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Abstract: Food plants provide a regulated source of delivery of functional compounds, plant sec-
ondary metabolites production being also tissue specific. In the grape berries, the phenolic com-
pounds, flavonoid and non-flavonoids, are distributed in the different parts of the fruit. The aim of 
this study was to investigate the applicability of FTIR, and Raman screening spectroscopic tech-
niques combined with multivariate statistical tools to find patterns in red grapes berry parts (skin, 
seeds and pulp) according to grape variety and vineyard type (organic and conventional). Explor-
atory data analysis has revealed hidden patterns in complex spectral data by reducing the infor-
mation to a more comprehensible form and indicating whether there are patterns or trends in the 
data. Spectral data were acquired and processed using same pattern for each different berry parts 
(skin, seeds and pulp). Vibrational spectroscopic techniques, attenuated total reflectance-Fourier 
transform infrared (ATR-FTIR) and Raman, were proven useful in differentiation of the extracts as 
it provided information on the vibrational bands which are related to the chemical composition. 
Multivariate analysis has allowed a separation between extracts obtained from organic and con-
ventional vineyards for each grape variety for all grape berry parts. A well-defined differentiation 
based on red grape variety could not be highlighted. 
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Supplementary 
The acquired FTIR spectral data (transmittance mode) were arranged in the form of 

an 8x1866 matrix corresponding to organic and conventional extracts (observa-
tions/samples) and transmittance readings per spectrum (variables), considering the 
spectral region 4000-400 cm-1; similarly, Raman spectral data were arranged in an 8x223 
matrix using 2000-200 cm-1 spectral region. After correction for the background spectrum, 
all analyzed spectra showed different weak, medium and strong vibrational frequencies; 
in spectroscopic terms the weak, medium and strong peaks (intensity), together with 
wavenumbers, allow the assignment of functional groups from organic compounds. The 
ATR correction algorithm can ‘symmetrize’ the peak shape; when the second derivative 
is plotted out, the peak positions are seen at the different wavenumbers (as a week, me-

Citation: Radulescu, C.; Olteanu, 

R.L.; Nicolescu, C.M.; Bumbac, M.; 

Buruleanu, L.C.; Holban, G.C.  

Vibrational Spectroscopy Combined 

with Chemometrics as Tool for  

Discriminating Organic vs.  

Conventional Culture Systems for 

Red Grape Extracts. Foods 2021, 10, 

1856. https://doi.org/10.3390/ 

foods10081856 

Academic Editor: Francesco  

Longobardi, Ana María Jiménez 

Carvelo and Antonello Santini  

Received: 18 June 2021 

Accepted: 7 August 2021  

Published: 11 August 2021 

Publisher’s Note: MDPI stays 

neutral with regard to jurisdictional 

claims in published maps and 

institutional affiliations. 

 

Copyright: © 2021 by the authors. 

Submitted for possible open access 

publication under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(http://creativecommons.org/licenses

/by/4.0/). 



Foods 2021, 10, 1856  2 of 16 
 

 

dium or strong peaks) [43]. The background spectrum can be defined as a single beam 
spectrum acquired with no sample in the infrared beam [44]. The purpose of a back-
ground spectrum is to measure the contribution of the instrument and environment to 
the spectrum. These effects are removed from a sample spectrum by rationing the sample 
single beam spectrum to the background spectrum [38]. Spectral data pre-processing is a 
first step in the workflow of infrared (IR) and Raman spectra analysis which involves 
specific processing procedures performed on the raw data. Pre-processing has been 
shown to be significant for subsequent data mining tasks; it is now widely recognized 
that quantitative and classification models developed on the basis of pre-processed data 
generally perform better than models that solely use raw data [41,45,46]. In transmission 
type IR spectroscopy, spectral baselines can be distorted as a result of scattering, absorp-
tion by the supporting substrate, changing conditions during data collection, or the var-
iableness due to instrumental factors. Subtracting the estimation of a background from 
the un-processed spectrum leads to a more interpretable signal, allowing to determine 
spectral parameters (band positions, intensity values) more accurately [47]. On all FTIR 
spectra corresponding to the investigated samples extracts baseline correction, using 
scattering correction method (10 iterations, 64 baseline points), was applied during 
spectral data acquisition. In the case of Raman spectra for investigated extracts, spectral 
data acquisition baseline correction function is built in, which greatly facilities reduction 
in fluorescence interference and accounts for drift in background. Baseline constructed 
from a multi-segment, smoothed polynomial allows effective removal of fluorescence 
background and slanted baseline with minimal artificial bias. The use of IR spectra in 
classification analysis typically requires some form of normalization that allows an ef-
fective comparison across heterogeneous sets of samples [42,48]. Normalization has been 
thus identified as one important pre-processing method which is commonly applied to 
minimize the effects of varying optical pathlengths on the data, or to compensate for in-
tensity variations of the source (e.g., IR synchrotron) to mention one of the possible in-
strumental causes [41]. The result of normalization is a spectrum which is scaled, and 
offset corrected at the same time [41]. Box-Cox transformation [49-51] was applied before 
statistical analysis of the spectral data to obtain approximately normally distributed 
values. 

For outlier detection multidimensional tests were applied as one of the most com-
mon or standard method is based on Mahalanobis distance; the sensitivity of this method 
in detecting outliers depends on the conditions of how different the mean of the outliers 
is relative to the remainder of the sample and the different covariance matrix structures 
[39]. The tests implemented are used to compare samples described by several variables: 
Mahalanobis distance (the Bonferroni correction was used for the alpha significance level 
set to 5%), Wilk's lambda (Rao's approximation), and Box and Kullback's tests (for testing 
the equality of the within-groups covariance matrices); the tests were performed assign-
ing two groups (four extracts in each group) based on vineyard type (Table 1). Tests on 
averages identify the difference: the test of Wilks' lambda concludes that there is a sig-
nificant difference between the groups' means (at least one of the means vector is differ-
ent from another, as the computed p value was lower than the significance level alpha). 

Principal Component Analysis (PCA) allows the visualization of the information in 
the large data set in a few principal components while retaining the maximum possible 
variability within that set. Principal component analysis was used to reduce the dimen-
sionality of the spectral data to a smaller number of components, facilitating the subse-
quent analysis. PCA was performed on the FTIR and Raman spectra of the extract sam-
ples, separately, to examine the possible grouping of samples related to grape varieties 
and vineyard type. The procedure transforms a number of possibly correlated variables 
into a smaller number of uncorrelated variables called principal components 
[35,38,52-54]; the principal components are linear combinations of the original variables 
weighted by their contribution to explaining the variance in a particular orthogonal di-
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mension; the new axes allow the investigation of data matrices with many variables and 
the display of the multivariate nature in a relatively small number of dimensions [55-57]. 

Agglomerative Hierarchical Clustering (AHC) was performed using the Euclidean 
distance as the distance measure and single linkage strategy to link clusters within the 
data set (Ward’s method). AHC orders a large complex data which are graphically dis-
played in a dendrogram which shows the level of similarity between individual sample 
and groups of samples relative to the entire dataset. The dendrogram is produced typi-
cally using agglomerative methods where clustering starts with individual sample and 
proceeds sequentially until all samples are linked together to form clusters [58,59]. It was 
applied automatic truncation so that the results show the groups to which observation 
belongs; automatic truncation is based on entropy and tries to create homogenous groups 
[38]. When the increase in dissimilarity level is strong, it has reached a level where the 
grouping implies groups that are already homogenous; automatic truncation uses this 
criterion to decide when to stop aggregating observations (or groups of observations). In 
AHC the data are not partitioned into a particular cluster in a single step. Instead of this, 
a series of partitions takes place, which may run from a single cluster containing all ob-
jects to n clusters each, containing a single object. In order to build up these groups a 
measurement of the similarity between the different objects is considered (this meas-
urement is also known as the distance between the objects considered) [52]. The AHC 
used under the software (XLSTAT) uses dissimilarities; the conversion for each object 
pair consists in taking the maximum similarity for all pairs and subtracting from this the 
similarity of the pair in question. Among all the linkage cluster methods, in this study, 
the agglomerative Ward's method has been selected who generate the different clusters 
in order to minimize the loss associated with each cluster [38]. 

Discriminant Analysis (DA) is a statistical method that can be used in explanatory or 
predictive frameworks. Two models of DA are used depending on a basic assumption: if 
the covariance matrices are assumed to be identical, linear discriminant analysis is used. 
If, on the contrary, it is assumed that the covariance matrices differ in at least two groups, 
then the quadratic discriminant analysis should be preferred. The Box test is used to test 
this hypothesis (the Bartlett approximation enables a Chi2 distribution to be used for the 
test). It is common to start with linear analysis then, depending on the results from the 
Box test, to carry out quadratic analysis if required. As for linear and logistic regression, 
efficient stepwise methods have been proposed. They can, however, only be used when 
quantitative variables are selected as the input and output tests on the variables assume 
that are normally distributed. The stepwise method gives a more appropriate model 
which avoids variables which contribute only little to the model [52,60]. When the num-
ber of variables exceeds the number of samples, one method of multivariate discrimina-
tion is to use principal components analysis to reduce the dimensionality and then to 
perform canonical variates analysis [61,62]. 

The partial bootstrap method consists in drawing a number of samples (with re-
placement) each of the same size as the matrix of data used for the PCA. Then, each 
sample is centered, and normalized in the case of normalized PCA, and each observation 
of each sample is displayed on the PC plans as supplementary observation. As a conse-
quence, a cloud of bootstrap observations is generated around each original observation. 
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Figure S1. Overlaps of Fourier transform infrared (FTIR) spectra for red grapes skin extracts: i) M-O, ii) M-C, iii) FN-O, iv) 
FN-C, v) PN-O, vi) PN-C, vii) MH-O, viii) MH-C. 

 

Figure S2. Overlaps of Raman spectra for red grapes skin extracts: i) M-O, ii) M-C, iii) FN-O, iv) FN-C, v) PN-O, vi) PN-C, 
vii) MH-O, viii) MH-C. 
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Figure S3. Overlaps of Fourier transform infrared (FTIR) spectra for red grapes seeds extracts: i) M-O, ii) M-C, iii) FN-O, 
iv) FN-C, v) PN-O, vi) PN-C, vii) MH-O, viii) MH-C. 

 

Figure S4. Overlaps of Raman spectra for red grapes seeds extracts: i) M-O, ii) M-C, iii) FN-O, iv) FN-C, v) PN-O, vi) 
PN-C, vii) MH-O, viii) MH-C. 
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Figure S5. Overlaps of Fourier transform infrared (FTIR) spectra for red grapes pulp extracts: i) M-O, ii) M-C, iii) FN-O, 
iv) FN-C, v) PN-O, vi) PN-C, vii) MH-O, viii) MH-C. 

 

Figure S6. Overlaps of Raman spectra for red grapes pulp extracts: i) M-O, ii) M-C, iii) FN-O, iv) FN-C, v) PN-O, vi) 
PN-C, vii) MH-O, viii) MH-C. 
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Figure S7. Principal components (PCs) loadings for the first three PCs derived from FTIR spectral data of the red grape 
skin extracts. 
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Figure S8. Principal components (PCs) loadings for the first three PCs derived from Raman spectral data of the red grape 
skin extracts. 

Table S1. Confusion matrix for the training sample (FTIR data – red grape skin extracts). 

From / to Conventional Organic Total % correct 
Conventional 4 0 4 100.00 

Organic 1 3 4 75.00 
Total 5 3 8 87.50 

Table S2. Cross-validation (FTIR data – red grape skin extracts): prior and posterior classification and membership probabilities. 

Extract Prior Posterior Conventional Organic 
M-O Organic Organic 0.000 1.000 
FN-O Organic Organic 0.000 1.000 
PN-O Organic Organic 0.483 0.517 
MH-O Organic Organic 0.000 1.000 
M-C Conventional Conventional 0.999 0.001 
FN-C Conventional Conventional 0.917 0.083 
PN-C Conventional Conventional 1.000 0.000 
MH-C Conventional Conventional 0.999 0.001 
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Table S3. Confusion matrix for the cross-validation results (FTIR data – red grape skin extracts). 

From / to Conventional Organic Total % correct 
Conventional 4 0 4 100.00 

Organic 0 4 4 100.00 
Total 4 4 8 100.00 

Table S4. Confusion matrix for the training sample (Raman data – red grape skin extracts). 

From / to Conventional Organic Total % correct 
Conventional 4 0 4 100.00 

Organic 0 4 4 100.00 
Total 4 4 8 100.00 

Table S5. Cross-validation (Raman data – red grape skin extracts): prior and posterior classification and membership probabilities. 

Extract Prior Posterior Conventional Organic 
M-O Organic Organic 0.002 0.998 
FN-O Organic Organic 0.000 1.000 
PN-O Organic Organic 0.033 0.967 
MH-O Organic Organic 0.028 0.972 
M-C Conventional Conventional 1.000 0.000 
FN-C Conventional Conventional 1.000 0.000 
PN-C Conventional Conventional 1.000 0.000 
MH-C Conventional Conventional 1.000 0.000 

Table S6. Confusion matrix for the cross-validation results (Raman data – red grape skin extracts). 

From / to Conventional Organic Total % correct 
Conventional 4 0 4 100.00 

Organic 0 4 4 100.00 
Total 4 4 8 100.00 
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Figure S9. Principal components (PCs) loadings for the first three PCs derived from FTIR spectral data of the red grape 
seeds extracts. 
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Figure S10. Principal components (PCs) loadings for the first three PCs derived from Raman spectral data of the red 
grape seeds extracts. 

 

 



Foods 2021, 10, 1856  12 of 16 
 

 

Table S7. Confusion matrix for the training sample (FTIR data – red grape seeds extracts). 

From / to Conventional Organic Total % correct 
Conventional 4 0 4 100.00 

Organic 0 4 4 100.00 
Total 4 4 8 100.00 

Table S8. Cross-validation (FTIR data – red grape seeds extracts): prior and posterior classification and membership probabilities. 

Extract Prior Posterior Conventional Organic 
M-O Organic Organic 0.000 1.000 
FN-O Organic Organic 0.000 1.000 
PN-O Organic Organic 0.000 1.000 
MH-O Organic Organic 0.000 1.000 
M-C Conventional Conventional 1.000 0.000 
FN-C Conventional Conventional 1.000 0.000 
PN-C Conventional Conventional 0.955 0.045 
MH-C Conventional Conventional 1.000 0.000 

Table S9. Confusion matrix for the cross-validation results (FTIR data – red grape seeds extracts). 

From / to Conventional Organic Total % correct 
Conventional 4 0 4 100.00 

Organic 0 4 4 100.00 
Total 4 4 8 100.00 

Table S10. Confusion matrix for the training sample (Raman data – red grape seeds extracts). 

From / to Conventional Organic Total % correct 
Conventional 4 0 4 100.00 

Organic 0 4 4 100.00 
Total 4 4 8 100.00 

Table S11. Cross-validation (Raman data – red grape seeds extracts): prior and posterior classification and membership probabili-
ties. 

Extract Prior Posterior Conventional Organic 
M-O Organic Organic 0.000 1.000 
FN-O Organic Organic 0.000 1.000 
PN-O Organic Organic 0.000 1.000 
MH-O Organic Organic 0.000 1.000 
M-C Conventional Conventional 0.990 0.010 
FN-C Conventional Conventional 0.994 0.006 
PN-C Conventional Conventional 0.910 0.090 
MH-C Conventional Conventional 1.000 0.000 

Table S12. Confusion matrix for the cross-validation results (Raman data – red grape seeds extracts). 

From / to Conventional Organic Total % correct 
Conventional 4 0 4 100.00 

Organic 0 4 4 100.00 
Total 4 4 8 100.00 

 

 



Foods 2021, 10, 1856  13 of 16 
 

 

 

Figure S11. Principal components (PCs) loadings for the first three PCs derived from FTIR spectral data of the red grape 
pulp extracts. 
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Figure S12. Principal components (PCs) loadings for the first three PCs derived from Raman spectral data of the red 
grape pulp extracts. 

 

Table S13. Confusion matrix for the training sample (FTIR data – red grape pulp extracts). 

From / to Conventional Organic Total % correct 
Conventional 4 0 4 100.00 

Organic 0 4 4 100.00 
Total 4 4 8 100.00 



Foods 2021, 10, 1856  15 of 16 
 

 

Table S14. Cross-validation (FTIR data – red grape pulp extracts): prior and posterior classification and membership probabilities. 

Extract Prior Posterior Conventional Organic 
M-O Organic Organic 0.000 1.000 
FN-O Organic Organic 0.000 1.000 
PN-O Organic Organic 0.000 1.000 
MH-O Organic Organic 0.000 1.000 
M-C Conventional Conventional 1.000 0.000 
FN-C Conventional Conventional 0.992 0.008 
PN-C Conventional Conventional 0.982 0.018 
MH-C Conventional Conventional 0.998 0.002 

Table S15. Confusion matrix for the cross-validation results (FTIR data – red grape pulp extracts). 

From / to Conventional Organic Total % correct 
Conventional 4 0 4 100.00 

Organic 0 4 4 100.00 
Total 4 4 8 100.00 

Table S16. Confusion matrix for the training sample (Raman data – red grape pulp extracts). 

From / to Conventional Organic Total % correct 
Conventional 4 0 4 100.00 

Organic 0 4 4 100.00 
Total 4 4 8 100.00 

Table S17. Cross-validation (Raman data – red grape pulp extracts): prior and posterior classification and membership probabilities. 

Extract Prior Posterior Conventional Organic 
M-O Organic Organic 0.000 1.000 
FN-O Organic Organic 0.002 0.998 
PN-O Organic Organic 0.043 0.957 
MH-O Organic Organic 0.035 0.965 
M-C Conventional Conventional 0.746 0.254 
FN-C Conventional Conventional 1.000 0.000 
PN-C Conventional Conventional 1.000 0.000 
MH-C Conventional Conventional 1.000 0.000 

Table S18. Confusion matrix for the cross-validation results (Raman data – red grape pulp extracts). 

From / to Conventional Organic Total % correct 
Conventional 4 0 4 100.00 

Organic 0 4 4 100.00 
Total 4 4 8 100.00 
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