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Abstract: This study investigated the combined bactericidal efficacy of slightly acidic electrolyzed
water (SAEW), fumaric acid (FA), and ultravioletC waterproof light-emitting diodes (UVC W-LED)
for the control of Staphylococcus aureus and Listeria monocytogenes in fresh-cut fruits. Cherry tomato,
grape, apple, and pineapple were inoculated with S. aureus and L. monocytogenes and then washed
with 30 ppm SAEW containing 0.5% FA in a container equipped with two UVC W-LEDs. Behaviors
of S. aureus and L. monocytogenes and quality properties of fresh-cut fruits were monitored after
storage at 10 ◦C and 15 ◦C for 7 days. The most effective reductions of S. aureus (1.65 log CFU/g)
and L. monocytogenes (2.63 log CFU/g) were observed in the group with the combined treatment of
SAEW + FA and UVC W-LED. At 10 ◦C and 15 ◦C, populations of both pathogens in the combined
treatment group were lower than those in a control. Combined treatment showed no negative effect
on moisture retention in the fruit. Moreover, visual changes were less significant than in the control.
These results demonstrate that the combined treatment can improve the microbial safety and the
quality of fruits. If it is properly used in the sanitizing step of the fresh produce industry, a positive
effect can be expected.

Keywords: fresh-cut fruits; slightly acidic electrolyzed water (SAEW); fumaric acid (FA); ultravioletC
waterproof light-emitting diodes (UVC W-LED); hurdle technology

1. Introduction

Fresh produce is an important component of a healthy diet as it is a major source of
fiber and micronutrients, including vitamins and functional compounds, such as polyphe-
nolics, glucosinolates, and carotenoids [1]. In recent years, fresh-cut produce has gained
great popularity among customers worldwide as healthy and convenient foods. The scale
of the fresh-produce market in 2018 was estimated to be 808.9 billion won per year, which
is expected to increase gradually in Korea [2]. Apples, pineapples, grapes, cherry tomatoes,
and melons are popular fresh-cut fruits in Korea.

Foodborne diseases resulting from contaminated fresh produce have been reported
globally [3]. In particular, fresh-cut fruit can be a high-risk food due to the chance of
cross-contamination during the manufacturing process, such as peeling, slicing, dicing,
and shredding. The lack of food safety management systems in the fresh-cut fruits industry
has resulted in the outbreak of foodborne diseases [4,5]. The most common pathogenic
bacteria isolated from fresh produce were Escherichia coli, Salmonella, Listeria monocyto-
genes, and Staphylococcus aureus [6,7]. Minimally processed fruits or fresh-cut fruits are
often contaminated by S. aureus and L. monocytogenes that can survive and grow during
transportation and the retail market [8,9]. Therefore, there is a need to effectively use
inactivation techniques of foodborne pathogens before fresh-cut fruits reach consumers.

In general, washing with sanitizers such as sodium hypochlorite solution, chlo-
rine dioxide, and ozone water has been used to reduce the microbial load on fresh-cut
fruits [10,11]. However, previous studies [12,13] reported that excessive amounts of free
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chlorine could form with sodium hypochlorite washing, and accumulate disinfection by-
products such as trihalomethan, so alternative methods are being investigated to overcome
such problems.

Hurdle technology commonly refers to the application of a combined preservation
method. It can be used as an alternative to the limited effectiveness of conventional
disinfectant washing. It is also a potential technology that can reduce loss of quality while
improving food safety [14]. Slightly acidic electrolyzed water (SAEW) is evaluated as
an eco-friendly alternative disinfectant [13]. Fumaric acid (FA) has a strong antibacterial
effect among organic acids [15]. Combining FA and SAEW can effectively inactivate E. coli
O157:H7, L. monocytogenes, Salmonella spp. in various fresh produce, such as lettuce, sprouts,
spinach, and apples [15,16]. These novel technologies may produce great synergistic
antimicrobial activity compared to a single treatment [17].

Ultraviolet (UV) radiation near 260 nm is part of the UVC radiation wavelength
band that can destroy microbial DNAs. It is considered the most effective germicidal
region in the UV spectrum [18]. As a novel UV source, UV-LEDs have become potential
alternatives to conventional UV mercury lamps due to their advantages, such as a long
lifetime, eco-friendliness (no mercury), diversity in wavelengths, and no warm-up time
being needed [19,20]. In particular, UVC waterproof LED has the advantage of being
differentiated from conventional UV treatment, as it can simultaneously perform washing
and irradiation. Since the product and washing water are sterilized at the same time during
processing, cross-contamination caused by washing water can be prevented using UVC
waterproof LED. There has been no research on UV waterproof LED applied in the food
industry. Therefore, the objectives of this study were to evaluate the antimicrobial effects of
hurdle technologies (SAEW + FA and UVC W-LED) against L. monocytogenes and S. aureus
on fresh-cut fruits. In addition, the possibility of extending the shelf life of treating fresh-cut
fruits with these hurdle technologies was investigated.

2. Materials and Methods
2.1. Strain Preparation

Listeria monocytogenes strains (ATCC 15313, ATCC 19111) were purchased from the Ko-
rean Culture Center of Microorganisms (KCCM). A strain of L. monocytogenes isolated from
the smoked salmon in the online market was also used. Enterotoxin A-producing Staphylo-
coccus aureus (SEA; ATCC13565) was purchased from the American Type Culture Collection
(ATCC). Enterotoxin G- and I-producing S. aureus and non-enterotoxin-producing S. aureus
were isolated from red cabbage and pineapple, respectively. They were used as a cocktail
strain for inoculation in this study. Each stock culture of L. monocytogenes and S. aureus was
maintained in tryptic soy broth (TSB, MBcell, Seoul, Korea) containing 0.6% yeast and TSB,
respectively. All strains were stored at −80 ◦C in TSB containing 20% glycerol. L. monocyto-
genes and S. aureus (10 µL each) were inoculated into 10 mL of sterilized TSB containing
0.6% yeast extract and TSB, respectively. These inoculated bacteria were cultured at 36 ◦C
for 24 h with shaking (140 rpm) using a rotary shaker (VS-8480SP, Vision, Daejeon, Korea).
Equal quantities of each pre-cultured strain were mixed in a 50 mL conical tube (SPL life
Sciences, Pocheon, Korea) to make culture cocktails for experiments.

2.2. Preparation of Sample and Inoculation

Fresh apples, pineapples, grapes, and cherry tomatoes were purchased from offline
markets (Dongdaemun-gu, Seoul) in Korea and kept at 4 ◦C until used. After removing
stems, approximately the same size and weight of cherry tomatoes and grapes (10 g) were
used, and 20 µL of cocktail strains were inoculated onto the stem scar. Peeled pineapples
and apples were aseptically cut into 10 g each (thickness: pineapple, 1.5–2 cm, apple,
2–3 cm) and inoculated with 100 µL of cocktail strains. These inoculated samples were
air-dried for approximately 30 min on a clean bench to allow bacteria to attach to surfaces
of fruits.
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2.3. Sanitizing Solution with SAEW and FA

The SAEW was produced using a SAEW generator that consisted of a non-membrane
electrolytic chamber (BC-120, Cosmic Round Korea Co., Seongnam, Korea). The pH and
available chlorine concentrations (ACC) of SAEW were measured using a pH meter (Orion-
star pH-Benchtop, Thermo, Waltham, MA, USA) and chlorine test papers (Toyo Roshi
Kaisha, Ltd., Tokyo, Japan), respectively. SAEW had a pH of 5.5 and an ACC of 30 ppm.
Fumaric acid (FA, 99.0%, Sigma-Aldrich, St. Louis, MO, USA) was directly diluted with
SAEW using a magnetic stirrer to obtain a final concentration of 0.5% (w/v).

2.4. UVC Waterproof Lights Emitting Diodes (UVC W-LED)

UV treatments were performed in a stainless-steel case (32.5 cm × 17.5 cm × 15 cm)
equipped with two UVC W-LED (275 nm) modules (BlueLumi Co., Ltd., Gyeonggi-do,
Korea), which were placed on each side of a stainless-steel case.

2.5. Decontamination with SAEW, FA, and UVC W-LED

Proposed hurdle treatments of SAEW, FA, and UVC W-LED are shown in Table 1.
Sodium hypochlorite (NaClO; Hanson Hygiene Co., Korea) at 100 ppm as control was
prepared by diluting 4% NaClO solution using distilled water.

Table 1. Application conditions of each treatment for fresh-cut fruits.

Treatments Washing Time

100 ppm NaClO 5 min

30 ppm SAEW
3 min30 ppm SAEW + 0.5% FA

30 ppm SAEW + 0.5% FA + UVC W-LED
NaClO, sodium hypochlorite solution (control, 100 ppm); SAEW, slightly acidic electrolyzed water (30 ppm); FA:
fumaric acid (0.5%); UVC W-LED; ultravioletC waterproof light-emitting diodes (275 nm).

For a single treatment, samples were washed only with 100 ppm NaClO or 30 ppm
SAEW. For combined treatment, samples were washed with 30 ppm SAEW containing 0.5%
FA for 3 min. For the combined treatment with SAEW + FA and UVC W-LED, samples were
placed in the stainless container, which was equipped with two UVC W-LEDs and washed
with the mixed solution (30 ppm SAEW and 0.5% FA). All treatments were performed at
room temperature.

2.6. Microbiological Analysis

To investigate the reduction effect of each treatment and its impact on the growth
of pathogenic bacteria, the number of viable cells was measured using a spread plate
culture method. After disinfection treatment, 10 g of samples were homogenized with
sterile 0.1% peptone water (BD, Sparks, NV, USA) using a stomacher (Interscience, St
Nom la Bretêche, France) for 120 s. Subsequent decimal dilutions in peptone water were
then plated onto selective media: Baird-Parker agar (BPA, MB cell, Seoul, Korea) and
PALCAM agar (Oxoid, Hampshire, England) were used for enumeration of S. aureus and L.
monocytogenes, respectively. As a nonselective media, tryptic soy agar (TSA, MBcell, Seoul,
Korea) containing 0.6% yeast extract and TSA were used for L. monocytogenes and S. aureus,
respectively. Both selective and nonselective media were incubated at 37 ◦C for 24–48 h.
Colonies on the plate were then counted using a colony counter (Scan 1200, Interscience, St
Nom la Bretêche, France). Microbial count was expressed as log CFU/g.

2.7. Quality Analysis of Treated Fresh-Cut Fruits during Storage at 10 ◦C and 15 ◦C

To analyze effects of hurdle technologies on qualities of treated samples, the overall
visual appearance, color, moisture loss of fresh-cut fruits, and survival of pathogens on
fresh-cut fruit were investigated during storage at 10 ◦C and 15 ◦C for 7 days. Fresh-cut
fruit was washed with 30 ppm SAEW containing 0.5% FA with and without UVC W-LED
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for 3 min. After treatment, samples were packaged using PET containers (Modenpack,
Seoul, Korea) and stored at 10 ◦C (storage temperature) or 15 ◦C (abused temperature).

2.7.1. Changes in Populations of S. aureus and L. monocytogenes on Fresh-Cut Fruit after
Combined Treatment

The growth and survival of S. aureus and L. monocytogenes on treated samples were
investigated for 7 days after storage at 10 ◦C and 15 ◦C. Samples without any extra wash
with a sanitizer were used as controls.

2.7.2. Visual Change and Measurements of the Color

The overall visual defect was used as a tool to evaluate the change in fruit quality.
Treated samples and controls were regularly photographed on a white plate every day dur-
ing storage at 10 ◦C and 15 ◦C. The color of fresh-cut fruit was analyzed in triplicate using
a colorimeter (Minolta CR-400, Osaka, Japan) every day for 7 days at room temperature.
Color values of samples were expressed as L* (lightness), a* (red–green chromaticity), and
b* (yellow–blue chromaticity) during each measurement.

2.7.3. Moisture Loss

Moisture loss (%) of treated fresh-cut fruit during storage was calculated by subtracting
the final weight of the fruit from its initial weight, divided by the initial weight, and then
multiplied by 100 [21]. Each sample was weighed to within ±0.001 g using a sensitive
electronic balance (WBA-320, DAIHAN Scientific Co., Ltd., Wonju, Korea):

(%) Moisture loss = (initial mass − final mass)/initial mass × 100. (1)

2.8. Statistical Analysis

The experiment was repeated twice with three replicates per experiment. The signifi-
cance of differences among or between samples was determined by one-way analysis of
variance (ANOVA) followed by Duncan’s multiple range tests or t-test. Data are expressed
as mean ± standard deviation (SD). Significance was considered when p < 0.05. All statisti-
cal analyses were performed using the statistical software program SAS release 9.4 (SAS
Institute, Inc., Cary, NC, USA).

3. Results and Discussion
3.1. The Sanitizing Effect with Combined SAEW and FA on Microbiological Hazards in
Fresh-Cut Fruit

Results of decontaminating S. aureus and L. monocytogenes on apple, pineapple, grape,
and cherry tomato by sanitizing with combined SAEW and FA are summarized in Figure 1.
After 3 min of dipping treatment with 30 ppm SAEW, reductions of populations of S.
aureus ranged from 0.33 to 1.19 log CFU/g. Under identical conditions, L. monocytogenes
populations showed reductions of 0.31–1.20 log CFU/g. The combination of SAEW +
FA (0.5%) resulted in higher bacterial reductions than a SAEW single treatment for fresh-
cut fruit. The highest reduction of S. aureus was 1.39 log CFU/g for grapes, followed
by that for cherry tomatoes (1.32 log CFU/g), apples (1.27 log CFU/g), and pineapples
(0.45 log CFU/g). Populations of L. monocytogenes on apples, grapes, cherry tomatoes, and
pineapples were reduced by 2.17, 2.14, 1.29, and 0.99 log CFU/g, respectively. The least
reduction effects of both pathogens were observed for pineapples in this work.
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Figure 1. Reduction effect of (a) S. aureus and (b) L. monocytogenes after disinfection treatments in various fruits. NaClO,
sodium hypochlorite solution (control, 100 ppm); SAEW, slightly acidic electrolyzed water (30 ppm); FA: fumaric acid (0.5%);
UVC W-LED: ultravioletC waterproof light-emitting diodes (275 nm). a–d values within each fruit represent differences by
using Duncan’s multiple-range test at p < 0.05.

Washing with SAEW has been reported as an effective method for the reduction of
pathogens [14,22,23]. Ding et al. [24] have revealed that treatment of cherry tomatoes with
SAEW can result in total aerobic bacteria reduction of 1.45 log CFU/g and 1.10 log CFU/g
reduction for yeasts and mold. After inoculated bell peppers were treated for 3 min with
SAEW alone at room temperature [23], reductions of 1.25 log CFU/g for L. monocyto-
genes and 1.19 log CFU/g for S. Typhimurium were reported, similar to results of the
present study.

Several studies have reported that the combination of SAEW with chemical/physical
treatments can result in a higher reduction effect of microbes than a single SAEW treat-
ment [16,25,26]. SAEW + FA treatments significantly (p < 0.05) reduced counts of E. coli
O157:H7, L. monocytogenes, and Salmonella spp. on lettuce compared to SAEW single treat-
ments [16]. Guo et al. [25] revealed that US and SAEW treatment shows a synergistic
sterilizing effect by significantly reducing the number and particle size (762 nm) of E. coli
compared to a single treatment, in which the average particle size of E. coli is 1436 nm.
According to Hussain et al. [26], treatment with SAEW (80 ppm) and mild heat (60 ◦C) for
10 min can result in additional reductions of 0.76 log CFU/mL for Bacillus cereus spores
compared to SAEW single treatments.
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3.2. The Sanitizing Effect of Combined SAEW and FA with UVC W-LED

Effects of various combined treatments on microorganism inactivation have been
reported in produce. However, little information is available for fresh-cut fruits. In this
study, inactivation efficacies of combined SAEW + FA and UVC W-LED treatments on
S. aureus and L. monocytogenes in various fresh-cut fruits were evaluated. Results are shown
in Figure 1.

Overall, the combination treatment of SAEW + FA and UVC W-LED resulted in a
greater disinfection effect for S. aureus and L. monocytogenes (0.51 to 2.63 log CFU/g re-
duction) in fresh-cut fruits than SAEW single treatment or combined treatment of SAEW
containing 0.5% FA (0.31 to 2.17 log CFU/g reduction). In all experimental groups, the
combined treatment of SAEW + FA and UVC W-LED was observed to have a greater
reduction effect than 100 ppm NaClO, a sanitizer commonly used in the produce industry,
except for S. aureus inoculated to pineapples. When the combined treatment was applied,
populations of S. aureus on grapes, apples, cherry tomatoes, and pineapples were reduced
by 1.65, 1.48, 1.46, and 0.51 log CFU/g, respectively. Reductions for counts of L. mono-
cytogenes on grapes, apples, cherry tomatoes, and pineapples were 2.63, 2.41, 1.46, and
1.01 log CFU/g, respectively. The highest reductions of both pathogens were observed
for grapes, followed by apples, cherry tomatoes, and pineapples. The lowest reduction
effects on both S. aureus and L. monocytogenes were observed for pineapples. This might
be because the surface of pineapple is uneven and rough. Thus, reduction effects on S.
aureus and L. monocytogenes were less than those on other samples. Previous studies have
shown that fruit surface roughness and smoothness can influence the effectiveness of
reducing bacterial populations. When fruit surface roughness increases, the efficacy of
microbial inactivation decreases [24,27]. Moreover, the difference in the reduction effect
among samples or bacteria shown in this experiment could be due to different sensitivities
of microorganisms to each hurdle technique. Many factors, including bacterial species,
surface topography, and transmittance of food, wavelength, and physical arrangement of
the UV source, can affect the reduction effect on microorganisms [28,29].

Previous studies have been conducted to reduce pathogenic bacteria in mixed bever-
ages, apple juice, and sliced cheese using UV-LED treatment [20,30,31]. Combining UV-LED
and other treatments has been reported in various studies [32–34]. UV-LED (280 nm, for
5 min) combined with SAEW (20 ppm, for 3 min) could reduce E. coli O157:H7 by 1.41 log
CFU/g and Salmonella by 1.68 log CFU/g on coriander [32]. The population of Salmonella is
decreased by 2.97 log CFU/g in lettuce after a sequential treatment with 80 ppm SAEW for
2 min and UVC-LED (100 µW/cm2) exposure for 30 min [33]. Recently, Lee et al. [34] have
revealed that inactivation of pathogenic E. coli and S. aureus on fresh-cut vegetables can be
achieved in the range of 0.97 to 2.17 log CFU/g with SAEW and ultrasounds, followed by
UV-LED (4.14 mJ/cm2, 275 nm) treatment before packaging.

There is no research that applies UVC W-LED in the food industry. This study was
the first trial of UVC W-LED for fresh-cut fruit. It proved that UVC W-LED combined with
SAEW and FA was effective in reducing food-borne pathogens on fresh-cut fruit. These
results indicate that the use of a combined treatment (SAEW + FA and UVC W-LED) can
be applied as a novel hurdle technology in the fresh-cut fruits industry. The fundamental
principle of projecting UV light onto submerged surfaces to prevent marine biofouling has
been also successfully verified by Ryan et al. [35].

3.3. Effects of Treatments of SAEW, FA, and UVC W-LED on Behaviors of S. aureus and L.
monocytogenes on Fresh-Cut Fruits after Storage at 10 ◦C and 15 ◦C

Fresh-cut fruits were treated with SAEW + FA or SAEW + FA and UVC W-LED. The
experimental group without an extra wash with a sanitizer was used as a control group
for comparison. Effects of hurdle treatments on the changes of pathogen populations on
apples, pineapples, grapes, and cherry tomatoes during storage at 10 ◦C and 15 ◦C for
7 days are shown in Figures 2–5, respectively. As described in the previous section, initial
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numbers of S. aureus and L. monocytogenes on fresh-cut fruits were more reduced with
combined treatments than with the control.

Figure 2. Change of S.aureus population of (a) apple, (b) pineapple, (c) grape and (d) cherry tomato with disinfection
treatments during storage at 10 ◦C. Control, no extra wash with a sanitizer; SAEW, slightly acidic electrolyzed water; FA,
fumaric acid; UVC W-LED, ultravioletC waterproof light-emitting diodes. Control (•), SAEW + FA (N), SAEW + FA + UVC
W-LED (�).

Figure 3. Change of L. monocytogenes population of (a) apple, (b) pineapple, (c) grape and (d) cherry tomato with disinfection
treatments during storage at 10 ◦C. Control, no extra wash with a sanitizer; SAEW, slightly acidic electrolyzed water; FA,
fumaric acid; UVC W-LED, ultravioletC waterproof light-emitting diodes. Control (•), SAEW + FA (N), SAEW + FA + UVC
W-LED (�).
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Figure 4. Change of S.aureus population of (a) apple, (b) pineapple, (c) grape and (d) cherry tomato with disinfection
treatments during storage at 15 ◦C. Control, no extra wash with a sanitizer; SAEW, slightly acidic electrolyzed water; FA,
fumaric acid; UVC W-LED, ultravioletC waterproof light-emitting diodes. Control (•), SAEW + FA (N), SAEW + FA + UVC
W-LED (�).

Figure 5. Change of L. monocytogenes population of (a) apple, (b) pineapple, (c) grape and (d) cherry tomato with disinfection
treatments during storage at 15 ◦C. Control, no extra wash with a sanitizer; SAEW, slightly acidic electrolyzed water; FA,
fumaric acid; UVC- W LED, ultravioletC waterproof light-emitting diodes. Control (•), SAEW + FA (N), SAEW + FA +
UVC-W LED (�).

At 10 ◦C, the SAEW + FA and UVC W-LED reduced populations of both pathogens
to the lowest level for all fresh-cut fruits after 7 days of storage (Figures 2 and 3). The
population of S. aureus was decreased in all treatment groups. The greatest reduction
was observed in the SAEW + FA and UVC W-LED treated group. In the case of apples
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(Figure 2a), the control group showed reduction by 1 log CFU/g during 7 days of storage,
while the SAEW + FA treatment group showed a decrease of 2.6 log CFU/g and the SAEW
+ FA and UVC W-LED treatment group showed a decrease of 3.4 log CFU/g. Similar results
were also observed for pineapples (Figure 2b). Less reductions (about 1 log CFU/g) were
observed for cherry tomatoes and grapes than for apples and pineapple during 7 days of
storage. The population of L. monocytogenes decreased or was maintained in the SAEW + FA
and UVC W-LED treatment group during storage, while the population of L. monocytogenes
increased continuously in the control group except for grapes (Figure 3c).

At 15 ◦C, the population of S. aureus decreased or maintained in samples treated with
SAEW + FA or SAEW + FA and UVC W-LED compared to that in the control group (no
extra wash with sanitizer) after 7 days of storage (Figure 4). The lowest counts of S. aureus
were observed for apples and pineapples (Figure 4a,b). The population of L. monocytogenes
continued to increase rapidly in the control group, while they were maintained or increased
slowly in samples treated with SAEW + FA and UVC W-LED (Figure 5). Changes in behav-
iors of bacteria during storage after disinfection have been reported previously [32,34,36].
Total aerobic bacteria (TAB) on untreated mandarin increased faster than those on FA +
SAEW treated mandarin. After storage at 4 ◦C for 14 days, the final population of TAB
was observed at significantly lower levels in treated mandarins than in untreated samples
(p < 0.05) [36]. According to Jiang et al. [32], the total number of Salmonella and E. coli in
coriander treated with SAEW (60 ppm, for 5 min) and UV-LED (240 µW/cm2, for 30 min)
and stored at 4 ◦C for 6 days showed a slow growth trend. Surface microorganisms of the
treatment group were also always lower than those of the control group. Lee et al. [34]
have also confirmed that populations of S. aureus and E. coli O157:H7 are decreased in
fresh-cut vegetables treated with SAEW, US, and UV-LED during storage at 5 ◦C and 15 ◦C.
Growths of S. aureus and E. coli O157:H7 on carrots and celeries were inhibited during
storage at 15 ◦C after they were treated with SAEW, US, and UVC LED.

In this study, greater growth controls for pathogens were observed for apples and
pineapples than for grapes and cherry tomatoes during storage. Because UV has a limited
penetration depth to fruit tissues, it has an antibacterial effect through surface steriliza-
tion [37]. Since we inoculated pathogens to stem scars of grapes and cherry tomatoes,
pathogens could enter the inside of the fruit pericarp through the stem scar. Thus, the
antibacterial action with UVC W-LED against bacteria might be insufficient. Because
grapes and cherry tomatoes are covered with pericarps, treatments seem to have less
effects on bacteria reduction of these samples during storage compared to fresh-cut apples
and pineapples.

Our results clearly showed that the combination treatment with SAEW + FA and UVC
W-LED could extend the shelf-life by improving the microbial safety of fresh-cut fruits
during storage. However, the bactericidal efficacy depended on the type of fruit. These
findings indicate that UVC W-LED is a promising decontamination hurdle technology that
can be applied at the sanitizing step in the fresh produce industry.

3.4. Quality Analysis of Treated Fresh-Cut Fruits during Storage at 10 and 15 ◦C
3.4.1. Moisture Loss

Moisture loss has a negative effect on the product quality of certain fruits and veg-
etables as it can lead to bad texture, change of shape, and poor color, resulting in the loss
of profitability of fresh produce [38]. In this study, relative moisture losses of fruits from
effects of different treatments during storage for 7 days at 10 ◦C and 15 ◦C were determined.
Results are shown in Figure 6. Moisture losses of various fruits increased during storage at
10 ◦C (Figure 6a) and 15 ◦C (Figure 6b) in all groups. After storage at 10 ◦C for 7 days, the
percentages of moisture loss ranged from 4.38 to 5.14% in apples, 2.14 to 2.97% in grapes,
4.72 to 5.15% in pineapples, and 2.01 to 2.67% in cherry tomatoes. At 15 ◦C, the maximum
moisture losses were 8.24, 5.68, 4.77, and 3.67% in pineapples, apples, grapes, and cherry
tomatoes, respectively. Although moisture losses of fresh-cut fruits increased as the storage
temperature increased from 10 ◦C to 15 ◦C, in general, no significant difference in weight
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loss was observed among treatment groups. Moisture loss was significantly less in grapes
treated with SAEW + FA and UVC W-LED compared to those after washing treatment
without UVC W-LED or in the control (no extra wash with a sanitizer).

Figure 6. Effectiveness of disinfection treatments on the moisture loss in various fresh-cut fruits stored after 7 days at (a)
10 ◦C and (b) 15 ◦C. Control, no extra wash with a sanitizer; SAEW, slightly acidic electrolyzed water; FA, fumaric acid; UVC
W- LED, ultravioletC waterproof light-emitting diodes. a–d values within each treatment represent different by Duncan’s
multiple range test at p < 0.05.
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These results indicated that SAEW + FA or SAEW + FA and UVC W-LED treatment
caused no negative effect on moisture loss of fruits compared to the control, suggesting that
the treatment used in this study could be applied to the fresh-cut fruit industry. Results of
this study were similar to those of previous studies [37,38]. When strawberries were stored
for 8 days at 6 ◦C after pulsed-light treatment (2.4–23.9 J/cm2), there were no significant
differences in moisture loss between treated and untreated groups [39]. According to
Sripong et al. [40], there was no significant difference in moisture loss between mangoes
treated with hot water (55 ◦C, 5 min) + UVC (6.16 kJ m−2) and those in the control group.

In this research, the greatest moisture was observed for pineapples at both storage
temperatures, while cherry tomatoes showed less moisture loss. Cherry tomatoes had less
moisture loss than pineapples, possibly because the pulp was not directly exposed to the
outside due to the skin surrounding the juicy pulp.

3.4.2. Visual and Color Changes of Treated Fresh-Cut Fruits during Storage at 10 ◦C and
15 ◦C

Appearance changes of treated fresh-cut fruit stored at 10 ◦C and 15 ◦C for 7 days are
shown in Figures 7 and 8. Overall, visual changes of fresh-cut fruit were less significant
in treated groups than in the control during 7 days of storage. In particular, remarkable
appearance changes of control were identified compared to those of apples treated with
SAEW + FA and UVC-W LED during storage at both temperatures (Figure 7).

Figure 7. Changes in the overall visual quality of apples with disinfection treatments after storage for 7 days at 10, 15 ◦C.
Control, no extra wash with a sanitizer; SAEW, slightly acidic electrolyzed water; FA, fumaric acid; UVC W-LED, ultravioletC
waterproof light-emitting diodes.
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Figure 8. Changes in the overall visual quality of pineapples, cherry tomatoes, and grapes treated with a combination of
SAEW + FA and UVC W-LED after storage for 7 days at 10, 15 ◦C. SAEW, slightly acidic electrolyzed water; FA, fumaric
acid; UVC W-LED, ultravioletC waterproof light-emitting diodes.

At 15 ◦C, the control group of apples began to show browning after one day of
storage. However, visual changes of treated apples with SAEW + FA and UV-C W LED
were relatively less progressed during the same period. In this work, the browning of
fresh-cut apples was not completely controlled by the combined treatment. According to
previous research [41], ascorbic acid showed higher inhibition effect on browning than
other solutions. Therefore, in terms of anti-browning, ascorbic acid is thought to be more
effective than FA used in this experiment. Browning is less of a concern with pineapples,
cherry tomatoes, and grapes. The overall appearance of pineapples was well-maintained
in the treatment group than in the control. Mold was observed in the control group of
tomatoes (data not shown).

The visual appearance of color is known as the main factor influencing consumers’
choices. Fresh produce undergoes complicated chemical and biochemical changes during
post-harvest handling, resulting in slight color changes [42]. In this study, color parameters
of fresh-cut fruits were consistent with the appearance quality (Tables 2 and 3). Generally,
L*, a*, and b* values of samples treated with combined SAEW + FA and UVC W-LED
were significantly (p < 0.05) different from those of controls. These results were most
noticeable for apples stored at 10 ◦C. L* values of treated apples were significantly higher
those of controls, indicating that treatment prevented the browning of apples. Furthermore,
pineapples treated with SAEW + FA and UVC W-LED showed significantly higher L*
values than the control group of pineapples stored at 15 ◦C.
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Table 2. Effectiveness of disinfection treatments on color parameters in apple and pineapple after storage for 7 days at
10 ◦C.

Treatment
Storge
Time

Apple 1 Pineapple

L* a* b* L* a* b*

Control
0 day B 64.11 ± 0.68 C −0.68 ± 0.54 B 22.31 ± 0.23 A 64.09 ± 1.75 D −5.91 ± 0.30 A 27.52 ± 0.30

7 day E 52.80 ± 1.22 A 1.84 ± 0.38 A 24.97 ± 0.34 B 44.98 ± 1.32 A −0.68 ± 0.26 D 13.99 ± 0.63

SAEW + FA
0 day A 70.95 ± 1.81 C −1.36 ± 0.48 C 20.45 ± 0.25 A 63.99 ± 0.87 D −5.50 ± 0.20 B 25.84 ± 0.48

7 day D 57.99 ± 1.23 A 2.57 ± 0.35 B 22.01 ± 0.27 B 47.90 ± 0.32 B −1.89 ± 0.76 C,D 14.31 ± 0.93

SAEW + FA
+UVC W-LED

0 day A 72.49 ± 0.71 D −2.85 ± 0.61 C 20.14 ± 0.58 A 63.38 ± 2.41 D −6.02 ± 0.09 B 26.30 ± 0.12

7 day C 60.89 ± 1.21 B 0.85 ± 0.07 B 21.91 ± 0.20 B 48.44 ± 1.75 C −3.97 ± 0.06 C 15.76 ± 0.28
1 Means ± standard deviation (n = 3). Control, no extra wash with a sanitizer; SAEW, slightly acidic electrolyzed water; FA, fumaric acid;
UVC W-LED, ultravioletC waterproof light-emitting diode. A–E Means values in the same column with different letters are significantly
different (p < 0.05).

Table 3. Effectiveness of disinfection treatments on color parameters in apple and pineapple after storage for 7 days at
15 ◦C.

Treatment
Storge
Time

Apple 1 Pineapple

L* a* b* L* a* b*

Control
0 day B 63.64 ± 2.46 B −0.38 ± 0.10 C,D 21.94 ± 0.51 A,B 62.77 ± 1.86 C −5.65 ± 0.17 A 26.79 ± 0.14

7 day C 54.98 ± 3.80 A 2.85 ± 0.96 A 26.23 ± 0.46 D 40.65 ± 0.25 A −0.11 ± 0.80 B 11.16 ± 1.16

SAEW + FA
0 day A,B 68.08 ± 1.67 B −0.03 ± 0.10 D,E 21.24 ± 0.49 A 64.11 ± 1.14 C −5.77 ± 0.07 A 25.63 ± 0.90

7 day C 54.59 ± 0.74 A 2.35 ± 0.56 B 24.47 ± 0.23 D 42.98 ± 0.81 A −0.97 ± 0.25 B 12.20 ± 0.47

SAEW + FA
+UVC W-LED

0 day A 70.85 ± 1.62 C −2.48 ± 0.20 E 20.60 ± 0.28 B 61.32 ± 1.67 C −5.18 ± 0.14 A 25.45 ± 0.69

7 day C 58.25 ± 2.75 A 1.83 ± 0.26 C 22.48 ± 0.28 C 46.31 ± 0.31 B -2.29 ± 0.60 B 12.25 ± 0.23
1 Means ± standard deviation (n = 3). Control, no extra wash with a sanitizer; SAEW, slightly acidic electrolyzed water; FA, fumaric acid;
UVC W-LED, ultravioletC waterproof light-emitting diode. A–E Means values in the same column with different letters are significantly
different (p < 0.05).

The main problem with fresh-cut fruit is related to color changes, which significantly
limits their shelf life. Browning is caused by the interaction of polyphenol oxidase with
phenol released during minimal processing [43,44]. Conversely, the antioxidant activity of
fruits is caused by phenolic compounds. Previous studies have shown that UVC treatment
can increase total polyphenols in mangoes and pineapples and that the antioxidant activity
is significantly increased compared to the control group [44]. In addition, UVC irradiation
can inactivate polyphenol oxidase activity, preventing further loss of polyphenols [45]. With
the same mechanism, UV-LED treatment has been proven to be effective in inactivating the
polyphenol oxidase of apple juice [20]. These results indicate that the combined treatment
of SAEW + FA and UVC W-LED can be an effective method to extend the shelf life of
fresh-cut fruits without adversely affecting their quality parameters.

4. Conclusions

This study evaluated antibacterial effects of hurdle technologies using 30 ppm SAEW
containing 0.5% FA and UVC waterproof LED and the possibility of extending the shelf
life of treated fresh-cut fruits with these hurdle technologies. The combination treatment of
SAEW + FA and UVC W-LED resulted in a greater disinfection effect on S. aureus and L.
monocytogenes in grapes, cherry tomatoes, fresh-cut apples, and pineapples compared to
other treatments. The least reduction effect on both pathogens was observed for pineapples.

At 10 ◦C and 15 ◦C, populations of S. aureus and L. monocytogenes with combined
treatment were observed at a lower level than the control group. Overall, no significant
difference in moisture loss was observed among treatment groups. However, visual
changes of fresh-cut fruits were less significant in treated groups than in the control group
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during 7 days of storage. They were prominent for fresh-cut apples and pineapples. Results
of this study indicate that UVC W-LED is a promising decontamination hurdle technology
that can be applied at the sanitizing step in the fresh produce industry. It can be an effective
method to extend the shelf life of fresh-cut fruits without adversely affecting their quality
parameters.
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