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Abstract: High-quality wine vinegars with unique organoleptic characteristics are produced in
southern Spain under three Protected Designations of Origin (PDO), namely “Jerez”, “Condado
de Huelva” and “Montilla-Moriles”. To guarantee their authenticity and avoid frauds, robust and
low-cost analytical methodologies are needed for the quality control and traceability of vinegars.
In this study, we propose the use of ultraviolet-visible spectroscopy in combination with multivariate
statistical tools to discriminate Spanish wine vinegars according to their geographical origin, as well
as to predict their physicochemical and functional properties. Linear discriminant analysis provided
a clear clustering of vinegar samples according to the PDO with excellent classification performance
(98.6%). Furthermore, partial least squares regression analysis demonstrated that spectral data
can serve as accurate predictors of the total phenolic content and antioxidant activity of vinegars.
Accordingly, UV-Vis spectroscopy stands out as a suitable analytical tool for simple and rapid
authentication and traceability of vinegars.

Keywords: vinegar; protected designation of origin; UV-Vis spectroscopy; authentication; prediction

1. Introduction

Vinegar is a condiment widely employed in the Mediterranean and Asian diets to
preserve and improve the sensory characteristics of foods. According to the Codex Alimen-
tarius Commission, vinegars can be obtained from different agricultural products rich in
starch and/or sugars by means of a double fermentation process (i.e., alcoholic and acetic
fermentation). In Europe, grapes, apple, pomegranate, cherry and other fruit juices are
the most commonly used raw materials for vinegar production, whereas Asian vinegars
are normally based on cereals such as sorghum, rice, sticky rice and others [1]. Spain is
one of the major producers of high-quality wine vinegars worldwide, whose production
is mainly concentrated in Andalusia (Southern Spain). A singularity of the wines and
vinegars produced in this geographical area is the use of the traditional aging system of
“criaderas and soleras” [2], which provides them with unique organoleptic characteristics
that are highly appreciated by consumers. As a result of these unique characteristics, three
Protected Designations of Origin (PDO) of Andalusian vinegars have been recognized
in accordance with the European Community legislation (Council Regulation (EC) No
510/2006) [3], namely the PDO “Vinagre de Jerez”, registered in 1995; the PDO “Vinagre
del Condado de Huelva”, registered in 2002; and the PDO “Vinagre de Montilla-Moriles”,
registered in 2008 [4–6].

The composition and organoleptic characteristics of vinegars are influenced by multi-
ple factors, such as the raw material used as a substrate, the acetification system, or the time
and method employed for vinegar aging in wooden barrels (e.g., “criaderas and soleras”
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system, “añada” system), among others [7,8]. These chemical variations, mainly in terms
of organic acids and polyphenolic compounds, can in turn affect the functional properties
of vinegars (e.g., acidity, antioxidant activity). In this respect, Budak et al. have reported
that functional and therapeutic properties of vinegar on human health comprise antibacte-
rial activity, blood pressure reduction, antioxidant activity, prevention of cardiovascular
diseases, and improved blood glucose response [9]. Altogether, it becomes evident that
the food industry requires robust analytical methodologies to characterize the quality and
verify the geographical origin of vinegars. In this context, several studies have previously
reported the possibility of discriminating vinegars by using classical targeted approaches
based on atomic emission spectroscopy, gas chromatography–mass spectrometry and
high-performance liquid chromatography for the determination of mineral elements [10],
volatile compounds [11–13], as well as polyphenols, organic acids and amino acids [13,14],
respectively. Although these methods generally provide high accurateness and sensitivity,
they are also time consuming and require considerable amounts of toxic and expensive
chemical solvents and reagents. As an alternative, rapid non-targeted spectroscopic meth-
ods have been proposed for food quality control and authentication [15]. Among them, near
infrared (NIR), mid infrared (MIR), Fourier transform infrared (FTIR), ultraviolet-visible
(UV-Vis) and fluorescence spectroscopies, combined with multivariate approaches, have
successfully been applied for the characterization and authentication of vinegars [16,17],
their quality control [17,18], and the detection of adulterations [7,19].

The main aim of this work was to investigate the potential of UV-Vis spectroscopy in
combination with chemometric tools for discriminating Andalusian PDO wine vinegars
according to their geographical origin. Secondly, we aimed to predict the physicochem-
ical and functional properties of vinegars using the spectral information by applying
regression analysis.

2. Materials and Methods
2.1. Vinegar Samples

A total of 71 vinegar samples were kindly provided by local wine cellars from the three
Andalusian PDOs: 18 “Condado de Huelva” PDO vinegar samples, 8 “Montilla-Moriles”
PDO vinegar samples, and 45 “Jerez” PDO vinegar samples. All the samples were kept in
darkness at room temperature until analysis.

2.2. Spectral Measurements

Absorption spectra in the ultraviolet-visible (UV-Vis) region were recorded in the
range 200–700 nm at wavelength intervals of 2 nm with a scanning speed of 2400 nm min−1,
using a Thermo Electron Corporation Spectronic Helios Alpha spectrophotometer (Thermo
ScientificTM, Waltham, MA, USA). The absorbance was measured using rectangular quartz
cuvettes with a path length of 2 mm against deionized water blanks.

2.3. Determination of Chemical Parameters
2.3.1. Total Phenolic Content

The total phenolic content (TPC) of vinegars was measured according to the Folin–
Ciocalteu spectrophotometric method [20]. For this purpose, a volume of 0.02 mL of each
sample was mixed with 1.58 mL of Milli-Q water and 0.10 mL of the Folin–Ciocalteu
reagent (Sigma-Aldrich, Steinheim, Germany). Then, 0.30 mL of 20% sodium carbonate
was added, and the mixture was incubated at 40 ◦C during 120 min using a water bath.
Finally, the absorbance was measured at 725 nm using a quartz cuvette against Milli-Q
water blanks. The results were expressed as gallic acid equivalents per liter.

2.3.2. Antioxidant Activity

The antioxidant activity of vinegar samples was examined using the method de-
veloped by Brand-Williams et al. based on the redox reaction between the radical 1,1-
diphenyl-2-picrylhydrazyl (DPPH) and the antioxidants contained in the sample [21]. For
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this, a total volume of 0.1 mL of the vinegar sample was added to 3.9 mL of 0.1 mM
DPPH solution in methanol. The mixture was kept at room temperature for 30 min, and
the absorbance was then measured at 515 nm. Complementarily, the ABTS (2,2’-azino-
bis(3-ethylbenzothiazoline-6-sulfonic acid)) radical cation decolorization assay was also
applied to determine the free-radical scavenging activity of vinegar samples according
to the method of Pellegrini et al. [22]. To this end, the ABTS radical cation (ABTS•+) was
first produced by reacting 7 mM ABTS stock solution with 2.45 mM potassium persulfate
at room temperature in darkness for 16 h. Then, the ABTS•+ solution was diluted with
ethanol to obtain an absorbance of 0.70 (±0.01) at 734 nm. Finally, a 0.1 mL aliquot of the
sample was added to 2.9 mL of the diluted ABTS•+ solution, the mixture was incubated for
6 min, and the absorbance was read at 734 nm. The results of both the DPPH and ABTS
assays were expressed as Trolox equivalents per liter.

2.3.3. Total Acidity and pH

Total acidity was measured using a Titralyser automatic titrator (Laboratoires Dujardin-
Salleron, Noizay, France) according to the Spanish Official Methods for the analysis of
vinegars [23]. The results were expressed as grams of acetic acid per 100 mL of vinegar.
The pH measurements were performed using the same automatic titrator.

2.4. Data Analysis

Data processing and statistical analyses were performed in the Statistica 8.0 software
(StatSoft, Tulsa, OK, USA). To remove undesirable systematic variation in the data due
to physical effects, different preprocessing methods were studied prior to multivariate
analysis, including standard normal variate (SNV), multiplicative scatter correction (MSC),
first derivative (1D) and second derivative (2D). Furthermore, both the raw spectra and
the preprocessed spectra were subjected to logarithmic transformation and normalized
by autoscaling. Briefly, techniques such as SNV, MSC and autoscaling normalization
attempt to reduce spectral scattering, whereas spectral derivatives may help to remove
baseline drift, distinguish overlap peaks and extract important signals [24]. Analysis of
variance (ANOVA) followed by the Fisher LSD post hoc test was applied to look for
differences between the three PDOs under study in terms of the chemical parameters
evaluated here (i.e., TPC, antioxidant activity, total acidity, pH). p-Values below 0.05
were considered as statistically significant. Afterwards, linear discriminant analysis (LDA)
was employed to build classification models with the aim of assessing the potential of
spectroscopy data to authenticate wine vinegars according to the geographical origin.
LDA is based on the generation of a number of orthogonal linear discriminant functions
equal to the number of categories minus one [25]. Prior to LDA, data normality was
checked by inspecting probability plots, and the homogeneity of variance-covariance
matrices was tested by applying the Box’s M test. Furthermore, the multicollinearity was
assessed by using the condition number method, which is defined as the square root of
the ratio between the maximum and minimum eigenvalues. The most significant variables
involved in sample differentiation according to the PDO were selected using Wilks’ λ and
F value as criterion for inclusion or removal of variables in the model. Subsequently, the
LDA models were subjected to 7-fold cross-validation to assess their predictive ability.
For this purpose, the data matrix was randomly divided into two sets, both of them
containing the same percentage of samples within each class: a training set that was used
to construct the classification model, and a test set to evaluate the model performance.
The performance of the models was evaluated by computing their sensitivity (SENS) and
specificity (SPEC), where SENS refers to the percentage of cases belonging to a determinate
class that were correctly classified, and SPEC refers to the percentage of cases not belonging
to a class that were correctly not classified in this class. Finally, partial least squares
regression (PLSR) analysis was applied to predict the chemical and functional properties of
vinegars from the spectral data. This technique is a quick, efficient and optimal regression
method based on covariance, which is highly recommended to avoid overfitting when the
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number of explanatory variables is large and inter-correlated. This technique is based on
building a set of components that accounts for as much as possible variation in the data,
while also modeling the Y variables. For this purpose, PLSR works by extracting a set of
components that transforms the original X and Y data into a set of t-scores and u-scores,
respectively. Then, the t-scores are used to predict the u-scores, which are in turn used to
predict the response variables. The statistical performance of these models can be defined
by the following parameters: R2

y, the proportion of variance of the response variable
explained by the model; and R2

x, the proportion of variance in the data explained by the
model. Furthermore, their predictive ability was assessed by computing the regression
correlation coefficient (R2), the predicted residual error sum of squares (PRESS) and the
residual predictive deviation (RPD). The coefficient of correlation estimates the percentage
of variation explained by the model, whereas the PRESS parameter provides a measure
of the fit of the regression to a sample of observations that were not used to create the
model. The RPD values were computed as the ratio between the standard deviation of the
reference values and the error of prediction, so that the higher the RPD values, the greater
the probability of the model to accurately predict the chemical parameters. Accordingly,
good prediction models require R2 values to be close to 1, as small as possible PRESS
values, and RPD values above 2.5–3.0 [26].

3. Results and Discussion
3.1. Spectral and Chemical Characteristics of Vinegars

The spectral data recorded in this study were in accordance with the characteristic UV-
Vis spectra of vinegars reported in the literature [7]. In these spectra, three regions can easily
be differentiated in all the vinegar samples regardless of the geographical origin (Figure 1):
a strong absorption peak around 200 nm (region of sobresaturation), the absorption band
of phenolic compounds in the range 250–400 nm, and the region above 400 nm, where
there is practically no absorption.
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Figure 1. Typical UV-Vis spectra of vinegars.

Furthermore, four parameters related to the physicochemical and functional properties
of vinegars were also assessed in this study. The Folin–Ciocalteu method was employed for
determining the TPC of vinegars, whereas the antioxidant activity was determined by ap-
plying two complementary methods, namely the DPPH and ABTS assays [27]. In addition,
the total acidity and pH of the vinegar samples were measured using a titrator. As shown in
Table 1, the TPCs and antioxidant activities were within the ranges reported by Kadiroğlu
for various types of commercial vinegars [19], whereas total acidity values were similar
to those found by De la Haba et al. in vinegars from the PDO “Montilla-Moriles” [16].
In contrast, the pH values were slightly lower than those reported by these same authors.
One-way ANOVA revealed significant differences in the four parameters determined here
between the samples from the three Andalusian PDOs under study (Table 1). Vinegars
from the “Montilla-Moriles” PDO showed a characteristic chemical profile with higher
TPC and antioxidant activity, whereas “Condado de Huelva” and “Jerez” samples were
characterized by higher total acidity.
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Table 1. Mean, minimum and maximum values for the antioxidant activity, total phenolic content, total acidity and pH in
vinegar samples from the three Andalusian PDOs, and p-values obtained by ANOVA.

PDO “Jerez” PDO “Condado de Huelva” PDO “Montilla-Moriles” p-Value

Antioxidant
activity—DPPH assay

(mmol Trolox
equivalents L−1)

1.41 a

(0.30–5.00)
1.39 a

(0.08–5.94)
5.37 b

(0.69–16.68)
0.0000

Antioxidant
activity—ABTS assay

(mmol Trolox
equivalents L−1)

2.11 a

(0.29–4.35)
1.45 a

(0.15–4.53)
15.24 b

(0.87–52.33)
0.0001

Total phenolic content
(mg gallic acid

equivalents L−1)

450.69 a

(157.54–1347.56)
984.26 a

(102.82–9341.47)
2186.14 b

(206.99–7906.01)
0.0000

Total acidity (g acetic
acid 100 mL−1)

8.44 a

(5.58–10.89)
8.72 a

(6.54–11.04)
7.32 b

(5.88–10.32)
0.0079

pH 2.03 a

(1.85–2.42)
1.95 b

(1.60–2.36)
2.14 c

(1.60–2.57) 0.0029

Superscript letters within each row indicate significant differences between groups marked with different letters, according to the post-hoc
Fisher LSD test (p < 0.05).

3.2. Differentiation of Vinegars According to Their Protected Designation of Origin

To evaluate the potential of UV-Vis spectroscopy to differentiate vinegar samples
according to the geographical origin, the spectral data recorded here were subjected to linear
discriminant analysis (LDA). Furthermore, we also compared the potential of different
preprocessing methods to correct data variations that can be caused by physical phenomena
(e.g., noise, baseline drift), with the aim of improving the classification performance of the
multivariate models.

For stepwise LDA modeling, the original variables were divided into five wavelength
intervals, as LDA requires a maximum number of variables equal to the number of cases.
Table 2 shows the percentage of correct classifications obtained for each model, the number
of components selected, as well as the sensitivity (SENS) and specificity (SPEC) parameters
computed by means of cross-validation. The best results were obtained when LDA was
carried out on non-preprocessed data in the range 280–400 nm, with 98.6% mean prediction
ability (only one “Condado de Huelva” sample was misclassified). This model retained
eight components (F to enter = 4.00 and F to remove = 1.00), and the scatter plot of the
samples in the plane defined by the two first canonical variables enabled a clear distinction
of the vinegar samples according to the PDO. As shown in Figure 2A, the first canonical
function differentiated the “Montilla-Moriles” vinegar samples from the other two PDOs,
which were in turn separated by the second component. Moreover, the comparison of the
different preprocessing techniques demonstrated that SNV-based treatment of the spectral
data in the region 502–600 nm also provided good classification performance (88.7%),
although the differentiation of the three PDOs in the corresponding scatter plot was not so
clear compared to that obtained with non-preprocessed data (Figure 2B). This is in good
agreement with previous studies describing the suitability of SNV for the extraction of
spectral information related to antioxidants and antioxidant activity by NIR [28], and for
the discrimination of Australian Shiraz wines by MIR [29].
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In a previous study, vinegar samples from “Jerez” and “Condado de Huelva” PDOs
were subjected to complete chemical characterization of polyphenols and volatile com-
pounds [13]. Using these chemical descriptors, LDA analysis enabled the differentiation of
the samples according to the geographical origin, although yielding lower classification per-
formance to that provided by UV-Vis spectral data (92.86% and 94.12% of the samples were
successfully classified when modeling polyphenolic and volatile data, respectively). This
therefore highlights the great potential of spectroscopic techniques as simple, ecofriendly
and low-cost alternatives against traditional analytical approaches based on chemical
analysis for the differentiation of vinegar samples.
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Table 2. Statistical performance of the linear discriminant analysis (LDA) models built for the
differentiation of vinegars according to the PDO using the UV-Vis spectral data.

Wavelength
Interval

Preprocessing
Method

Number of
Components

Classification
Performance SENS SPEC

200–278 nm

Raw 4 81.0% 66.0% 83.5%

SNV 2 76.0% 56.6% 81.6%

MSC 2 77.0% 60.3% 82.9%

1D 4 77.0% 58.2% 83.7%

2D 7 77.5% 45.6% 74.5%

280–400 nm

Raw 8 98.6% 77.8% 89.4%

SNV 8 83.8% 59.6% 84.7%

MSC 9 83.0% 61.1% 85.7%

1D 7 78.0% 44.8% 74.1%

2D 3 68.3% 43.5% 70.8%

402–500 nm

Raw 3 69.0% 45.5% 73.9%

SNV 7 82.3% 62.0% 84.0%

MSC 7 80.0% 59.1% 84.0%

1D 3 68.0% 54.4% 77.7%

2D 6 71.8% 37.5% 70.6%

502–600 nm

Raw 3 71.0% 48.3% 75.4%

SNV 10 88.7% 63.7% 85.3%

MSC 11 85.9% 61.7% 84.6%

1D 5 71.8% 42.5% 69.9%

2D 4 67.6% 42.2% 70.9%

602–698 nm

Raw 11 81.7% 45.0% 74.1%

SNV 2 80.0% 59.2% 82.4%

MSC 5 80.0% 60.7% 83.8%

1D 2 67.6% 46.3% 72.5%

2D 2 66.9% 41.3% 70.0%

3.3. Prediction of Chemical Parameters of Vinegars Using Spectroscopic Data

To investigate the potential of spectroscopy techniques for predicting the chemical and
functional characteristics of vinegar samples, multivariate partial least squares regression
(PLSR) was applied to model the linear relationships between the whole UV-Vis spectral
data and the chemical parameters under study (i.e., TPC, antioxidant activity, total acidity
and pH). As shown in Table 3 and Figure 3, the spectroscopic data demonstrated excellent
capacity to predict the antioxidant activity and TPC of vinegars, as expected considering
the strong absorption band of phenolic compounds in the UV-Vis region. The best model
for predicting the antioxidant activity measured through the DPPH assay was obtained
when using non-preprocessed spectral data, which was constructed with three PLS factors
accounting for 91.5% and 84.5% of the variability for X and Y variables, respectively
(R2 = 0.849, PRESS = 0.561, RPD = 6.95). Similarly, the spectral data also accurately predicted
the antioxidant activity determined by means of the ABTS assay, in that case when applying
MSC preprocessing (R2 = 0.990, PRESS = 0.220, RPD = 13.18). These results are in great
accordance with those reported by Kadiroğlu, who used FTIR spectral data to predict
the antioxidant activities of commercial vinegars [19]. With regard to the TPC, the best
predictive model was also obtained after applying MSC preprocessing to the spectral data
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(R2 = 0.744, PRESS = 0.715, RPD = 2.75), in line with a previous study describing the
application of NIR spectroscopy to characterize “Montilla-Moriles” PDO vinegars [16]. In
this respect, it should be noted that regression analysis between non-processed spectral
data and TPC provided a higher RPD value to that obtained when using MSC-preprocessed
data (Table 3), but the R2 parameter was below the recommendations by Tamaki and Mazza
for accurate predictions [26].

Table 3. Statistical performance of the partial least squares regression (PLSR) models built for the prediction of the chemical
properties of vinegars using the UV-Vis spectral data.

Wavelength
Interval

Preprocessing
Method

Number of
Components R2

Y R2
X R2 PRESS RPD

Antioxidant activity
(DPPH assay)

Raw 3 0.845 0.915 0.849 0.561 6.95

SNV 5 0.469 0.918 0.815 0.773 5.04

MSC 5 0.894 0.906 0.870 0.703 5.54

1D 1 0.727 0.318 0.818 1.132 3.44

2D 9 0.970 0.809 0.845 0.582 6.69

Antioxidant activity
(ABTS assay)

Raw 8 0.992 0.973 0.983 0.306 9.50

SNV 6 0.969 0.909 0.985 0.455 6.37

MSC 2 0.878 0.838 0.990 0.220 13.18

1D 1 0.944 0.625 0.945 0.266 10.91

2D 1 0.953 0.535 0.951 0.236 12.26

Total phenolic
content

Raw 2 0.459 0.885 0.456 0.563 3.45

SNV 2 0.528 0.755 0.659 0.709 2.78

MSC 2 0.527 0.769 0.744 0.715 2.75

1D 1 0.516 0.447 0.526 0.687 2.87

2D 2 0.605 0.559 0.490 0.882 2.23

Total acidity

Raw 1 0.019 0.665 0.053 1.070 1.41

SNV 6 0.483 0.921 0.219 1.031 1.15

MSC 6 0.507 0.917 0.394 1.040 1.45

1D 2 0.109 0.639 0.067 1.038 1.45

2D 1 0.117 0.189 0.084 1.098 1.37

pH

Raw 4 0.214 0.943 0.074 0.709 0.24

SNV 4 0.274 0.877 0.183 0.642 0.26

MSC 6 0.505 0.924 0.384 0.659 0.26

1D 2 0.111 0.671 0.070 0.683 0.25

2D 3 0.415 0.605 0.071 0.676 0.25

In contrast, PLSR models for total acidity and pH showed poor predictive ability
regardless of the preprocessing technique applied, with R2 values below 0.4 for both chem-
ical parameters, and RPD values below 1.45 and 0.26 for total acidity and pH, respectively.
These results were, however, not surprising since the principal acidity-related compounds
present in vinegars do not absorb in the UV-Vis region.
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In contrast, PLSR models for total acidity and pH showed poor predictive ability re-
gardless of the preprocessing technique applied, with R2 values below 0.4 for both chem-
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Figure 3. Partial least squares regression (PLSR) analysis for predicting the antioxidant activity measured through the
DPPH assay (A) and the ABTS assay (B), as well as the total phenolic content (C) of vinegars using UV-Vis spectral data.

4. Conclusions

In this study, we have demonstrated that UV-Vis spectroscopy in combination with
chemometrics tools can be used for the authentication of wine vinegars from Andalusian
PDOs, namely “Vinagre del Condado de Huelva”, “Vinagre de Montilla-Moriles” and
“Vinagre de Jerez”. This novel spectroscopic method represents a simple, ecofriendly and
low-cost alternative against traditional analytical approaches based on chemical analysis.
In particular, LDA modeling of the spectral data recorded within the range 280–400 nm,
where phenolic compounds show their characteristic absorption band, enabled a clear
differentiation of the three PDOs under study with excellent classification performance
(98.6%). Furthermore, PLS regression analysis demonstrated the capacity of UV-Vis spectral
data for predicting the TPC and antioxidant activity of vinegars. Altogether, the present
study represents one-step further on the development of fast-screening methods for quality
control and traceability of wine vinegars. Future studies involving a higher number of
vinegar samples are needed to validate the results and conclusions presented here, thus en-
abling the implementation of this methodology for routine analysis in vinegar certification.
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