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Abstract: The color stability of anthocyanins was shown to improve with addition of whey proteins
(WP). The goal of this study was to investigate the binding mechanisms of purple corn, grape and
black carrot anthocyanin extracts to native and preheated WP (40–80 ◦C, 3.6 µM) at a pH of 3 using
fluorescence quenching spectroscopy. The fluorescence spectra were collected with an excitation
wavelength of 280 nm at 25 ◦C, 35 ◦C and 45 ◦C. The quenching data were analyzed by using the Stern–
Volmer equation. The fluorescence intensity of WP decreased (up to 73%) and its λmax increased (by
~5 nm) with increasing anthocyanin concentration (0–100 µM). The quenching data showed that the
interaction between anthocyanin extracts and WP was a static quenching process. Thermodynamic
analysis showed their binding was mainly through hydrophobic interactions. Their binding affinity
was higher for preheated WP than native WP and decreased gradually with increasing preheating
temperature. Black carrot anthocyanin extract had the lowest binding affinity with WP, likely due to
the larger molecular structure. These results help better understand the protection mechanism of
native and preheated WP on anthocyanin color stability, expanding the application of anthocyanins
as food colorants that better withstand processing and storage.

Keywords: anthocyanin color stability; anthocyanin-whey protein interaction; preheating treatment;
fluorescence quenching; thermodynamic analysis

1. Introduction

Anthocyanins (ACN), as natural food colorants, are widely studied and used fre-
quently in the food industry to provide or improve color in food products like jams, canned
foods, yogurt, juices or confectioneries, because of their bright and attractive colors from
red to purple, nontoxicity and water solubility [1]. In addition to acting as food colorants,
ACN have a variety of potential health benefits. Studies showed that ACN were effective
antioxidants and might aid in the prevention of cardiovascular diseases, inflammation,
certain cancers, diabetes and obesity [2,3]. Despite their important biological effects, ACN
have limited chemical stability due to their sensitivity to different factors, such as process-
ing conditions and storage, including other food matrices, pH, temperature, light, oxygen,
metal ions, sulfur dioxide, vitamin C and enzymes [4,5]. Their limited stability constrains
their commercial application as colorants in processed foods, especially those thermally
processed. Therefore, it is meaningful and challengeable to find an effective way to reduce
ACN loss during food processing and storage.

At present, the complexation between whey proteins (WP) and ACN is receiving
increasing attention, and it is believed to occur mainly through noncovalent binding [6].
Native β-lactoglobulin (β-LG) is the one of the major proteins in WP, and is a highly-
structured globular protein with 162 amino acid residues and a molecular weight of
18,400 Da [7]. It exists as a dimer at neutral pH and is folded into a calyx form by antiparallel
β-sheets [8]. It has a hydrophobic interior pocket structure, called a “calyx structure”, which
acts as the primary binding site for the ligands. Thus, β-LG displays a strong binding
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affinity for various hydrophobic and amphiphilic ligands, including phenolic compounds,
fatty acids, retinol, β-carotene, phospholipids, vitamin D and some small acids [9–11].
Studies showed that more disordered proteins have stronger interactions with phenolic
compounds than globular proteins [12]. Thus, the thermally modified WP is expected
to have higher binding efficiency with ACN. Yet, limited information is available on the
molecular binding interaction between ACN and WP, particularly when the WP is heated
and is no longer in its native form.

Fluorescence quenching spectroscopy is useful to characterize the binding interac-
tion and structural changes of proteins with other substances, such as polyphenols, be-
cause of its easy accessibility and accuracy [13]. Protein fluorescence is attributed to both
tryptophan (Trp) and tyrosine (Tyr) residues, because they are particularly sensitive to
microenvironments, especially with an excitation wavelength of 280 nm [14]. The change
of the fluorescence emission intensity and maximum wavelength can identify the WP
structural changes, as well as its microenvironment difference [15]. Arroyo-Maya and
others demonstrated that pelargonidin quenched milk proteins fluoresce strongly due to
protein ligand binding [16]. They found that cyanidin-3-glucoside quenched milk protein
fluoresce strongly through hydrogen bonds and hydrophobic interactions, and that their
binding affinity increased with increasing preheating temperature at pH 6.3 [6]. Chung and
others found that the maximum intensity in the fluorescence emission spectra of highly
denatured WP decreased with increasing ACN concentration and their interaction might be
due to hydrogen bonding [17]. Quenching experiments by Stănciuc et al. showed that WP
structure underwent significant conformational changes through electrostatic interaction
with grape skin ACN (GSA), and GSA regularly quenched the fluorescence intensity of
WP with significant red shifts in λmax [18].

The purpose of this study was to investigate the interaction mechanism between
selected commercial ACN-based colorants (grape juice, black carrot and purple corn ACN
juice concentrates) and preheated WPs at different temperatures through fluorescence
quenching spectroscopy. It was hypothesized that ACN quenches WP’s fluorescence
strongly and ACN-WP binding is mainly through hydrophobic interactions. Previous
studies showed that the exposure of whey protein functional groups at different levels
affect the binding affinity of WP with ACN [6]. Therefore, our previous study was focused
on the interaction between ACN and preheated WP, and the results showed that preheated
WP could improve ACN heat and UV-light stability and better protect ACN from color
degradation in the presence of ascorbic acid than native WP. Therefore, it was hypothe-
sized that ACN-WP binding affinity was higher for preheated WP than native WP. The
results could improve the understanding of thermally-induced WP-ACN interaction in
the protection of ACN from degradation, as well as accelerate ACN application as food
colorants in the food industry.

2. Materials and Methods
2.1. Materials and Chemicals

Grape juice ACN concentrate and black carrot ACN juice concentrates were obtained
by DDW The Color House (Port Washington, WI, USA). Purple corn ACN powder was
obtained from Artemis International, Inc. (Fort Wayne, IN, USA). Grass-fed WP isolate (less
than 1% Non-GMO sunflower lecithin) was purchased from ProMix Nutrition (Gainesville,
FL, USA). The chemicals and reagents (ACS or HPLC grade) were purchased from Fisher
Scientific (Fair Lawn, NJ, USA), including methanol, acetonitrile, citric acid, hydrochloric
acid (HCl), sodium phosphate dibasic (Na2HPO4), potassium chloride and sodium acetate.
ACS grade ethyl acetate and formic acid were obtained from Mallinckrodt Chemicals
(Bedminster Township, NJ, USA) and Honeywell (Morris Plains, NJ, USA), respectively.

2.2. Buffer System and Sample Preparation

The commercial WP isolate powder was dissolved in citric acid–Na2HPO4 buffer at
pH 3.0 to reach a concentration of 3.6 µM. The buffer solution was prepared with 0.1 M
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citric acid and 0.2 M Na2HPO4 according to Dawson [19]. The WP solutions were preheated
water baths (Fisher Scientific, Fair Lawn, NJ, USA) at 40 ◦C, 50 ◦C, 60 ◦C, 70 ◦C and 80 ◦C
separately for 30 min and then quickly cooled in ice. The preheated WP solutions and their
unheated counterparts (native WP) were stored at 4 ◦C until analysis.

Purple corn, grape and black carrot ACN extracts were semipurified through solid-
phase extraction using a C-18 cartridge [20]. Ethyl acetate was used to remove less polar
phenolics. The semipurified pigments were redissolved in acidified (0.01% v/v HCl)
distilled water to 50 mL, and stored at −18 ◦C to minimize pigment degradation. The pH
differential method was used to determine monomeric ACN concentration [21].

Semipurified ACN pigments were mixed with the native WP solutions at room tem-
perature and vortexed for 20 s. The final concentration of proteins in the mixtures was
3.6 µM and the ACN concentrations were 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 µM,
respectively. The pH of the WP solution was not affected by the addition of small amount
of ACN. To further explore the effect of WP preheating temperature on the ACN–WP
interaction, 50 µM semipurified ACN pigments were mixed with different preheated WP
solutions (3.6 µM, 40–80 ◦C) at room temperature. The fluorescence spectra were analyzed
for all samples.

2.3. Anthocyanin Identification

Individual semipurified ACN pigment samples were then analyzed and identified by
ultra-high-performance liquid chromatography (uHPLC) (Shimadzu, Columbia, MD, USA).
A reverse-phase Symmetry C-18 (5 µm, 4.6 × 150 mm) column (Phenomenex, Torrance, CA,
US) was used. All the extracts were filtered through a 0.22 µm syringe filter (Phenomenex,
Torrance, CA, USA) before injection into the HPLC. Samples were analyzed using a flow
rate of 0.2 mL/min. The mobile phase consisted of solvent (A) 4.5% (v/v) formic acid
and solvent (B) 100% acetonitrile. For black carrot ACN, the linear gradient used in the
analysis was from 2–8% B 1 min–6 min, 8% B 6–10 min, 8–20% B 10 min–13 min, 20–40%
B 13 min–13.5 min, 40% B 13.5–14 min and 40–2% B 14–14.5 min. For purple corn ACN,
the linear gradient used was from 2–20% B 1 min–15 min, 20–40% B 15–15.5 min, 40% B
15.5 min–16 min and 40–2% B 16–16.5 min. For grape ACN, the linear gradient was from
2–6% B 1 min–2 min, 6–10% B 2–10 min, 10–40% B 10 min–24 min, 40% B 24 min–26 min
and 40–2% B 26–27 min. Elution of ACN and all phenolics were monitored at 520 nm and
280 nm respectively, and the whole spectrum (260–700 nm) was also collected. Total ion
scans and selected ion monitoring were conducted. Mass to charge ratios of 271, 287, 303,
301, 317 and 331 corresponded to the most six common ACN aglycones.

2.4. Fluorescence Spectroscopy

For native WP, thermally-induced WP and WP–ACN mixtures, 250 µL of each sample
was aliquoted to Greiner black 96-well plates, and the spectra were analyzed by using
a SpectraMax M2 Microplate Reader (Molecular Devices, Sunnyvale, CA, USA). The
fluorescence was measured at a fixed WP concentration (3.6 µM) in the presence of various
concentrations of ACN rich extracts (0~100 µM). The emission spectra were individually
recorded from 360 to 450 nm, with an excitation wavelength of 280 nm at 25 ◦C, 35 ◦C and
45 ◦C [16]. All tests were done in triplicate.

2.5. Fluorescence Quenching Analysis

The fluorescence quenching mechanism can be described using the Stern–Volmer
Equation (1):

F0/F = 1 + KSV [Q] = 1 + Kqτ0 [Q], (1)

where F0 and F represent the fluorescence intensities of proteins alone and in the presence
of a given concentration of ACN (quencher), respectively, Q is the concentration of free
ACN and Ksv is the Stern–Volmer constant, which is given by the result of the quenching
bimolecular rate constant Ksv = Kqτ0, where Kq is the bimolecular quenching constant and
τ0 is the lifetime of the fluorophore being quenched and equals 10−8 s [22]. If Kq was much
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higher than the limiting diffusion rate constant of the biomolecules (2 × 1010 M−1s−1),
it indicated that the WP and ACN interaction was mainly static quenching. For static
quenching, the binding constant (Ks) was calculated using nonlinear least-squares fitting
of the experimental data, as shown in Equation (2) [23]:

log[(F0 − F)/F] = log Ks + m log[Q], (2)

where m represents the kinetic reaction order (molecularity in Q). M measures the number
of Q molecules that interact simultaneously with each site and does not express the number
of independent and equivalent binding sites [23].

2.6. Thermodynamic Analysis

The energetics of protein–ligand equilibrium can be characterized by the Gibbs free
energy (∆Go), the binding enthalpy (∆Ho) and entropy (∆So). These parameters were used
to determine the type of interaction between biomacromolecules and small molecules [24].
The ∆Go was calculated by Equation (3). The ∆Ho and ∆So were achieved with linear
fitting using the van’t Hoff Equations (4) and (5) [25]:

∆Go = −RTlnKs, (3)

lnKs = (−∆Ho/R)(1/T) + (∆So/R), (4)

∆Go = ∆Ho − T∆So, (5)

where T is the absolute temperature (K), Ks is the binding constant associated with temper-
atures and R is the gas constant (8.314 J mol−1 K−1).

2.7. Statistical Analysis

All the analyses were done in triplicate and evaluated by their means and standard
deviations. Statistical differences between two groups were evaluated using the Tukey
posthoc test by SPSS (IBM, Armonk, New York, NY, USA). A probability value of p < 0.05
was considered to be significant. The best-fit values for binding parameters were cal-
culated by applying nonlinear least-squares regression using Microsoft Excel (Microsoft
Corporation, One Microsoft Way, Redmond, Washington, DC, USA).

3. Results
3.1. Analysis of Fluorescence Spectra of Whey Protein in the Presence of Anthocyanins

Purple corn, grape and black carrot were selected as three ACN sources in this
study. Their compositions were analyzed by ultra-high-performance liquid chromatogra-
phy (uHPLC). The purities for grape, black carrot and purple corn ACN in the ACN
extracts were 84.50%, 88.63% and 81.72%. Grape ACN extract mainly contains del-
phinidin (Dp)-3,5-diglucoside (2.64%), cyanidin (Cy)-3,5-diglucoside (1.16%), petunidin
(Pt)-3,5-diglucoside (5.70%), peonidin (Pe) -3,5-diglucoside (19.12%), malvidin (Mv)-3,5-
diglucoside (37.77%), Mv-3-glucoside (2.62%), Pt-3-coumaroyl-5-diglucoside (1.84%), Pe-
3-coumaroyl-5-diglucoside (1.50%) and Mv-3-coumaroyl-5-diglucoside (9.54%). Most
anthocyanin were glycosylated by two glucoses. The main anthocyanins were mal-
3,5-diglucoside and peo-3,5-diglucoside and their acylation counterparts. Black carrot
ACN was mainly acylated, such as Cy-3-xylgalactoside (12.55%), Cy-3-xylosyl-(sinapoyl-
glucosyl)-galactoside (7.14%), Cy-3-xylosyl-(feruloyl-glucosyl)-galactoside (35.35%), Cy-3-
xylosyl-(coumaroyl-glucosyl)-galactoside (11.54%), Pe-3-galalactoside (1.68%) and Pe-3-
xylosyl-(sinapoyl-glucosyl)-galactoside (3.37%). All the ACN were glycosylated by one
galactose. The main ACN were cyanidin-based (~68% of total anthocyanins) and most of
them were acylated (~57% of total ACN). Compared with the other two ACN, black carrot
ACN showed a bigger molecular structure, because most of the ACN had two or three
sugars. Purple corn ACN included Cy-3-glucoside (20.64%), Pe-3-glucoside (4.14%), Pe-
3-glucoside (8.27%), Cy-3-(6”-malonylglucoside) (4.56%) and Pe-3-(6”-malonylglucoside)
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(2.90%). All peaks were glycosylated by one glucose and the main ACN were Cy-3-
glucoside, Pe-3-glucoside and their malonic acid acylation counterparts.

Addition of ACN-rich extracts to WP solutions resulted in changes to the WP fluores-
cence spectra, both in fluorescence intensity and λmax. ACN-rich extracts may have some
fluorescence, but their intensities were negligible compared to that of WP [26]. Therefore,
the change in fluorescence can be attributed to the interaction between the extract and
the WP. Figure 1 shows the fluorescence emission spectra of 3.6 µM WP with the different
concentrations of ACN rich extracts (0~100 µM) at an excitation wavelength of 280 nm.
The λmax of WP was around 372 nm. The fluorescence intensity of the WP–ACN solutions
decreased with increasing ACN concentration, which indicated ACN had a concentration-
dependent quenching effect on WP fluorescence. When ACN concentration increased to
100 µM, the fluorescence intensity decreased by about 68% for grape and black carrot ACN
extracts and 73% for purple corn ACN extract. The λmax of WP showed a red shift from
372 nm to 378 nm with increasing ACN concentration (Figure 1). This indicated that the
microenvironment of WP became more hydrophilic after the addition of ACN [27]. A simi-
lar finding was also shown in a previous study, where the fluorescence intensity of β-LG
decreased and the λmax of β-LG showed a red shift with increasing malvidin-3-glucoside
concentration [28].
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Figure 1. Fluorescence spectra of 3.6 µM native whey protein in the presence of 0~100 µM purple corn (A), grape (B) and
black carrot (C) anthocyanin-rich extracts at an excitation wavelength of 280 nm at 25 ◦C and pH 3.

3.2. Fluorescence Quenching Study of Anthocyanin-Whey Protein Interaction

Figure 2 shows the Stern–Volmer plot of WP fluorescence quenched by different con-
centrations of ACN at 25 ◦C, 35 ◦C and 45 ◦C, and relative quenching parameters were
calculated; these are shown in Table 1. The Kq parameters were used to determine the
quenching process. Fluorescence quenching can be classified into static quenching and dy-
namic quenching [29]. The two different quenching processes are reported to be influenced
by the temperature of the environment [30]. Static quenching is controlled by the formation
of a complex between the fluorophore and the quencher. Therefore, the static quenching
constant decreases with temperature, because the stability of complex may be affected by
the increased temperature [30]. Dynamic quenching is caused by diffusion and collision
encounters. Therefore, the dynamic quenching constant will increase at higher temper-
atures due to higher diffusion and collision [31]. Studies indicated that the linear range
in the Stern–Volmer plot could be used to determine whether the quenching mechanism
was static or dynamic [32]. The Kq values obtained from the three reactions were much
higher than the limiting diffusion rate constant of the biomolecules (2 × 1010 M−1s−1),
indicating that all three ACN-rich extracts could quench the WP fluorescence through static
quenching, which was induced mainly by the formation of ACN-WP complex [29]. The
Kq value had a slight, but not significant, increase as temperature increased, so it did not
provide clear evidence of dynamic quenching between ACN and WP. Further, for purple
corn ACN, the Kq value at 35 ◦C was lower than that at 25 ◦C, which again suggested that
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ACN–WP was not dynamic quenching. On the other hand, the data in Figure 2 seemed a
little nonlinear, which might be explained by the fact that the samples in this study were a
mixture of ACN extracts rather than an ACN isolate. The phenolics or other compounds in
the extracts might interfere with the ACN–WP quenching, and resulting in a more complex
quenching process. A similar result was also found by Khalifa et al., showing that a static
and heat-stable binding occurred between WP and mulberry ACN extract, leading to WP
size and secondary structure changes [33].
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Figure 2. The Stern–Volmer plots for the quenching of whey protein by purple corn (A), grape (B) and black carrot (C)
anthocyanin-rich extracts at 25 ◦C, 35 ◦C and 45 ◦C (used for Ksv and Kq calculations). Data presented are means of three
replications. Standard deviations for all data points are less than 0.1.

Table 1. The Stern–Volmer constants, quenching constants, binding constants and thermodynamic
parameters for purple corn, grape and black carrot anthocyanin-rich extracts binding to whey protein
at 25 ◦C, 35 ◦C and 45 ◦C (pH 3).

Parameters
T (◦C)

25 35 45

Purple corn

Ksv (×104 M−1) 3.02 ± 0.07 2.97 ± 0.13 3.1 ± 0.05
Kq (×1012 M−1s−1) 3.02 ± 0.07 2.97 ± 0.13 3.1 ± 0.05

Ks (×103 M−1) 4.82 ± 0.15 4.94 ± 0.28 5.70 ± 0.19
∆Ho (×103 J mol−1) 6.52
∆Go (×104 J mol−1) −2.10 −2.18 −2.29
∆So (J mol−1 K−1) 92.40 70.71 71.89

Grape

Ksv (×104 M−1) 2.31 ± 0.07 2.33 ± 0.04 2.35 ± 0.07
Kq (×1012 M−1s−1) 2.31 ± 0.07 2.33 ± 0.04 2.35 ± 0.07

Ks (×103 M−1) 4.09 ± 0.78 4.86 ± 0.79 5.99 ± 1.23
∆Ho (×103 J mol−1) −6.49
∆Go (×104 J mol−1) −2.06 −2.10 −2.15
∆So (J mol−1 K−1) 47.36 68.29 67.77

Black carrot

Ksv (×104 M−1) 2.44 ± 0.11 2.46 ± 0.04 2.52 ± 0.03
Kq (×1012 M−1s−1) 2.44 ± 0.11 2.46 ± 0.04 2.52 ± 0.03

Ks (×103 M−1) 1.00 ± 0.21 1.03 ± 0.12 1.14 ± 0.18
∆Ho (×103 J mol−1) 4.90
∆Go (×104 J mol−1) −1.71 −1.78 −1.86
∆So (J mol−1 K−1) 73.89 57.64 58.49

For the static quenching process, the double logarithm regression curves of log [(F0 −
F)/F] versus log [ACN] are shown in Figure 3, and the binding constants Ks are listed in
Table 1. The Ks for all three ACN–WP solutions were in the order of 103, indicating that
ACN-rich extracts had a strong binding affinity toward WP. The Ks values increased with
increasing temperature, so their binding reaction was endothermic [24]. Black carrot ACN
extract had a much smaller binding affinity with WP (Ks ~ 1 × 103 M−1) than purple corn
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and grape ACN extracts (Ks ~ 5 × 103 M−1). This could be explained by their different
ACN molecular structures. According to our previous study, black carrot ACN were
mainly acylated with two or three glycosylations. Thus, the large molecular structure of
black carrot ACN extract inhibited interaction with WP, resulting in lower binding affinity.
Further, purple corn and grape ACN extracts exhibited lower ACN purity than black carrot
ACN extract, meaning that other compounds other than ACN that remain in the extract,
like phenolics, also bind with WP.
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3.3. Thermodynamic Analysis between Whey Protein and Anthocyanin

The thermodynamic parameters associated with the WP–ACN interactions are shown
in Table 1. The signs and magnitudes of thermodynamic symbols were used to determine
the different binding force types [34]. There are four main types of noncovalent binding
forces involved in the interaction between molecules, namely, hydrophobic interaction, hy-
drogen bonding, electrostatic interactions and van der Waals force [24]. Typically, ∆Ho > 0,
∆So < 0 is related to electrostatic and hydrophobic force, ∆Ho > 0, ∆So > 0 identifies hy-
drophobic force, ∆Ho < 0, ∆So < 0 suggests van der Waals forces or hydrogen bonding, and
∆Ho ~ 0, ∆So > 0 implies electrostatic force [34]. However, protein association reactions are
very complex and thermodynamic parameters are affected by many factors and cannot be
decided by a simple rule [34]. As shown in Table 1, the ∆Go values for all three ACN-rich
extracts were negative, which indicated that the binding process of WP and ACN-rich
extract was spontaneous [35]. For purple corn and black carrot ACN extracts, ∆Ho > 0 and
∆So > 0 suggested that hydrophobic interactions were the dominant binding force for the
formation of the ACN–WP complex. The ∆Ho > 0 also indicated that the reactions were
endothermic. For grape ACN extract, ∆Ho < 0 and ∆So > 0 suggested that electrostatic
interactions might play a major role in the ACN–WP binding process. However, studies
showed that in classic electrostatic interactions, the negative ∆Ho is very small (around
zero) [34,36]. In this study, the ∆Ho value for grape ACN–WP complex was much lower
than 0. Therefore, the grape ACN–WP interaction may not be caused by electrostatic
interactions. On the other hand, a positive ∆So was observed in the grape ACN–WP
complex, which is also expected in hydrophobic interactions. Therefore, the grape ACN–
WP interaction was more likely to be induced by hydrophobic interactions rather than
electrostatic interactions. A similar study also showed that the grape skin ACN extracts
and β-lactoglobulin complex interacted mainly through hydrophobic interaction [28].

3.4. The Effect of Preheating Temperature on the Fluorescence Spectra of Whey Protein in the
Presence of Anthocyanins

Protein structure changes, such as denaturation and aggregation, can be observed
through emission spectra changes [37]. WP after heat treatment at different temperatures
presents conformational changes, which induces the change of its intrinsic fluorescence.
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The fluorescence maximum intensity change of native and preheated WP at 25 ◦C in the
presence of ACN (50 µM) at pH 3 are shown in Figure 4. The maximum fluorescence
intensity Fmax increased significantly (p < 0.05) as the temperature increased from 40 ◦C to
60 ◦C. This may have occurred because Trp was exposed to heat treatment. WP disulfide-
linked aggregation decreased the exposure of Trp [38] as temperature increased, thus
decreasing the quenching effect. No significant difference was observed (p > 0.05) for
Fmax when WP was heated between 60 ◦C and 80 ◦C. This could be due to the irreversible
Tanford-like transition after WP was heated for 30 min at high temperatures [39]. The
breaking of the disulfide bonds and the exposure of all the previously buried Trp increased
ACN quenching to the highest level [38]. Moreover, the conversion of regular structures
(α-helices, β-sheets) of WP into more unfolded structures also resulted in achieving the
highest Fmax [39].
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Figure 4. Fluorescence maximum intensity change of native and preheated whey protein (40 ◦C, 50 ◦C, 60 ◦C, 70 ◦C and
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excitation wavelength of 280 nm at pH 3.

The quenching parameters for native and preheated WP fluorescence quenched by
various concentrations of ACN extract at 25 ◦C are shown in Table 2. The Kq values
(>2 × 1010 M−1s−1) indicated that ACN-rich extracts effectively quenched the intrinsic flu-
orescence of WP through static quenching due to the formation of WP–ACN complexes [28].
The binding constant Ks of native WP at 25 ◦C was lower than that of preheated WP, in-
dicating a greater affinity of ACN for preheated WP. When the preheating temperatures
increased, Ks decreased slightly but not significantly (p > 0.05). This might be due to the
increased WP aggregation [6].

Table 2. The Stern–Volmer constants, quenching constants and binding constants for purple corn, grape and black carrot
anthocyanin-rich extracts binding to native and preheated whey protein at 25 ◦C (pH 3) at an excitation wavelength of 280 nm.

Parameters
Preheat T (◦C)

Native 40 50 60 70 80

Purple corn
Ksv (×104 M−1) 1.67 ± 0.09 1.69 ± 0.02 1.71 ± 0.09 1.82 ± 0.04 1.86 ± 0.07 1.98 ± 0.06

Kq (×1012 M−1s−1) 1.67 ± 0.09 1.69 ± 0.02 1.71 ± 0.09 1.82 ± 0.04 1.86 ± 0.07 1.98 ± 0.06
Ks (×102 M−1) 3.33 ± 0.93 4.78 ± 0.95 4.75 ± 0.33 4.65 ± 0.71 4.08 ± 0.40 3.77 ± 0.75

Grape
Ksv (×104 M−1) 1.44 ± 0.17 1.28 ± 0.09 1.29 ± 0.06 1.31 ± 0.07 1.60 ± 0.06 1.61 ± 0.03

Kq (×1012 M−1s−1) 1.44 ± 0.17 1.28 ± 0.09 1.29 ± 0.06 1.31 ± 0.07 1.60 ± 0.06 1.61 ± 0.03
Ks (×102 M−1) 0.89 ± 0.26 1.32 ± 0.10 1.31 ± 0.03 1.25 ± 0.07 1.08 ± 0.53 0.97 ± 0.17

Black carrot
Ksv (×103 M−1) 6.7 ± 0.49 6.7 ± 0.57 6.7 ± 0.78 6.8 ± 0.50 7.8 ± 0.99 8.8 ± 0.71

Kq (×1011 M−1s−1) 6.7 ± 0.49 6.7 ± 0.57 6.7 ± 0.78 6.8 ± 0.50 7.8 ± 0.99 8.8 ± 0.71
Ks (×102 M−1) 1.07 ± 0.49 2.66 ± 0.23 2.54 ± 0.84 2.00 ± 0.15 1.42 ± 0.72 1.25 ± 0.77
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4. Conclusions

The WP’s fluorescence was quenched effectively by ACN-rich extracts. The interac-
tion between ACN-rich extracts and WP decreased the fluorescence intensity of WP and
increased its λmax. The interaction between ACN-rich extracts and WP was mainly a static
quenching process and occurred mainly via hydrophobic forces. Black carrot had the lowest
binding affinity with WP, likely due to its large molecular structure. The binding affinity
of WP and ACN-rich extracts was affected by the different WP preheating temperatures,
likely due to changes in WP structural conformations. The ACN binding affinity was
higher for preheated WP than native WP and decreased gradually with increasing WP
preheating temperature, most likely due to protein aggregation. These results may improve
our understanding of how thermally induced WP protect ACN from color degradation,
and therefore help broaden the range of applications of ACN as food colorants in the
food industry.
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