification. The analysis was carried out in
triplicate and the results were expressed as mg/g of each oligosaccharide on dry matter.

2.12. Sensory Evaluation

Twenty-eight semi-trained panelists from the Faculty of Food Technology, Latvia
University of Life Sciences and Technologies (Jelgava, Latvia) evaluated the liking of
legume-based extruded snacks according to a ranking test [28]. The samples, coded
with random numbers and arranged in pieces of 3 on transparent glass plates, were
randomly placed on the tray to be served to each panelist at the same time. For taste
neutralization between samples, warm black tea was used. Panelists were asked to arrange
the extruded product samples from 1 (the most-liked sample) to 8 (the least-liked sample),
according to their degree of liking for four sensory attributes (appearance, texture, taste,
and aftertaste), using the evaluation form generated by Fizz Acquisition 2.51 software
(Biosystems, Couternon, France). The obtained data were reported as sum of ranks for
each sample.

2.13. Statistical Analysis

The experimental data of the legume flours and the extruded products were subjected
to one-way ANOVA and two-way ANOVA, respectively, followed by the Tukey’s HSD test.
The two-way ANOVA analysis was carried out considering the type of legume flour and
the type of die as factors. Significant differences among the values of all parameters were
determined at p < 0.05 by the Minitab 17 Statistical Software (Minitab, Inc., State College,
PA, USA, 2010). Data obtained from the sensory evaluation were statistically analyzed by
the Friedman test using Fizz Calculation 2.60 software (Biosystems, Couternon, France),
resulting in a significance level set at p < 0.05.

3. Results and Discussion
3.1. Characteristics of Flours Used in the Experiments

The flours used to produce the extruded snacks are shown in Figure 2. Significant
differences in the color parameters (L*, a* and b*) were found among them (Table 2). Red
lentil flour had the highest a* and b* values and the lowest L* value. Common bean flour
was the lightest, followed by brown pea and faba bean flours. Brown pea flour showed the
lowest a* and b* values, the latter without a significant difference with common bean flour.

Significant differences (p < 0.05) among flours were observed in the content of anti-
nutritional compounds (Table 3). Legumes contain several anti-nutritional compounds,
including phytic acid and non-digestible oligosaccharides [29,30]. Phytates chelate several
important divalent cations, such as Fe, Zn, Ca, and Mg, reducing their availability for
absorption and use in the small intestine [31]. Raffinose family oligosaccharides, such as
raffinose, verbascose and stachyose, cause flatulence and discomfort in humans [32].
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(2), brown pea (3), and common bean (4). The letter “a” indicates the flours and the letters “b” and “c” indicate ground
spherical and star-shaped extruded products, respectively.

Table 2. Color parameters (mean ± standard deviation, n = 5) of flours of red lentil, faba bean, brown
pea, and common bean.

Red Lentil Faba Bean Brown Pea Common Bean

L* 84.79 ± 0.36 c 87.56 ± 0.03 b 87.85 ± 0.31 b 89.12 ± 0.37 a

a* 9.45 ± 0.12 a −0.49 ± 0.03 b −0.75 ± 0.03 c −0.56 ± 0.02 b

b* 21.85 ± 0.25 a 14.50 ± 0.05 b 13.16 ± 0.02 c 12.93 ± 0.04 c

Different letters in the rows indicate significant differences (p < 0.05) among legume flour.

Table 3. Anti-nutritional compounds (mean ± standard deviation, n = 3) of flours of red lentil, faba bean, brown pea, and
common bean.

Red Lentil Faba Bean Brown Pea Common Bean

Phytates (mg phytic acid/g d.m.) 3.49 ± 0.09 d 7.51 ± 0.09 b 4.69 ± 0.02 c 9.09 ± 0.11 a

Verbascose (mg/g d.m.) 16.09 ± 0.09 b 12.74 ± 0.10 c 29.66 ± 0.23 a 12.65 ± 0.40 c

Stachyose (mg/g d.m.) 28.89 ± 0.67 c 39.32 ± 1.11 a 19.16 ± 0.85 d 35.37 ± 0.98 b

Raffinose (mg/g d.m.) 16.28 ± 0.68 a 2.80 ± 0.14 d 10.10 ± 0.88 b 5.99 ± 0.43 c

Different letters in the rows indicate significant differences (p < 0.05) among legume flour.

Common bean flour had the highest content of phytates, followed by faba bean, brown
pea, and red lentil flours, respectively, in agreement with other studies [33]. Brown pea flour
was characterized by the highest verbascose, although it had the lowest stachyose content.
Faba bean flour had the highest content of stachyose and the lowest content of raffinose.
The content of oligosaccharides may vary among different legume species and varieties
and depends on the growing environment [34]. Vidal-Valverde et al. [35] reported a high
variability among 18 different varieties of pea for raffinose (4.10–10.30 mg/g), stachyose
(10.70–26.7 mg/g) and verbascose (0.00–26.70 mg/g). Tahir et al. [36] found higher values
of stachyose than raffinose and verbascose in 11 lentil varieties, in agreement with our
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findings. Oligosaccharides represent a major limitation for the extensive use of legumes,
both at a domestic and an industrial level [37].

3.2. Physico-Chemical Properties of Extruded Products

Significant differences (p < 0.05) were found among the extruded products for all
physico-chemical parameters, except for water absorption index (WAI), as a function of
the legume used, the type of die, and their interaction (legume × die) (Table 4). WAI was not
influenced by the type of die.

Table 4. Physico-chemical parameters (mean ± standard deviation) of spherical and star-shaped extruded products obtained
from different legume flours (n = 5 for BD; n = 10 for ER; n = 3 for the other parameters).

Die
Configuration Legume

Physico-Chemical Parameter

BD
(g/cm3) ER WAI

(g/g)
WSI

(g/100 g)
DG

(g/100 g)

Spherical

Red lentil 0.41 ± 0.01 b 2.10 ± 0.22 c 3.83 ± 0.18 a 9.32 ± 0.30 d 95.21 ± 0.63 c

Faba bean 0.21 ± 0.02 d 2.46 ± 0.09 b 3.22 ± 0.05 b 16.79 ± 0.25 a 98.29 ± 0.20 a

Brown pea 0.21 ± 0.00 d 2.78 ± 0.12 a 3.34 ± 0.14 b 12.99 ± 0.89 b 96.96 ± 0.66 b

Common bean 0.20 ± 0.01 d 2.56 ± 0.23 b 2.49 ± 0.09 c 12.95 ± 0.61 b 98.05 ± 0.05 a

Star-shaped

Red lentil 0.60 ± 0.03 a 1.14 ± 0.04 f 4.05 ± 0.20 a 7.68 ± 0.36 e 96.82 ± 0.21 b

Faba bean 0.27 ± 0.02 c 1.56 ± 0.05 de 2.60 ± 0.03 c 13.08 ± 0.56 b 93.25 ± 0.14 d

Brown pea 0.27 ± 0.01 c 1.70 ± 0.17 d 3.33 ± 0.02 b 10.62 ± 0.20 cd 92.75 ± 0.40 d

Common bean 0.25 ± 0.01 c 1.42 ± 0.07 e 2.81 ± 0.18 c 11.77 ± 0.61 bc 96.99 ± 0.01 b

Legume p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001
Die p < 0.001 p < 0.001 p = 0.659 p < 0.001 p < 0.001
Legume × die p < 0.001 p < 0.05 p < 0.001 p < 0.01 p < 0.001

BD = bulk density; ER = expansion ratio; WAI = water absorption index; WSI = water solubility index; DG = degree of starch gelatinization.
Different letters in column indicate significant differences (p < 0.05) between both shapes of products (sphere and star) considering the
interaction between the two factors (legume and die).

Considering the legume type, the extruded products obtained from red lentil had
the highest bulk density (BD) and WAI, as well as the lowest expansion ratio (ER) and
water solubility index (WSI). Brown pea, instead, showed the highest ER. The spherical
extrudates of brown pea, in particular, were well expanded and larger than others with the
same shape (Figure 3). Common bean extrudates, both spherical and star-shaped, showed
the highest degree of starch gelatinization (DG). All flours tended to expand more through
the circular die, leading to extruded products characterized by higher ER, DG, and WSI, as
well as a lower BD, than the star-shaped ones.

The effect of the die could be explained by considering the different friction to which
the product was subjected during the extrusion. The circular cross-section was smaller than
the star-shaped one (19.6 vs. 35.9 mm2). Consequently, the conditioned flour was subjected
to elevated levels of friction and pressure flowing through the circular die, compared
with the star-shaped one. In turn, higher levels of friction induced heat generation and
increased the actual extrusion temperature. Higher pressure and temperature are known
to promote more expanded and less dense products [11,38], explaining the higher ER
and lower BD of spherical extrudates. In addition, a specific effect of geometry can be
hypothesized, not related to the size of the die hole. The star-shaped cross section is
characterized by the presence of angles, absent in the circular one, which could have
caused a mechanical breaking of bubbles in the gelatinized starchy matrix flowing through
the die, further disturbing the expansion of the extrudate. The increase in the die nozzle
diameter was found to cause a decrease in radial expansion in yellow corn extrudates [39].
A higher extrusion pressure also induces a higher degree of starch gelatinization [39], as
was observed in the spherical extrudates, compared with the star-shaped ones, except for
the red lentil-based products, due to their high fiber content. The presence of the fiber,
in fact, restricted the starch gelatinization required for the expansion of the expanded
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snacks [40]. Starch gelatinization, in turn, positively influenced the volume expansion of
the extrudate.
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ER and BD are physical parameters capable of influencing the consumer acceptability
of extruded products [11]. Several studies reported an inverse relation between BD and
ER [8,11]. The same trend was observed in our work, where a negative correlation between
BD and ER (r = −0.631; p = 0.093) was found. Furthermore, the fiber present in the starting
flour may also affect both of these parameters, as reported by other researchers [41–43].
Dietary fibers lead to cell-wall rupture, before air bubbles can expand, reducing the overall
expansion [42]. As a result, extruded products with a high fiber content are usually
compact and hard, not crispy, and have an undesirable texture [44]. Therefore, red lentil
flour, showing the highest fiber content (Table 1), led to extrudates with the lowest ER and
highest BD.

The extrusion-cooking conditions related to the die used, as the presence of fibers could
also influence the WAI and WSI values, representing the amount of water absorbable by
the extruded product, and the quantity of soluble substances formed during the extrusion
process from starch, proteins, and fibers [21].

WSI was influenced by all factors considered (legume, die and legume × die); however,
the effect of die on WAI was found not significant. Regarding the effect of the type of
legume on WAI, higher fiber levels, absorbing and retaining the water within a well-
developed starch-protein-polysaccharide network, resulted in an increase in this parameter,
as reported by Tas and Shah [45]. Furthermore, extrusion-cooking may induce structural
modifications, such as the reduction in the fiber particle size increasing the surface area
and, therefore, their water absorption capacity [46]. Although extrusion-cooking is known
to induce an increase in the WSI parameter, due to the degradation of polymers to low
molecular weight soluble compounds [47], other factors, such as the interaction between
fiber and starch, might have affected WSI [48]. In fact, red lentil products, which had
the highest total dietary fiber content, were characterized by the lowest WSI. WSI, which
was influenced by the die configuration, was higher in spherical than in star-shaped
extrudates, due to the increase in extrusion temperature induced by friction, in the case of
the circular die.

3.3. Texture of Dry and Milk-Soaked Extruded Products

The texture analysis (Table 5) was not applicable to the red lentil extrudates, due to
their particularly hard texture (confirmed by their high BD and low ER), exceeding the
instrumental range of measure of the texture analyzer used. Other authors observed that ex-
trudates with high BD and low ER were characterized by very large [21] to non-analyzable
hardness [49]. A significant effect (p < 0.05) of the type of legume, die configuration and their
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interaction (legume × die) was observed for all textural parameters, except for crispness of
dry products, which was not influenced by the die. Star-shaped extrudates were charac-
terized by higher hardness and crunchiness than the spherical extrudates, in agreement
with the ER and BD values. As for crispness, brown pea spherical extrudates were the
crispiest, without significant differences to the brown pea star-shaped extrudates. This
trend was due to the higher ER and lower BD and hardness values, which characterized
both brown pea products. Koksel and Masatcioglu [20] reported a significant negative
correlation between ER and hardness, as well as between BD and crispness, in yellow pea
puffs. Other researchers reported that extrudates which were less hard and crunchy had
higher crispness values [25,50]. Crispness and crunchiness are important quality attributes,
used to describe the texture of extruded snack products. Consumer acceptability is strongly
influenced by both crispness [51] and crunchiness [50,52]. Crispness and crunchiness
are two sensations that in the human brain are induced by different stimuli, during the
dynamic process of mastication [53]. Crispness could be identified as the perceived force
necessary to separate the product into two or more distinct pieces during a single bite with
the incisors [53]. Crisp products are characterized by a brittle and low-density structure,
which easily breaks and generates loud and high-pitched sounds when fractured [54].
Crunchiness is the perceived intensity of repeated incremental failures of the product
during a single complete bite with molar [53] teeth. Crunchy foods exhibit harder textures
and emit sounds at lower frequencies than crisp foods [54].

Table 5. Texture (mean ± standard deviation; n = 5) of dry and milk-soaked spherical and star-shaped extruded products
obtained from different legume flours.

Die
Configuration Legume

Dry Milk-Soaked (Bowl Life)

Hardness
(N)

Crunchiness
(N.s N·s) Crispness Hardness

(N)
Crunchiness

(N·s) Crispness

Spherical

Red lentil n.d. n.d. n.d. n.d. n.d. n.d.
Faba bean 606 ± 7 c 1799 ± 84 c 51.3 ± 2.1 cd 395 ± 3 a 610 ± 10 a 14.3 ± 2.9 b

Brown pea 477 ± 13 d 2354 ± 105 b 71.0 ± 3.6 a 384 ± 16 ab 665 ± 75 a 27.0 ± 1.7 a

Common bean 604 ± 39 c 1469 ± 68 d 53.3 ± 5.5 cd 303 ± 1 d 350 ± 3 c 8.0 ± 1.0 c

Star-shaped

Red lentil n.d. n.d. n.d. n.d. n.d. n.d.
Faba bean 747 ± 21 b 2582 ± 87 ab 59.7 ± 2.5 bc 355 ± 6 c 513 ± 22 b 15.0 ± 2.0 b

Brown pea 688 ± 13 b 2629 ± 80 a 65.7 ± 2.3 ab 366 ± 9 bc 497 ± 4 b 19.0 ± 1.0 b

Common bean 1030 ± 41 a 2372 ± 129 ab 50.0 ± 1.0 d 393 ± 8 a 429 ± 20 bc 9.3 ± 1.2 c

Legume p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001
Die p < 0.001 p < 0.001 p = 0.942 p < 0.05 p < 0.05 p < 0.05
Legume × die p < 0.001 p < 0.001 p < 0.01 p < 0.001 p < 0.001 p = 0.001

n.d. = not detectable. Different letters in the columns indicate the significant differences (p < 0.05) between both shapes of products (sphere
and star) considering the interaction between the two factors (legume and die).

The obtained results may be explained again considering the effect of die size. A
larger die cross section may reduce the viscosity and the capacity of mechanical energy
dissipation inside the extruder, producing harder and less crispy products [25]. To assess
the textural quality in the real conditions of consumption, the bowl life test was performed,
by soaking the extrudates in milk. Usually, expanded products have a greater number
of pores, which reduces the resistance to mass transfer and increases the rate of water
absorption [55]. Milk, however, contains some fat, which may block the pores of the
extrudates, reducing the absorption rate [55]. All the textural parameters decreased after
soaking, due to milk absorption and consequent softening. Liquid uptake, indeed, modifies
the microstructure and the mechanical strength of the extruded products by plasticizing
and softening the starch and protein matrix [51]. Soaking caused a hardness reduction of 20,
35 and 50% for brown pea, faba bean, and common bean spherical extrudates, respectively.
The star-shaped products behaved similarly, with a reduction of hardness ranging from
47 to 62% for brown pea and common bean extrudates, respectively. Crunchiness and
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crispness decreased even further, by 76% and 74% on average. The values of crispness
agreed with those of other studies [56].

3.4. Color of Extruded Products

Color is one of the most important characteristics of a food product, due to its marked
influence on consumer acceptability [20]. Color features are known to be influenced by the
extrusion-cooking [7]. All extrudates were darker than the corresponding flours (Figure 2).
Their overall appearance is shown in Figure 4. All color components were significantly
influenced by legume type, die configuration and legume × die interaction (Table 6). Color
features of the examined products were the result of existing pigments and the partial
incidence of Maillard reaction, due to the extrusion-cooking conditions.
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Table 6. Color parameters (mean ± standard deviation; n = 5) of spherical and star-shaped extruded
products obtained from different legume flours.

Die
Configuration Legume

Color Parameters

L* a* b*

Spherical

Red lentil 74.64 ± 0.07 b 4.18 ± 0.03 c 31.88 ± 0.02 b

Faba bean 70.45 ± 0.21 f 2.75 ± 0.06 e 20.94 ± 0.07 f

Brown pea 70.46 ± 0.09 f 2.55 ± 0.05 f 19.54 ± 0.03 h

Common bean 72.64 ± 0.04 d 4.91 ± 0.01 a 24.54 ± 0.05 c

Star-shaped

Red lentil 74.87 ± 0.06 a 4.52 ± 0.03 b 33.24 ± 0.04 a

Faba bean 72.24 ± 0.06 e 2.22 ± 0.02 h 20.70 ± 0.08 g

Brown pea 73.25 ± 0.09 c 2.39 ± 0.02 g 21.09 ± 0.07 e

Common bean 75.04 ± 0.02 a 4.09 ± 0.01 d 24.12 ± 0.02 d

Legume p < 0.001 p < 0.001 p < 0.001
Die p < 0.001 p < 0.001 p < 0.001
Legume × die p < 0.001 p < 0.001 p < 0.001

Different letters in the columns indicate significant differences (p < 0.05) between both shapes of products (sphere
and star) considering the interaction between the two factors (legume and die).

All star-shaped products were characterized by higher L* and lower a* values (the
latter with the exception of red lentil) than spherical ones. The b* index showed a non-
univocal trend. The temperature rises and shear stress related to the rotation of the screw
during the extrusion can degrade pigments, especially carotenoids, with consequent color
alterations [57]. The increase of a* and the decrease of L* may be also associated with
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the formation of brown polymers, namely melanoidins, during the Maillard reaction [12].
An increase of b* could be due to the formation, during the initial stages of the Maillard
reaction, of yellow-colored compounds, or due to the thermal oxidation of lipids in the
sample [12]. A die with a larger cross section results in lower pressure, and lower heat
development during extrusion [38,58], leading to a less intense Maillard reaction. The
consequences are a less pronounced browning and a reduced flavor development [11].
Therefore, the star-shaped extrudates, obtained through a larger cross-section which made
the extrusion process less drastic, were lighter than the spherical ones.

3.5. Anti-Nutritional Compounds of Flour and Extruded Products

The extrusion-cooking processing conditions, and the type of raw material adopted,
can both affect the amount of anti-nutritional compounds found in legume extrudates [7,59].
Comparing the native flours (Table 3) with the extrudates (Table 7), a different behavior
was found for different anti-nutritional compounds. For both star-shaped and spherical
products, phytates decreased during the extrusion-cooking of the faba bean (12% on
average), common bean (23.5% on average), and brown pea (7.9% on average) flours,
probably due to the thermal treatment related to the extrusion-cooking process.

Table 7. Anti-nutritional compounds (mean ± standard deviation; n = 3) of spherical and star-shaped extruded products
obtained from different legume flours.

Die Configuration Legume
Phytates Content

(mg Phytic Acid/g d.m.)
Oligosaccharide Content (mg/g d.m.)

Verbascose Stachyose Raffinose

Spherical

Red lentil 3.55 ± 0.05 d 17.02 ± 0.27 b 31.09 ± 0.15 d 14.18 ± 0.14 b

Faba bean 6.53 ± 0.21 b 13.69 ± 0.06 c 41.45 ± 0.64 a 3.84 ± 0.02 f

Brown pea 4.47 ± 0.04 c 28.48 ± 0.48 a 22.04 ± 0.38 e 11.43 ± 0.30 c

Common bean 6.89 ± 0.09 a 12.51 ± 0.42 d 34.76 ± 0.42 c 5.54 ± 0.40 e

Star-shaped

Red lentil 3.55 ± 0.11 d 14.50 ± 0.44 c 30.58 ± 0.67 d 17.43 ± 0.10 a

Faba bean 6.66 ± 0.22 ab 14.08 ± 0.62 c 42.52 ± 0.07 a 3.67 ± 0.32 f

Brown pea 4.17 ± 0.03 c 28.70 ± 0.12 a 22.45 ± 0.38 e 11.08 ± 0.04 c

Common bean 6.98 ± 0.03 a 11.41 ± 0.41 d 37.31 ± 1.04 b 6.93 ± 0.36 d

Legume p < 0.001 p < 0.001 p < 0.001 p < 0.001
Die p = 0.655 p < 0.001 p = 0.001 p < 0.001
Legume × die p < 0.05 p < 0.001 p < 0.01 p < 0.001

Different letters in the columns indicate significant differences (p < 0.05) between both shapes of products (sphere and star) considering the
interaction between the two factors (legume and die).

Ciudad-Mulero et al. [60] reported a greater reduction of total phytates in lentil flour
extruded at 160 than at 140 ◦C. Oligosaccharides, on the contrary, increased, especially
stachyose, and raffinose. This result could be due to the high temperature and pres-
sure adopted during the extrusion-cooking process, which can break the bonds between
oligosaccharides and other macromolecules, or may change the structure of the food
matrix, improving the extractability of these compounds [59]. The same findings were
reported by other researchers in extruded lentil snacks and in pea-rice gluten free expanded
products [59,61].

Significant differences (p < 0.05) were found for verbascose, stachyose and raffinose
as a function of the type of legume, die configuration, and their interaction (legume × die),
whereas phytic acid was not influenced by the die. Red lentil spherical extrudates were
characterized by significantly higher verbascose content than star-shaped ones, whereas
raffinose increased by approximately 7% in the latter. Common bean stars had higher
stachyose and raffinose content than spheres obtained from the same flour. In particular,
considering the spherical products, a reduction of both stachyose and raffinose by 1.7 and
7.5% was found, respectively. No significant differences were found between the two die
shapes in the faba bean and brown pea extrudates, for all the oligosaccharides. Therefore,
the behavior of single oligosaccharides depended on the extrusion conditions employed
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which, in turn, were related to the size and shape of the die cross-section, but also greatly
depended on the type of legume considered. A higher extrusion temperature and pressure
may induce the hydrolysis of verbascose into raffinose and stachyose, increasing their
contents [61], as found in the brown pea extrudates—both spherical and star-shaped—
as well as in the common bean star-shaped extrudates. Specifically, in both brown pea
spherical and star-shaped products, a reduction in verbascose of approximately 4% and
3.2%, was observed, respectively. Instead, an increase in both stachyose (by 15 and 17%) and
raffinose (by 13 and 9.7%) for spherical and star-shaped products, were found, respectively.
Although common bean star-shaped extrudates showed the same behavior as brown
pea products, raffinose increased more (16%) than stachyose (5.5%). However, Borejszo
and Khan [62] reported a decrease in raffinose and stachyose content in pinto bean flour
extruded at 163 ◦C, whereas the content of all sugars analyzed in an extruded product
containing pea increased with the extrusion process [59]. Overall, and with more evidence
for raffinose, we observed a higher reduction of oligosaccharides in the spherical products,
obtained with a die which induced higher pressure and heat generation than the star-
shaped one.

3.6. Sensory Evaluation of the Extruded Products

The ranking test results showed that both the flour and die used had a significant
influence (p < 0.05) on the liking of the extruded product sensory attributes (appearance,
texture, taste, and aftertaste) (Table 8). Extrudates obtained from red lentil (particularly
the star-shaped) were the least liked for all sensory attributes, with the worst rank sum for
“texture”. This result was due to their hard structure (too hard to be analyzed instrumentally
with the texture analyzer), being difficult to chew, and their bland taste and aftertaste.
However, red lentil spherical extrudates were liked for “appearance” and “aftertaste”,
similarly to spherical and star-shaped extrudates from faba bean and brown pea, as well
as the star-shaped common bean. Altaf et al. [5], studying chickpea-rice-extruded snacks,
reported that higher values of BD and hardness can make the product undesirable for the
consumer. In another study, 100% lentil extrudates were less accepted than extrudates from
blends of red lentil and corn [63]. On the other hand, common bean extrudates, particularly
the spherical ones, were most liked for all the attributes considered, being properly puffed
with a crunchy structure, pleasant taste and aftertaste.

Table 8. Characterization of extruded products (spheres and stars) by sensory attribute liking.

Die
Configuration Legume Appearance Texture Taste Aftertaste

Spherical

Red lentil 127 bc* 178 b 167 a 149 ab

Faba bean 106 cd 98 cd 124 b 121 bc

Brown pea 107 cd 105 cd 101 bc 113 bc

Common bean 76 d 75 d 75 c 103 c

Star-shaped

Red lentil 199 a 215 a 199 a 183 a

Faba bean 160 b 119 c 126 b 121 bc

Brown pea 132 bc 123 c 116 b 115 bc

Common bean 101 cd 95 cd 100 bc 102 c

* Sums of rank by 28 semi-trained panelists (the smaller the sum, the better the sensory attribute liking). Different
letters in the columns indicate significant differences among the sums of rank for each product (different limit at
5% of 35.93, z = 1.96), at p < 0.05.

Overall, the spherical extrudates were more appreciated than the star-shaped ones.
Shape was an intrinsic factor, able to influence the consumer perception and acceptability of
the food products. It could even influence taste perception [19,64]. However, spherical and
star-shaped extrudates did not show a significant difference in taste and aftertaste, probably
because the difference in textural features, i.e., appearance and structure, prevailed.
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4. Conclusions

The results obtained represent a step forward in the attempt to understand the ef-
fect of die configuration during the extrusion of legumes. Most of the dies used in the
industry have a circular cross section, which are therefore are commonly used in research
investigations, whereas a star-shaped die had not been studied on legumes.

The configuration of the die significantly influenced the physico-chemical properties
and sensory features of the legume-based extruded breakfast snacks. In particular, the use
of the star-shaped die, with a larger cross-section, resulted in products with a lower ER
and higher BD than the spherical extrudates, probably because of lower friction during
extrusion. Furthermore, a lower extrusion pressure also induced a lower degree of starch
gelatinization in the star-shaped extrudates, compared with the spherical ones, except
for the red lentil-based products. The effect of the die on WAI was found insignificant,
whereas WSI was higher in the spherical, rather than in the star-shaped extrudates, due to
the increase of heat generation induced by elevated friction and pressure flowing through
the circular die.

Spherical extrudates were characterized by higher crispiness, and lower hardness
and crunchiness than the star-shaped extrudates. The brown pea spherical products
were the crispiest. Moreover, the spherical products were characterized by higher L* and
lower a* values (the latter with the exception of red lentil) and were more appreciated by
panelists than the star-shaped extrudates. Regarding the anti-nutritional compounds, the
oligosaccharides showed non univocal variations by changing the die, whereas phytates
did not vary at all.

Considering that the type of legume also showed a significant influence on the quali-
tative and nutritional features of the extrudates—presumably related to the fiber content of
the flour—the increased knowledge on the effect of the die configuration could be useful
for maximizing the expansion of legume-based raw materials, in order to meet consumer
expectations for healthy food products with pleasant sensory properties.
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