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Abstract: Background: The emergence of multiple antibiotic resistance (MAR) Escherichia coli (E.
coli) and virulent non-O157 Shiga toxin-producing Escherichia coli (STEC) poses a growing concern
to the meat industry. Non-O157 STEC strains including O26, O45, O103, O111, O121, and O145
have been implicated in the occurrence of bloody diarrhea and hemolytic uremic syndrome in
humans. This research assessed prevalence, matrix-assisted laser desorption/ionization-time of
flight mass-spectrometry (MALDI-TOF MS) protein mass-spectra profiles, multidrug-resistance traits,
polymerase chain reaction detection of virulence, and antibiotic-resistance genes of E. coli isolated
from beef carcasses and slaughterhouse environments. Methods: A total of 180 convenience sponge
samples were collected from two different sources-specific parts of beef carcasses and surfaces of
the processing environment at the slaughterhouse of Ha′il, Saudi Arabia between September and
November 2020. MALDI BioTyper and phylotype-based identification methods accurately identified
and classified the samples as belonging to the genus belonging to the Escherichia coli domain of
bacteria (NCBI txid: 562). Results: Expected changes were seen in the mass peak spectrum defining
nine closely related isolates and four unrelated E. coli isolates. Serological typing of E. coli revealed
enterotoxigenic E. coli O166 (19.10%); enteropathogenic E. coli O146 (16.36%) and O44 (18.18%);
enterohemorrhagic E. coli O111 (31.18%) and O26 (14.54%). Forty-five percent of examined E. coli
were resistant to seven antimicrobials; 75% of 20 selected isolates were resistant to three or more
antimicrobials. phoA and blaTEM genes were detected in all selected E. coli isolates. Conclusion: This
study confirmed the efficiency and validity of Matrix-assisted laser desorption/ionization time of
flight mass-spectrometry in screening for multi-drug resistant E. coli isolated from slaughterhouse
derived beef carcasses in Ha’il, Saudi Arabia. We contributed by revealing the distinction between
related and non-related strains of E. coli in livestock. The findings in this study can inform improved
policy development decision making and resource allocation related to livestock processing regarding
antimicrobial use in food animals and rapid screening for effective multiple antibiotic resistance
E. coli and virulent non-O157 STEC control in the slaughterhouses.

Keywords: multiple antibiotic resistance E. coli; Non-O157; slaughterhouse; MALDI-TOF MS
and beef
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1. Introduction

Shiga toxin-producing Escherichia coli (STEC) remain a significant food safety issue in
raw meat and meat products. Despite the introduction of mandatory testing for STEC in
beef trim and use of multi-level intervention strategies, there are still sporadic outbreaks of
foodborne illnesses with product recalls linked to STEC contamination. There is a growing
public health concern of STEC contamination posing as a threat to the meat industry
globally. For instance, STEC contamination of meat and meat products in the Germany
2011 outbreak resulted in over 4000 cases of illnesses [1].

STEC have been implicated in a few human gastrointestinal ailments such as non-
bloody and bloody diarrhea complicated by hemolytic uremic syndrome (HUS). STEC
serotype O157:H7 is the main cause for HUS [2]. However, non-O157 STEC have been
reported recently as reasons for bloody diarrhea and HUS in Canada, United (US), and
Europe [2]. There are six serogroups of STEC commonly linked to clinical infections.
The top six serogroups in the US including O26, O45, O103, O111, O121, and O145 have
been recently classified as contaminants in beef [3]. Non-O157 STEC are endemic in
herds of cattle, sheep, and goats [4,5]. Ruminants are asymptomatic carriers of STEC in
their intestinal floral. Cattles specifically are thought to be the main carriers of non-O157
STEC [5]. Surveys revealed that 0.4–74% of manure screened from dairy or beef farms
tested positive for non-O157 STEC [5].

Literature Review

Prior studies have revealed that the processes of unhygienic carcass handling have led
to the contamination of hides, unpasteurized milk, raw meat, and some meat products by
STEC. In addition, surrounding environments have been polluted through poor disposal of
STEC contaminated intestinal content and feces of animals [2]. The continued occurrence of
Escherichia coli (E. coli) O157:H7 in beef can be attributed to its high prevalence at the primary
phase of beef production, and poor implementation of current carcasses decontamination
interventions required during beef production. Most public health and clinical laboratories
test only for O157 STEC in humans. There is a dearth of data on the proportion of non-O157
STEC [2].

Escherichia coli (E. coli) O157 laboratory screening is based on its inability to ferment
sorbitol. Detection of non-O157 STEC is problematic due to the lack of reliable selective
agars and its propensity to ferment sorbitol, making its identification difficult compared
to O157 STEC which does not ferment sorbitol [6]. Unlike E. coli O157, non-O157 STEC
express glucuronidase and ferment sorbitol, hence appear the same as generic E. coli on
CT-SMAC [7]. Nevertheless, non-O157 STEC share the same antibiotic resistance as O157
STEC so some selective enrichment is possible. Identification of the top six serotypes is
achieved through immunomagnetic separation (IMS) and PCR-based techniques [8–10].
Molecular compared to culture-based methods are more advantageous in terms of speci-
ficity, rapidity, and high throughput [11]. Surveys performed to date would suggest that
non-O157 STEC share the same habitats and dissemination routes as O157 STEC [5,12].
The lack of reliable diagnostic techniques for detecting non-O157 STEC, particularly for iso-
lation, has hampered progress in estimating the actual prevalence of these bacteria. Quick
and explicit identification of foodborne microbes are fundamental parts of food safety
and resulting execution of successful control measures. While conventional molecular
typing techniques are time-consuming in generating typing data [13], Matrix-assisted laser
desorption/ionization time of flight mass-spectrometry (MALDI-TOF MS) is more efficient
in determining precise protein mass-spectra profiles, thus useful for assessing strain relat-
edness [13]. In this study, we aimed to assess the validity of MALDI-TOF MS based typing
for rapid screening of multiple antibiotic resistance E. coli and virulent non-O157 shiga
toxin-producing E. coli isolated from beef carcasses in a slaughterhouse setting.
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2. Materials and Methods
2.1. Sampling and Sample Collection

A total of 180 convenience samples were collected from two different sources-specific
parts of beef carcasses and surfaces of the processing environment at the slaughterhouse of
Ha′il, Saudi Arabia between September and November 2020. These sources were based on
previous research on the dissemination of enteric contamination within beef processing
operations [14] This study identified the de-hiding step as a critical point along with the
evisceration process as sources of E. coli contamination. Carcass samples were taken after
de-hiding and post-evisceration. The samples were collected at three different carcass
locations—shoulder, brisket, and thigh using a sterile sponge. Environmental samples
were obtained from various surfaces including (knives and workers′ hands and holding
areas of the processing line (slaughterhouse floor, wall, and effluent). After sampling,
sponges were placed into sterile stomacher bags and stored at 4 ◦C until processing [14].

2.2. Isolation and Identification of Bacterial Strains

Analyses of samples were carried out according to ISO/CEN 13136:2012 (ISO/TS
13136, 2012). Each sponge was placed into a stomacher bag containing 500 mL of modified
trypticase soy broth containing 8 mg/L novobiocin. Each sponge was blended for two min-
utes and incubated for 20 h at 41.5 ◦C. One ml of each sample was cultured on MacConkey
agar medium and Levine-eosin methylene blue agar (Himedia, Mumbai, India) and fol-
lowed by incubation at 37 ◦C. Sorbitol fermentation was tested on sorbitol MacConkey
agar and sorbitol phenol red agar media (Himedia, Mumbai, India) (overnight incubation
at 37 ◦C).

Identification of bacterial strains was performed by using conventional methods.
Further identification was confirmed by MALDI-TOF MS and Microscan, according to the
manufacturer’s guidelines [15]. A single colony of a subculture was directly deposited in
duplicate on a MALDI-TOF-MS plate (Bruker Daltonik GmbH, Karlsruhe, Germany) and
the results were noted. Serological identification was completed by utilizing demonstrative
polyvalent and monovalent E. coli antisera based on the instructions of the manufacturer
(BIO-RAD, Marnes-la-Coquette, France) [2]. To validate bacterial species using the library
database, revealed profiles were first analyzed. To detect single peaks of each isolate,
Flex Analysis software (Bruker Daltonics, Karlsruhe, Germany) was used. Furthermore,
the peak changes were found in an overlay of all isolates to assess non-related clusters.
Thereafter, the profiles were smoothed and using the BioTyper 3 program, baseline peak
changes were deducted. The MALDI BioTyper 3 software (Bruker Daltonics, Karlsruhe,
Germany) was used to convert the obtained spectra into a virtual gel (pseudo-gel-like)
format. This virtual gel view represented all of the peaks in a spectral file and was used to
compare the spectra of the E. coli isolates that were tested. Clusters with similar protein
expression were identified by the principal component analysis (PCA) [13].

2.3. Antimicrobial Resistance

Anti-microbial resistance (AMR) was determined against 14 antimicrobials, for 20
selective isolates from carcass shoulder, brisket, and thigh and from abattoir effluent (5 from
each represent the serotypes O166, O146, O44, O111, and O26), using the disc diffusion
method using E. coli-ATCC 25,922 as a reference strain according to Clinical and Laboratory
Standards Institute (CLSI) guidelines [16]. Antimicrobial discs were used: penicillin (P)
(10 UI), erythromycin (E) (15 µg), oxytetracycline (T) (30 µg), nalidixic acid (NA) (30 µg),
ampicillin (AM) (10 µg), sulfamethoxazole (SXT) (23.75 µg), cephalothin (CN) (30 µg),
enrofloxacin (EX) (5 µg), oxacillin (OX) (1 µg), neomycin (N) (30 µg), chloramphenicol
(C) (30 µg), kanamycin (K) (30 µg), ciprofloxacin (CP) (5 µg), gentamicin (GEN) (10 µg).
Inoculum of each strain was streaked on Mueller–Hinton agar (Himedia, Mumbai, India),
and the appropriate drug-impregnated discs were placed on the agar surface.

Multiple antibiotic resistance (MAR) index was investigated. MAR index is an in-
strument to examine wellbeing and health hazards. This index is useful for checking the



Foods 2021, 10, 820 4 of 13

spread of bacterial resistance in a given population where there is resistance to more than
three antibiotics [17]. The MAR index is determined by the quantity of antibiotics to which
test serotypes we found to show resistance divided by all antibiotics used for sensitivity
assessment. Estimated MAR index of more than 0.2 indicates an environment susceptible
to high risk of contamination and antibiotics use.

2.4. PCR Assay

Polymerase chain reaction (PCR) monitoring of phoA virulence-determinant gene and
the antibiotic-resistance genes blaTEM was carried out as described by some authors [18,19].
In relation to the QIAamp DNA Mini Kit (Qiagen, GmbH, Germany/Catalog No.51304)
manufacturer guidelines, genomic DNA of the examining strains were extracted. The
primer pairs used have been mentioned in previous studies [19,20].

2.5. Statistical Analysis

SPSS program, version 26, was used to perform the Chi-square test (significance level:
p < 0.05).

3. Results and Discussion

Contamination of the environment in slaughterhouses with E. coli may be due to
bowel rupture during evisceration, indirect contamination with tainted water, handling
and packaging of finished products [21]. E. coli were detected in 80%, 65%, 75%, 100%,
55%, 45%, 30%, and 100% of examined beef shoulder, beef thigh, beef brisket, floor, wall,
knives, worker hands, and effluent, respectively (Table 1). The isolation and identification
of serotypes were carried out by conventional methods and compared by rapid detection
using MALDI-TOF MS.

Table 1. Prevalence of E. coli in different kinds of samples taken from beef carcasses and slaughter-
house environments (n = 20).

Samples Prevalence

Abattoir effluent 20 (100%)
Abattoir floor 20 (100%)
Abattoir wall 11 (55%)
Beef brisket 15 (75%)

Beef shoulder 16 (80%)
Beef thigh 13 (65%)

Knives 9 (45%)
Water Not detected

Worker hands 6 (30%)

All spectra were magnified and mass peak profiles tested to detect typical E. coli
isolates peaks. E. coli isolates were reliably identified by MALDI BioTyper and achieved
scores of >2.3 (highly probable identification of organisms) [22]. MALDI BioTyper and
phylotype-based identification methods accurately identified and classified the sponge
samples as belonging to the genus belonging to the Escherichia coli domain of bacteria
(NCBI txid:562).

The validity of peak patterns as taxonomic markers is set up utilizing MALDI-TOF
MS as a bacterial fingerprinting method. Findings showed that these criteria are met in
the samples we tested in this analysis. MS profiles are reliable when a group of isolates
is studied simultaneously under the same experimental and instrumental conditions,
ensuring high repeatability and reproducibility across studies. Mass spectra, on the other
hand, seem to have an inherent variability. All the tested isolates had mass peak profiles
between 2000 and 12,000 m/z ratio. To visually distinguish spectra, the five discriminatory
regions were extended. The ability of MALDI-TOF MS to discriminate may be used to
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screen E. coli strains isolated from beef carcasses and slaughterhouses. This indicates a
strong association with other methods of identification and stronger diagnostic tests.

Expected changes were seen in the mass peak spectrum (Figure 1). Mass peaks
were dramatically shifted to allow separation of non-related clusters (Figure 1). Principal
component analysis (PCA) showed that the clustering was clarified by PC1, PC2, and PC3.
Figure 2 summarizes the findings of a two-dimensional cluster analysis. A high resolution
to discriminate against non-related clusters was revealed by plotting PC1 and PC2.
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The results shown in Figures 3 and 4 explain the relationship and source of contami-
nation between the isolated serotypes from beef shoulder (five serotypes: O166, O146, O44,
O111, and O26) and isolated serotypes from knives (four serotypes: O166, O44, O111, and
O26) and workers′ hands (four serotypes: O166, O146, O44, and O111), which were all
tested at the same time of sampling. Clusters were precisely delineated by a PCA-based
dendrogram and virtual gel view (Figures 3 and 4), defining nine closely related isolates
and four unrelated E. coli isolates. Thus, the results obtained from virtual gel analysis and
PCA confirmed our findings. In less than one day, all results from MALDI-TOF MS, in-
cluding the thorough analysis of peak frame changes, were obtained. Isolates representing
related E. coli strains were unclear from one another but were delineated from non-related
strains. In addition, Figures 3 and 4 revealed highly distinguishable diverse peaks within
non-related E. coli isolates. To the best of our knowledge, this is the first study to highlight
the distinction between related and non-related strains of E. coli in livestock. However,
further studies are needed to substantiate this finding.



Foods 2021, 10, 820 6 of 13
Foods 2021, 10, x FOR PEER REVIEW 6 of 14 
 

 

 
Figure 2. Three-dimensional principal component analysis of MALDI-TOF MS mass spectra of the tested E. coli isolates. 
The greatest potential for distinction was shown by PC1 and PC2 and a cluster of isolates was shown, whereas the non-
related isolates are less similar. 

The results shown in Figures 3 and 4 explain the relationship and source of contam-
ination between the isolated serotypes from beef shoulder (five serotypes: O166, O146, 
O44, O111, and O26) and isolated serotypes from knives (four serotypes: O166, O44, O111, 
and O26) and workers′ hands (four serotypes: O166, O146, O44, and O111), which were 
all tested at the same time of sampling. Clusters were precisely delineated by a PCA-based 
dendrogram and virtual gel view (Figures 3 and 4), defining nine closely related isolates 
and four unrelated E. coli isolates. Thus, the results obtained from virtual gel analysis and 
PCA confirmed our findings. In less than one day, all results from MALDI-TOF MS, in-
cluding the thorough analysis of peak frame changes, were obtained. Isolates representing 
related E. coli strains were unclear from one another but were delineated from non-related 
strains. In addition, Figures 3 and 4 revealed highly distinguishable diverse peaks within 
non-related E. coli isolates. To the best of our knowledge, this is the first study to highlight 
the distinction between related and non-related strains of E. coli in livestock. However, 
further studies are needed to substantiate this finding. 

Figure 2. Three-dimensional principal component analysis of MALDI-TOF MS mass spectra of the tested E. coli isolates. The
greatest potential for distinction was shown by PC1 and PC2 and a cluster of isolates was shown, whereas the non-related
isolates are less similar.

Foods 2021, 10, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 3. PCA-based dendrogram mass spectra of the tested E. coli isolates generated by MALDI-
TOF MS. Non-related isolates are illustrated by red. 

 
Figure 4. Virtual gel analysis using the MALDI BioTyper 3′s special tool reveals changes in band 
pattern. The m/z values are represented on the x axis, and the obtained mass spectra of the tested 
E. coli isolates are represented on the y axis. The protein expression profile peaks produced by MS 
are seen for isolates. Non-related isolates are illustrated by red labels. 

The study was effective in identifying the antimicrobial resistance and the prevalence 
of virulent non-O157 STEC serotypes in meat and the slaughterhouse settings. The 
MALDI-TOF MS technique, on the other hand, was used to identify certain species in a 
short amount of time, in tandem with a study of the relationship between the distribution 
of those species in various sources, as revealed by the results of principal component anal-
ysis (PCA) and virtual gel analysis for related and non-related clusters. The ability of 
MALDI-TOF MS to discriminate E. coli strains isolated from beef carcasses and slaughter-
houses could be used to screen them. This points to a close link between other methods of 
identification and more powerful diagnostic tests. These findings suggest that these iso-
lates have the same origin, necessitating vigilance and the development of policies and 
strategies regarding rapid screening for effective multiple antibiotic resistance E. coli and 
virulent non-O157 STEC control in slaughterhouses and the application of approved hy-
gienic procedures. 

Occurrences of E. coli in slaughterhouses samples have been recorded worldwide 
[23,24]. E. coli have a biphasic nature and can live effectively either in the environment or 

Figure 3. PCA-based dendrogram mass spectra of the tested E. coli isolates generated by MALDI-TOF
MS. Non-related isolates are illustrated by red.



Foods 2021, 10, 820 7 of 13

Foods 2021, 10, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 3. PCA-based dendrogram mass spectra of the tested E. coli isolates generated by MALDI-
TOF MS. Non-related isolates are illustrated by red. 

 
Figure 4. Virtual gel analysis using the MALDI BioTyper 3′s special tool reveals changes in band 
pattern. The m/z values are represented on the x axis, and the obtained mass spectra of the tested 
E. coli isolates are represented on the y axis. The protein expression profile peaks produced by MS 
are seen for isolates. Non-related isolates are illustrated by red labels. 

The study was effective in identifying the antimicrobial resistance and the prevalence 
of virulent non-O157 STEC serotypes in meat and the slaughterhouse settings. The 
MALDI-TOF MS technique, on the other hand, was used to identify certain species in a 
short amount of time, in tandem with a study of the relationship between the distribution 
of those species in various sources, as revealed by the results of principal component anal-
ysis (PCA) and virtual gel analysis for related and non-related clusters. The ability of 
MALDI-TOF MS to discriminate E. coli strains isolated from beef carcasses and slaughter-
houses could be used to screen them. This points to a close link between other methods of 
identification and more powerful diagnostic tests. These findings suggest that these iso-
lates have the same origin, necessitating vigilance and the development of policies and 
strategies regarding rapid screening for effective multiple antibiotic resistance E. coli and 
virulent non-O157 STEC control in slaughterhouses and the application of approved hy-
gienic procedures. 

Occurrences of E. coli in slaughterhouses samples have been recorded worldwide 
[23,24]. E. coli have a biphasic nature and can live effectively either in the environment or 

Figure 4. Virtual gel analysis using the MALDI BioTyper 3′s special tool reveals changes in band
pattern. The m/z values are represented on the x axis, and the obtained mass spectra of the tested E.
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The study was effective in identifying the antimicrobial resistance and the prevalence
of virulent non-O157 STEC serotypes in meat and the slaughterhouse settings. The MALDI-
TOF MS technique, on the other hand, was used to identify certain species in a short amount
of time, in tandem with a study of the relationship between the distribution of those species
in various sources, as revealed by the results of principal component analysis (PCA) and
virtual gel analysis for related and non-related clusters. The ability of MALDI-TOF MS to
discriminate E. coli strains isolated from beef carcasses and slaughterhouses could be used
to screen them. This points to a close link between other methods of identification and
more powerful diagnostic tests. These findings suggest that these isolates have the same
origin, necessitating vigilance and the development of policies and strategies regarding
rapid screening for effective multiple antibiotic resistance E. coli and virulent non-O157
STEC control in slaughterhouses and the application of approved hygienic procedures.

Occurrences of E. coli in slaughterhouses samples have been recorded worldwide [23,24].
E. coli have a biphasic nature and can live effectively either in the environment or in the
host, where animal excreta and human sewage are released. Pathogenic E. coli of zoonotic
importance, (enterohemorrhagic, enteropathogenic, enterotoxigenic) can also be accessed
from slaughterhouse discharges in the environment. Slaughterhouse livestock effluents—
blood and fecal matter are excellent sources for bacterial growth and multiplication. Waste
material removed from cleaning slaughterhouses with water and may contaminate the
surrounding environment if effluents are poorly handled. Serological typing of E. coli
revealed enterotoxigenic E. coli O166 (19.10%); enteropathogenic E. coli O146 (16.36%) and
O44 (18.18%); enterohemorrhagic E. coli O111 (31.18%) and O26 (14.54%) (Table 2). These
results are similar to the serotypes detected in slaughterhouse samples from Namibia [23].
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Table 2. Serotyping of E. coli strains isolated from beef carcasses and slaughterhouse environments
samples.

O166 O146 O44 O111 O26

Abattoir
effluent 3 2 4 8 3

Abattoir floor 3 4 5 6 2
Abattoir wall 2 3 2 2 2
Beef brisket 4 2 3 3 3

Beef shoulder 2 4 1 7 2
Beef thigh 3 1 2 4 3

Knives 3 - 2 3 1
Worker
hands 1 2 1 2 -

Total 21 (19.10%) 18 (16.36%) 20 (18.18%) 35 (31.81%) 16 (14.54%)
Types ETEC EPEC EPEC EHEC EHEC

EHEC: Enterohemorrhagic E. coli. EPEC: Enteropathogenic E. coli. ETEC: Enterotoxigenic E. coli. E. coli: Escherichia coli.

This research tested the antimicrobial resistance of 20 E. coli isolates, selected from
carcass shoulder, brisket, and thigh and from abattoir effluent (5 from each represent the
serotypes O166, O146, O44, O111, and O26), against 14 widely used antimicrobials to
detect trends of resistance associated with them. In Table 3, all tested isolates (20 selected
isolates) were 100% resistant to penicillin, followed by erythromycin (80%), oxytetracy-
cline (75%), nalidixic acid (65%), ampicillin (60%), sulfame-thoxazol (55%), cephalotin
(45%), enroflo-xacin (40%), oxacillin (35%), neomycin (30%), chloramphenicol (20%), and
kanamycin (15%).The lowest resistance was against gentamicin (10%) and ciprofloxacin
(5%). The antimicrobial susceptibility patterns of E. coli found in our samples were similar
to previously published research by [25]. In this study, we detected E. coli resistance to
ceftriaxone (4.44%), chloramphenicol (4.44%), ciprofloxacin (2.22%), gentamicin (2.22%),
suphamethoxazole/trimethoprim (17.78%), and tetracycline (28.89%). This result is similar
to the study conducted in Ghana [26].

Table 3. Antimicrobial resistance pattern of the isolated E. coli strains from carcass shoulder, carcass
brisket, carcass thigh, and abattoir effluent (n = 20).

Antimicrobial Agent Sensitive Intermediate Resistant Serotype n Pathotype

Penicillin (P) - - 20 (100%)

O166
O146
O44
O111
O26

5
5
5
5
5

ETEC
EPEC
EPEC
EHEC
EHEC

Erythromycin (E) - 2 (20%) 18 (80%)
Oxytetracycline (T) 3 (15%) 2 (10%) 15 (75%)
Nalidixic acid (NA) 4 (20%) 3 (15%) 13 (65%)

Ampicillin (AM) - 8 (40%) 12 (60%)
Sulfamethoxazol (SXT) 6 (30%) 3 (15%) 11 (55%)

Cephalotin (CN) 9 (45%) 2 (10%) 9 (45%)
Enrofloxacin (EN) 10 (50%) 2 (10%) 8 (40%)

Oxacillin (OX) 12 (60%) 1 (5%) 7 (35%)
Neomycin (N) 14 (70%) - 6 (30%)

Chloramphenicol (C) 16 (80%) - 4 (20%)
Kanamycin (K) 15(75%) 2 (10%) 3 (15%)

Ciprofloxacin (CP) 16 (80%) 2 (10%) 2 (10%)
Gentamicin (G) 19 (95%) - 1 (5%)

p value p < 0.0001 p < 0.0001 p < 0.0001
ETEC, enterotoxigenic E. coli; EPEC, enteropathogenic E. coli; EHEC, enterohemorrhagic E. coli.

The MAR index was of 0.533 (0.071 to 1.000). Forty-five percent of examined E. coli
were resistant to seven or more antimicrobials (Table 4). MAR patterns showed that 75%
of the isolates were resistant to three or more antimicrobials. This is similar to findings in
prior research [26]. The proportion of the isolates with MAR index, more than 0.2 was 75%,
and less than or equal to 0.2 was 25%. MAR index value higher than 0.2 indicates high-risk
sources of contamination, where several antimicrobials may often be used for the control
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of diseases [27]. The higher resistance of E. coli isolates could be attributed to the misuse of
antibiotics for therapeutic or wide use as growth promoters among livestock.

Table 4. Multiple antibiotic resistance (MAR) index and antimicrobial resistance profile of the isolated E. coli strains from
carcass shoulder, carcass brisket, carcass thigh, and abattoir effluent (n = 20).

Resistance Pattern Resistance Profile Number of Isolates Number of Antibiotics MAR

i. P, E, T, NA, AM, SXT, CN, EN, OX, N, C, K, CP, G 1 14 1
ii. P, E, T, NA, AM, SXT, CN, EN, OX, N, C, K, CP 1 13 0.92
iii. P, E, T, NA, AM, SXT, CN, EN, OX, N, C, K 1 12 0.85
iv. P, E, T, NA, AM, SXT, CN, EN, OX, N, C 1 11 0.78
v. P, E, T, NA, AM, SXT, CN, EN, OX, N 2 10 0.714
vi. P, E, T, NA, AM, SXT, CN, EN, OX 1 9 0.642
vii. P, E, T, NA, AM, SXT, CN, EN 1 8 0.571
viii. P, E, T, NA, AM, SXT, CN 1 7 0.5
ix. P, E, T, NA, AM, SXT 2 6 0.428
x. P, E, T, NA, AM 1 5 0.357
xi. P, E, T, NA 1 4 0.285
xii. P, E, T 2 3 0.21
xiii. P, E 3 2 0.142
xiv. P 2 1 0.071

Average 0.533

As the spread of multidrug-resistant (MDR) bacteria has been repeatedly warned of,
resistance to several antimicrobials poses a threat to human health. The findings of multiple
antibiotic resistance (MAR) index and antimicrobial resistance profile of the isolated E. coli
strains confirm the need for development of policies and strategies regarding antimicrobial
use in food animals.

The presence of virulence, and antibiotic-resistance genes of E. coli isolated from
beef carcass and abattoir environment samples was investigated using a PCR assay of the
virulence-determinant gene (phoA) and the antibiotic-resistance genes blaTEM. For the PCR
assay, serotypes isolated from beef shoulder and abattoir effluent (O166, O146, O44, O111,
and O26) were chosen. E. coli phoA gene has been extensively studied and used as a marker
to recognize secreted proteins, because it is an exported enzyme that is only activated
in the bacterial periplasmic space after its translocation. Presence of E. coli phoA gene
increased the intimin protein expression and increased eaeA mRNA production. Hence,
phoA gene is considered essential for virulence from Enteropathogenic E. coli [28]. The
alkaline phosphatase gene (phoA) is used in all E. coli strains and has previously been used
in PCR-based methods for strain detection with high specificity. As a result, the phoA gene
was chosen as a target for identification of all E. coli strains in this analysis (both related
and non-related strains).

The PCR results of some representative isolates in Figure 5 revealed that phoA gene
was detected at 720 bp in all examined E. coli isolates, indicating elevated pathogenicity to
host epithelial cells. The phoA gene was found in E. coli from bovine feces [20].

Antimicrobial resistance has become a major public health problem worldwide. Given
the prevalence of MDR bacteria, therapeutic options for many infectious diseases are
currently limited. β-lactam antibiotics are commonly used in humans and in veterinary
medicine to treat bacterial infections [20]. A large number of β-lactamase producers
have emerged in Gram-negative bacteria since the introduction of beta-lactam antibiotics,
especially in Enterobacteriaceae, such as E. coli. The blaTEM is common in non-O157 STECs
in animals, and consequently, the high rates of ampicillin-resistant blaTEM -positive isolates
were to be expected. The blaTEM was identified in non-O157 STEC isolated from cattle
feces and soil samples, but none of the other blaOXA, blaSHV, and blaCTX-M variants could
be detected. Poultry-associated STEC is more likely to carry the blaSHV variant, and blaOXA,
blaSHV, and blaCTX-M have been previously reported in STEC O157:H7 Serotypes. As a
result, the blaTEM gene was chosen as a target for identification of non-O157 STEC strains
isolated from beef carcasses and slaughterhouse settings.
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The PCR results of some representative isolates revealed that the blaTEM gene was de-
tected at 516 bp in all examined E. coli isolates (Figure 6). Previously detected genes in E. coli
were from, lamb meat (97.1%), meat products (69.2%,), and retail chicken 28.1% [29–33].
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The data available in Saudi Arabia revealed the presence of O157:H7 in camel, sheep,
goat, and cattle feces and hides in Riyadh [34]. Raw meat and milk samples were found to
be contaminated with O157:H7 STEC and non- O157 STEC (O111, O103, and O22) from
different locations in Riyadh [2]. The prevalence in large variations may be related to
screening methods employed in studies using molecular-based methods to detect virulence
genes resulting in higher values when compared to utilizing isolation-based methods [35].
While cattle harbor a diverse range of non-O157 STEC, given that the majority lack the
essential virulence factors, only 12–17% of these serotypes have been isolated from serious
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cases of illness in humans [36]. Similar to O157 STEC, shedding of non-O157 STEC is
seasonal with high shedding occurring in spring through fall compared to the winter
months [37]. The majority of cattle acquire non-O157 STEC from contact with infected
animals or indirectly via consumption of fecal-contaminated feed and water [38]. The
prevalence of both groups of STEC was reduced by post-evisceration interventions that
included steam vacuuming, trimming, steam pasteurization, and organic acid wash. The
carriage of virulent non-O157 STEC can be reduced by interventions applied during the
slaughter process. The difference in prevalence of non-O157 STEC between studies may
partly be due to application of different study design methods. The pervasiveness of
non-O157 STEC in beef carcasses has the potential to be equivalent or more prominent than
that of O157 STEC. Prevalence rates of all STEC in beef samples were mostly greater than
20% (15–40%) [39].

This study is not without limitation. It is a cross-sectional study thus does not show
temporality and causation. The non-probability sampling method employed (convenience
sampling) restricts generalizability of our findings to the whole of Saudi Arabia. Advanced
hygienic procedures during slaughtering may be critical in limiting the spread of multiple
antibiotic resistance E. coli as well as lowering contamination levels in the environment.

4. Implications for Practice and Theory

This study, similar to previous studies, highlights the benefits of using molecular
methods for detecting virulent E. coli as opposed to isolation-based method for detecting
E. coli in livestock. Furthermore, distinguishing between related and non-related strains of
E. coli can further improve the taxonomy of pathogenic E. coli. in livestock.

Non-0157 STEC are not as virulent as 0157 STEC. Thus, proper identification and
classification of pathogenic and non-pathogenic E. coli strains is paramount to avoid
wastage of edible livestock.

Further research into developing substitute growth promoters other than antimicrobial
is needed in order to prevent MDR occurrence in livestock and subsequent zoonotic
infections in humans.

Policy development, decision making, and resource allocation regarding screening for
E. coli contamination in livestock and provision of health care services for livestock-induced
E. coli related illnesses in humans can be improved by using data driven knowledge of
seasonal shedding of E. coli in livestock.

Promotion of necessary and sufficient post-evisceration interventions and other good
slaughter practices are required to stem livestock-induced E. coli in humans.

5. Conclusions

The study was effective in identifying the prevalence of multiple antibiotic resis-
tance E. coli and virulent non-O157 STEC serotypes in meat and slaughterhouse settings.
Anti-microbial resistance (AMR) was determined against 14 antimicrobials and multiple
antibiotic resistance (MAR) index was investigated. The MALDI-TOF MS technique was
used to discriminate E. coli strains isolated from beef carcasses and slaughterhouses, with
a study of the relationship between the distribution of those species in various sources,
as revealed by the results of principal component analysis (PCA) and virtual gel analysis.
phoA and blaTEM genes were detected in all selected E. coli isolated from beef shoulder and
abattoir effluent. These findings suggest that these isolates have the same origin, neces-
sitating vigilance and the development of policies and strategies regarding antimicrobial
use in food animals and rapid screening for effective multiple antibiotic resistance E. coli
and virulent non-O157 STEC control in slaughterhouses and the application of approved
hygienic procedures.
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