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Abstract: A high-pressure liquid chromatographic method coupled to diode array detector (HPLC-
DAD) was developed for the determination of phenolic compounds that could be used as markers
in authentication studies of walnuts belonging to the Chandler variety, originating from Bulgaria,
Greece, and France. An ultrasound-assisted extraction (UAE) protocol applied in the extraction of
phenolic compounds was optimized. The method was validated and the relative standard deviations
(RSD%) of the within-day, and between-day assays was lower than 6.3 and 11.1, respectively, showing
adequate precision, and good accuracy ranging from 86.4 (sinapic acid) to 98.4% (caffeic acid) for
within-day assay, and from 90.1 (gallocatechin gallate) to 100.6% (gallic acid) for between-day assay.
Eighteen phenolic compounds were determined belonging to the classes of phenolic acids and
flavonoids. The quantification results were further processed with chemometrics, and a robust
partial least square–discriminant analysis (PLS-DA) model was developed for the classification of the
samples according to their geographical origin, proposing markers that could be used for the control
of walnuts authenticity and the detection of fraudulent incidents.
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1. Introduction

Food authenticity is a critical issue and attracts great interest due to consumer concern
about food quality and safety. Authentic food is defined as the product that is precisely
described by the label [1]. According to the Insurance Agency of Food Authenticity (IFAA),
“authentication” is a process which unequivocally proves that the food is genuine [2]. In
a global food market, consumers are interested in the origin and quality of the products
they choose. Food authenticity concerns not only consumers, but the authorities, as well.
Authentic foods have high economic significance both to the food industry and the national
economy, especially in the case of high value export agricultural products, such as nuts.

Among nuts species, walnuts (Juglans regia L.) are a valuable nutritional source and
play a dominant role in the Mediterranean diet. Walnut has been characterized as functional
foods owing to its nutritional value and beneficial health effects [3,4]. The walnut kernel
is a rich source of minerals, tocopherols, fatty acids, and phenolic compounds [5–8]. The
cultivar and the geographical origin have been shown to affect the bioactive content of
walnuts [3,9,10]. Walnut was cultivated in Europe as early as 1000 BC [4]. It has naturally
diverged to several cultivars worldwide. Among the most commercial cultivars are:
Chander, Hartley, Franquette, Mellanaise, Lara, Marbot, Mayette, Serr, Tulare, Sorento,
etc. [11–13].

Even though walnuts are high-value agricultural products that provide energy, all
the necessary nutrients ingredients and have beneficial health effects, they have not been
adequately studied in terms of authenticity compared to other food products [14]. This
gap has to be filled with the development of analytical methodologies that enable the
determination of walnut constituents that could potentially be used as markers for the
guarantee of walnuts genuineness. It is worth noting that the formation and development
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of a modern global food distribution system critically depends on the enforcement and
implementation of quality controls. To this end, the European Union (EU) has established
reference centers for authenticity and integrity of the agri-food chain to avoid fraudulent
indices (EU, 2017/625, L95, 1-95). For agricultural products, such as walnuts, it is important
to validate the country and area where the food was produced, as well as verify the
cultivation practice.

The majority of the published articles focus mainly on the development of method-
ologies for the assessment of the mineral [5,15,16], lipid [6,17–19] or volatile profile [14,20]
of walnuts [21,22]. Less is known about the minor phenolic fraction [8,23]. Phenolic con-
stituents are secondary plant metabolites subjected to environmental modifications [8,24].
The analysis and evaluation of the phenolic profile of agricultural products provides valu-
able information about the quality characteristics among the plant species, and this is why
the phenolic profile is investigated in authenticity studies [25]. Considering the chemical
diversity of phenolic constituents (phenolic acids, flavonoids, lignans, stilbenes, and tan-
nines), the generic analytical methodology for the determination of phenolic constituents
involves extraction as the first step, and then analytical separation, identification and
quantification follow. Liquid chromatography (LC) is the main technique used for the
separation of phenolic compounds. Several methodologies using high pressure liquid
chromatography (HPLC) coupled to UV or diode array detector (DAD), ultra-high pressure
liquid chromatography (UHPLC) coupled to mass spectrometric detectors (MS), as well as
high resolution mass spectrometric (HRMS) instruments which provide sufficient separa-
tion capacity and resolving power, are widely used in the analysis of phenolic analytes, as
it has already been reviewed [8,26,27].

The further analysis of the chromatographic results with chemometric tools enhances
the conclusions derived from the experimental data. The development of chemometric
models enables the establishment of mathematical correlations in the data matrix, allowing
the discovery of trends and behaviors among the samples. To such an end, the development
of pattern recognition models allows the presentation of significant and non-evident
information that is critical in authenticity issues [28]. Several authenticity studies have
used unsupervised chemometric tools such as Principal Component Analysis (PCA) for
exploratory data analysis, displaying the similarity of the observations as points in a
map (score plot) [21,29,30]. Even though PCA finds correlations among the features
successfully, it is affected by scale, and it may cause loss of information as compared to the
original list of features. Supervised recognition techniques such as partial least squares–
discriminant analysis (PLS-DA) overcomes the weaknesses of unsupervised methods and
is considered unique in exploratory data analysis, providing good insight into the causes
of discrimination via loadings and weights [31,32].

The objective of this work was to develop a rapid, accurate and selective HPLC-
DAD analytical method for the determination of phenolic compounds in walnut samples
belonging to the Chandler variety originating from Greece, Bulgaria and France and are
available in the Greek market. A PLS-DA prediction model was developed to discriminate
the samples and reveal characteristic markers responsible for their classification according
to the geographical origin.

2. Materials and Methods
2.1. Chemicals and Reagents

Acetonitrile (ACN), HPLC grade, and methanol (MeOH) HPLC grade were purchased
from Panreac–AppliChem (Darmstadt, Germany). Acetic acid 99% and trifluoroacetic acid
(TFA) 99% were acquired by Sigma-Aldrich (Steinheim, Germany). Ultrapure water was
provided by a Milli-Q ® purification system (Millipore, Bedford, MA, USA). The following
standard compounds: caffeic acid 98%, catechin 98%, diosmin 97%, epigallocatechin
gallate 95%, ferulic acid 98%, gallic acid 98%, gallocatechin gallate 98%, kaempferol 97%,
myricetin 98%, myricitrin 99%, p-coumaric 98% quercetin-3-o-glucoside 97%, rosmarinic
acid 98%, rutin 98%, sinapic acid 95%, syringic acid 95%, vanillic acid 97%, and vanillin
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99% were purchased by Sigma-Aldrich (Steinheim, Germany). Stock standard solutions
were prepared for each analyte (1000 mg/L) in MeOH and stored at −20 ◦C in dark brown
glass bottles.

2.2. Instrumentation

A quaternary low-pressure gradient HPLC–DAD system by Shimadzu (Kyoto, Japan)
was used for chromatographic analysis. The HPLC system was equipped with: (a) an
FCV-10ALVP mixing system, (b) a Rheodyne 7725i injection valve (Rheodyne, Cotati
California, USA) geared with a 20 µL loop for sample injection, (c) an LC- 10ADVP
pump equipped with a Shimadzu SCL-10ALVP System Controller, (d) an SPD-M10AVP
photodiode array detector supplied with the soft- ware Lab Solutions-LC solutions by
Shimadzu. For degassing the mobile phase, a DGU-10B de-gassing unit was used with
helium. For the filtration of the mobile phases a glass vacuum filtration apparatus, acquired
by Alltech Associates (Deereld, IL, USA), and nylon 0.2 µm membrane Filters (Alltech
Associates, Chicago, IL, USA) were utilized. A vortexer purchased from FALC Instruments
(Treviglio (BG), Italy) was used for sample agitation. For sample evaporation, a ReactiVap
9-port evaporator model 18,780 by Pierce (Rockford, IL, USA) was used. Centrifugation
was carried out in a HermLe centrifuge, model Z-230 (B. HermLe, Gosheim, Germany).
For sample filtration, Q-Max RR syringe filters (0.45 µm nylon membrane) were purchased
from Frisenette ApS (Knebel, Denmark).

2.3. Chromatographic Analysis

Chromatographic separation was achieved on a C18 Fortis UniverSil column (250 mm
× 4.6, 5 µm), supplied by Fortis Technologies Ltd. (Neston, UK), and operated at 30 ◦C. The
binary mobile phase consisted of 1% acetic acid in water (A) and ACN (B) starting at a ratio
of 95:5 (v/v), and then gradually increasing to 20% (B) within 15 min, and then increasing
to 50:50 (v/v) within the following 25 min, reaching a ratio of 10:90 (v/v) in the 45th min,
and remaining stable for the following five min (t = 45–50 min). Then, the initial conditions
(95% A, 5% B) were restored in the 55th min, and kept constant for five min to re-equilibrate
the column for the next injection. Peak identification was carried out using the retention
time (Rt) of the standard compounds, along with the spectral information provided by the
DAD detector that operated over the range 250–400 nm. Peak monitoring and quantitation
were performed at the maximum wavelength of each analyte. Peak identification was
performed by using the data Rts and spectra from the DAD detector.

2.4. Walnut Samples

Twenty-six walnut samples of conventional farming commercially available to the
Greek market, belonging to the Chandler cultivar were obtained. Ten Greek walnut samples
were acquired from Thrace, Macedonia and Thessaly in Greece during November 2020.
Imported walnuts from Bulgaria and France were supplied by traders who import walnuts
from these countries and distribute them in the Greek market during the same time period
(November 2020). Nine samples originating from Bulgaria, and seven samples originating
from France were acquired. All samples were dried in a drying unit at 35 ◦C for 24 h and
were then homogenized in a porcelain mortar prior to storage at −20◦C, until analysis.

2.5. Extraction Optimization

A generic sample preparation protocol previously introduced by Pinasseau et al. [33]
for the extraction of phenolic compounds was modified. Specifically, several extraction
factors such as the extraction solvent, the ultrasound-assisted extraction (UAE) time and the
extraction temperature were optimized following the well-established one-factor- at-a-time
method (OFAT) [34]. In this respect, the recoveries (R%) of the previously reviewed as the
most abundant phenolic compounds determined in walnuts [8]; namely gallic acid, vanillic
acid, and syringic acid from the class of phenolic acids, as well as catechin, rutin, and
quercetin-3-o-glucoside from the class of flavonoids, were calculated to evaluate the effect of



Foods 2021, 10, 2145 4 of 15

extraction solvent (0.05% TFA in acetone, 0.05% TFA in methanol, 0.05% TFA in methanol:
water at 60:40 ratio, v/v), the effect of extraction time (5–20 min), and the extraction
temperature (4–40 ◦C). Briefly, 100 mg of homogenized walnuts was weighted in 2-mL
eppendorf tubes and 0.5 mL of extraction solvent was added. The mixture was vortexed for
1 min, and then it was transferred in an ultrasonic bath to optimize extraction temperature
and the extraction time. The samples were centrifuged for 10 min at 10,000 rpm. The
supernatant was collected and dried under nitrogen flow and the extract was reconstituted
in 0.2 mL of 1% acetic acid in water: acetonitrile (50:50, v/v).

2.6. Sample Preparation

In brief, 100 mg of homogenized walnuts was weighted in 2-mL eppendorf tubes
and 0.5 mL of 0.05% TFA in methanol: water at 60:40 ratio (v/v), was added. The mixture
was vortexed for 1 min, and then it was transferred in an ultrasonic bath at 25 ◦C for
10 min. Then, the samples were centrifuged for 10 min at 10,000 rpm. The supernatant
was collected and dried under nitrogen flow and the extract was reconstituted in 0.1 mL of
1% acetic acid in water: acetonitrile (50:50, v/v). The diluent was filtered through 0.45 µm
nylon syringe filters prior to injection in the chromatographic system.

2.7. Method Validation

Method validation was performed to estimate linearity selectivity, the limits of detec-
tion (LODs) and the limits of quantification (LOQs), within-day, and between-day accuracy
and precision. Linearity studies were performed in triplicate using standard solutions and
covered the working range of 2–20 µg/g. Seven-point calibration curves were constructed
by plotting the peak areas versus concentration. For the calculation of the LODs and the
LOQs the S/N ratio was monitored until a S/N ratio of 3:1 (LOD) and 10:1 (LOQ) was
reached. For the evaluation of accuracy and precision a pool sample was prepared and
spiked at low, medium, and maximum concentration levels of 0.5 µg/g, 10 µg/g, and
20 µg/g. Analysis was performed in triplicate. For the estimation of relative recoveries
(R%) the found and added concentrations of the examined analytes were calculated (mean
concentration found/concentration*100, R%), expressing accuracy. Precision was expressed
as relative standard deviation (RSD%). Within-day precision (repeatability) was assessed
in six replicates (n = 6), and between-days precision (reproducibility) was examined after
performing triplicate analysis of spiked samples within three consecutive days (n = 3 × 3).
To evaluate selectivity, five blank matrices were used and no interferences were observed
in the same chromatographic window for both methodologies.

2.8. Chemometric Analysis

PLS-DA is a supervised pattern recognition technique used to find the appropriate
class for each sample [32,35]. PLS-DA is a linear classification of the PLS regression that
was initially used for regression task and evolved into a classification tool. A mathematical
model is built and applied in the analysis of unknown samples to establish a correlation
and classify them. The advantage compared to unsupervised classification techniques is
that the samples belonging to each class are labelled, and in this respect the prediction
model achieves the reduction of the dimensions knowing the lass labels.

A PLS-DA prediction model was developed using the MetaboAnalyst 5.0 platform [36],
in an attempt to discover patterns in the quantitative data of the determined phenolic
compounds and predict the geographical origin of the analyzed samples, establishing the
most important compounds used for the classification as characteristic markers.

3. Results
3.1. Extraction Optimization Results

The effects of the extraction solvent, the UAE time, and extraction temperature were
studied following the OFAT method [34]. The extraction recoveries (R%) of gallic acid,
vanillic acid, and syringic acid from the class of phenolic acids, and catechin, rutin, and
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quercetin-3-o-glucoside from the class of flavonoids, were calculated to evaluate the effect
of each parameter on the extraction efficiency.

The extraction solvent was the first factor to be studied. According to the results pre-
sented in Figure 1a, the higher recoveries were obtained for 0.05% TFA in methanol:water
at 60:40 ratio, v/v). The findings are in accordance with the literature, since the majority of
the studies report the use of acidified mixtures of methanol:water [8]. The second factor
that was evaluated was the time of the extraction in an ultrasonic bath. According to the
results presented in Figure 1b, the increase in the extraction time increased the recoveries of
all the analytes. The difference in the extraction efficiency between 10 min of sonication and
20 min was less than 4% and, in an attempt to minimize extraction time, the extraction time
of 10 min was selected as the optimum for the next experiment. The last parameter that
was evaluated was the extraction temperature. Three different temperatures were tested
(4 ◦C, 30 ◦C and 40 ◦C). The highest recoveries (≥90%) were obtained at 30 ◦C, and this
temperature was selected as the optimum. The extraction at low temperature (4 ◦C) was
not sufficient enough resulting in low recoveries over the range 72–81%. On the other hand,
the further increase of temperature at 40 ◦C resulted in a slight decrease of the obtained
recoveries, compared to the results obtained at 30 ◦C, which could be explained due to the
degradation of phenolic constituents at higher temperatures [37].
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3.2. Method Validation Results

All the analytical parameters of the developed HPLC-DAD methodology for the
determination of phenolic compounds in walnuts (i.e., the calibration curves and linear
range, the determined coefficients (r2), the calculated LODs, and LOQs, accuracy and
precision are summarized in Table 1. According to the results, r2 ranged from 0.991 to
0.999 establishing the good linearity of the method. The LOQs were found to range
between 0.30 µg/g (gallic acid) and 1.44 µg/g (myricetin), while the LODs were calculated
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equal to 0.10 (gallic acid)–0.48 µg/g (myricetin). The RSD% of the within-day (n = 6)
and between-day assays (n = 3 × 3) was lower than 6.3, and 11.1, respectively, showing
adequate precision. The accuracy was assessed by means of relative percentage of recovery
(%R) at low, medium, and maximun concentration levels (2, 10, 20 µg/g), and the results
were acceptable, ranging from 86.4 (sinapic acid, at 20 µg/g concentration level) to 98.4%
(caffeic acid, at 20 µg/g concentration level) for within-day assay (n = 6) (Table 2), and
from 90.1 (gallocatechin gallate, at 20 µg/g concentration level) to 100.6% (gallic acid) for
between-day assay (n = 3 × 3) (Table 3).

Table 1. HPLC-DAD method analytical parameters.

Compound Calibration Equation
(Linear Range: 2–20 µg/g) r2 LOD

(µg/g)
LOQ
(µg/g)

caffeic acid y = 110028.53x + 5532 0.992 0.15 0.45

catechin y = 12565x + 1204 0.994 0.30 0.90

diosmin y = 14007.23x + 1353 0.991 0.20 0.60

epigallocatechin gallate y = 19304x − 1212 0.996 0.40 1.20

ferulic acid y = 88455x + 4328 0.994 0.25 0.75

gallic acid y = 10562x − 11.8 0.997 0.10 0.30

gallocatechin gallate y = 2004x − 1450 0.996 0.45 1.35

kaempferol y = 1878x + 2242 0.998 0.45 1.35

myricetin y = 19502x + 1026 0.997 0.48 1.44

myricitrin y = 20521x + 1408 0.996 0.32 0.96

p-coumaric acid y = 107385x + 4325 0.999 0.25 0.75

quercetin-3-o-glucoside y = 17542x + 2404 0.997 0.28 0.84

rosmarinic acid y = 1508x + 48.3 0.998 0.15 0.45

sinapic acid y = 107562x + 2385 0.994 0.24 0.72

rutin y = 20008x + 423 0.993 0.34 0.96

syringic acid y = 105424x + 4728 0.995 0.25 0.75

vanillic acid y = 65405x + 1125 0.998 0.20 0.60

vanillin y = 138452x − 4585 0.994 0.35 1.05

caffeic acid y = 125475x + 1842 0.993 0.20 0.60

LOD: limit of detection, LOQ: limit of quantitation.

Table 2. %Recoveries (%R, n = 6) for the evaluation of repeatability.

Compound
%R

Low Conc.
Level (2 µg/g)

%RSD
%R

Medium Conc.
Level (10 µg/g)

%RSD
%R

Maximum Conc.
Level (20 µg/g)

%RSD

caffeic acid 91.4 4.7 92.5 2.2 98.4 2.5

catechin 90.5 5.5 94.4 3.1 91.2 1.7

diosmin 96.4 3.1 95.6 5.1 93.6 3.9

epigallocatechin gallate 92.3 1.3 90.8 4.4 94.1 4.2

ferulic acid 91.7 2.5 91.7 6.1 90.8 5.1

gallic acid 92.1 3.6 92.4 3.1 92.1 6.3

gallocatechin gallate 93.3 4.1 91.6 2.4 94.6 5.5

kaempferol 91.8 5.2 89.7 5.3 92.8 3.7
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Table 2. Cont.

Compound
%R

Low Conc.
Level (2 µg/g)

%RSD
%R

Medium Conc.
Level (10 µg/g)

%RSD
%R

Maximum Conc.
Level (20 µg/g)

%RSD

myricetin 90.9 4.3 92.4 1.8 93.5 4.9

myricitrin 94.5 1.9 93.2 2.6 94.3 3.4

p-coumaric acid 95.6 2.5 91.4 3.1 91.1 4.8

quercetin-3-o-glucoside 93.0 2.7 95.2 5.4 93.1 2.7

rosmarinic acid 92.2 3.5 93.7 4.9 89.4 5.6

sinapic acid 91.1 2.8 92.4 6.3 86.4 2.8

rutin 94.2 3.6 93.5 3.9 92.6 5.7

syringic acid 93.1 5.4 92.6 2.7 92.3 6.2

vanillic acid 92.8 6.2 90.7 1.6 94.5 4.3

vanillin 93.7 5.1 92.4 3.5 93.9 2.5

Conc.: Concentration.

Table 3. %Recoveries (%R n = 3 × 3) for the evaluation of intermediate precision.

Compound
%R

Low Conc.
Level (2 µg/g)

%RSD
%R

Medium Conc.
Level (10 µg/g)

%RSD
%R

Maximum Conc.
Level (10 µg/g)

%RSD

caffeic acid 95.3 5.3 97.2 7.2 93.2 7.2

catechin 92.8 7.1 96.5 5.4 92.4 6.8

diosmin 97.4 8.8 93.1 4.8 91.5 5.5

epigallocatechin gallate 93.5 7.9 91.4 9.1 94.3 5.9

ferulic acid 97.1 6.3 95.8 7.4 92.2 6.4

gallic acid 98.2 6.8 100.6 5.2 95.6 7.1

gallocatechin gallate 91.9 7.2 97.8 6.6 90.1 6.9

kaempferol 95.1 9.4 93.5 5.4 92.4 7.3

myricetin 93.7 8.3 94.2 8.8 93.3 8.1

myricitrin 92.2 7.6 96.6 7.1 96.1 6.5

p-coumaric acid 91.6 6.7 95.1 11.1 95.5 7.1

quercetin-3-o-glucoside 94.4 8.5 98.3 5.9 94.7 6.8

rosmarinic acid 92.3 9.1 95.7 8.7 92.1 5.2

sinapic acid 91.7 7.5 97.5 9.1 91.5 3.4

rutin 92.2 7.1 98.2 6.7 95.5 9.2

syringic acid 90.5 8.3 91.1 5.8 90.7 6.5

vanillic acid 93.1 8.4 95.3 7.3 91.1 5.8

vanillin 94.4 5.7 92.4 6.4 92.1 7.5

Conc.: Concentration.

3.3. Walnut Analysis

The optimized and validated HPLC-DAD analytical method was applied in the
analysis of real samples. Twenty-six walnut samples belonging to the Chandler variety
originating from Bulgaria, Greece, and France were analyzed and eighteen phenolic com-
pounds were determined, in total. Those were: caffeic acid, ferulic acid, gallic acid,
p-coumaric acid, rosmarinic acid, sinapic acid, syringic acid, and vanillic acid, from the
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class of phenolic acids, and catechin, diosmin, epigallocatechin gallate, gallocatechin gal-
late, kaempferol, myricetin, myricitrin, quercetin-3-o-glucoside, rutin, and vanillin from
the class of flavonoids. Table 4 lists the identified phenolic compounds along with their
retention times Rts and maximum absorption wavelengths (λ, nm). Figure 2 presents a
characteristic chromatogram of a walnut sample spiked with a standard mixture at 2 µg/g
and monitored at 280 nm.
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Table 4. Retention time and maximum absorption wavelength of the phenolic analytes determined in walnuts.

Compound Rt λ (nm)

gallic acid 11.1 278

gallocatechin gallate 12.6 285

catechin 14.6 280

vanillic acid 15.5 260
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Table 4. Cont.

Compound Rt λ (nm)

epigallocatechin gallate 17.4 280

syringic acid 18.1 274

rutin 19.3 353

myricitrin 20.6 360

p-coumaric acid 21.4 270

vanillin 22.6 278

sinapic acid 23.5 260

quercetin-3-o-glucoside 26.5 365

diosmin 28.8 345

ferulic acid 29.8 293

caffeic acid 32.2 284

myricetin 34.3 370

rosmarinic acid 37.1 272

kaempferol 37.9 360

Rt: retention time.

Quantification Results

All samples were analyzed in triplicate (n = 3). The identified analytes were quantified
using their maximum absorption wavelengths. The quantification ranges of each phenolic
compounds as well as the mean values (±SD) are presented in Table 5. The quantification
results are in accordance with those previously reported by Slatnar et al. [38], Ho et al. [39],
and Vu et al. [40].

Table 5. Quantification results of the phenolic compounds determined in walnuts originating from Greece, Bulgaria, and
France (samples analyzed in triplicate, n = 3).

Origin Greece Bulgaria France

Compound Concentration
Range (µg/g)

Mean Value
(µg/g ± SD)

Concentration
Range (µg/g)

Mean Value
(µg/g ± SD)

Concentration
Range (µg/g)

Mean Value
(µg/g ± SD)

caffeic acid LOQ–2.56 2.05 ± 0.28 2.67–5.58 4.25 ± 0.54 2.35–4.42 3.65 ± 0.33

catechin 78–148 81.5 ± 5.24 34–122 75.1 ± 2.35 4.21–75.3 34.2 ± 6.05

diosmin LOQ–23.8 4.32 ± 0.14 LOQ–22.1 5.16 ± 0.39 2.25–8.32 3.06 ± 0.21

epigallocatechin
gallate 75.1–173.4 121.6 ± 14.9 18.7–125.6 114 ± 11.5 40.8–63.9 51.6 ± 7.66

ferulic acid 25.1–168.4 67.4 ± 7.52 31.2–86.4 55.9 ± 3.35 22.1–29.8 23.5 ± 2.11

gallic acid 4.21–75.6 45.3 ± 6.18 20.3–78.5 57.5 ± 8.42 2.14–45.8 25.6 ± 5.24

gallocatechin
gallate 3.20–4.64 4.12 ± 0.08 2.24–5.36 4.78 ± 0.23 5.78–8.20 7.02 ± 0.69

kaempferol LOQ-5.21 2.04 ± 0.32 5.12–9.20 6.32 ± 2.54 2.75 ± 4.25 3.04 ± 0.41

myricetin 73.4–148.23 125.3 ± 16.6 26.1–98.8 85.1 ± 9.27 105.4–178.3 131.6 ± 27.8

myricitrin 2.30–3.65 3.08 ± 0.78 2.18–2.99 2.36 ± 0.13 2.65–3.56 2.85 ±0.22

p-coumaric acid 83.1–107.4 89.5 ± 12.2 29.4–40.5 31.3 ± 2.35 72.1–93.5 85.3 ± 7.72

quercetin-3-o-
glucoside 3.31–6.12 4.78 ± 0.54 5.61–0.24 6.28 ± 0.75 2.98–3.65 3.14 ± 0.09
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Table 5. Cont.

Origin Greece Bulgaria France

Compound Concentration
Range (µg/g)

Mean Value
(µg/g ± SD)

Concentration
Range (µg/g)

Mean Value
(µg/g ± SD)

Concentration
Range (µg/g)

Mean Value
(µg/g ± SD)

rosmarinic acid 2.85–19.6 7.85 ± 1.05 35.7–56.4 42.6 ± 2.37 18.3–30.4 23.6 ± 2.33

rutin 21.5–35.4 27.4 ± 7.22 53.2–66.8 57.7 ± 3.85 12.5–28.8 21.4 ± 3.44

sinapic acid LOQ–83.4 35.4 ± 3.31 53.5–121.8 72.6 ± 11.3 20.7–47.8 31.1 ± 4.06

syringic acid 32.1–75.4 46.2 ± 3.66 19.3–58.6 37.2 ± 1.89 53.1–67.8 57.7 ± 5.32

vanillic acid 7.53–95.6 62.7 ± 5.65 LOQ–73.5 65.4 ± 7.04 7.58–41.2 37.3 ± 5.32

vanillin 1.81–8.56 5.55 ± 0.89 1.71–4.42 3.78 ± 0.65 1.85–5.56 4.68 ± 1.85

Eighteen phenolic compounds were determined proving that walnut kernels are rich
in phenolics. Variations in the phenolic concentration ranges have already been reported in
walnuts of different varieties [38–40], but there are limited reports concerning the effects of
the geographical origin on the concentrations of the phenolic compounds.

The highest mean concentration in Greek walnuts was observed for myricetin (125.3 µg/g),
and the second highest mean value was observed for epigallocatechin gallate (121.6 µg/g),
while p-coumaric acid was ranked third with a mean concentration equal to 89.5 µg/g,
and catechin followed with a mean concentration of 81.5 µg/g. As for Bulgarian walnuts,
the highest mean concentration was observed for epigallocatechin gallate (114 µg/g). The
second most abundant phenolic compound was myricetin with a mean value equal to
85.1 µg/g, and catechin followed with a mean concentration of 75.1 µg/g. As far as
French walnuts are concerned, the highest mean concentration was observed for myricetin
(131.6 µg/g). The second highest mean concentration was reported for p-coumaric acid
(85.3 µg/g), and syringic acid followed with a mean concentration equal to 57.7 µg/g.
High concentrations were observed for gallic acid, ferulic acid vanillic acid, from the class
of accordingly to Vu et al. [40]. Sinapic acid presented high concentrations, as well, and
the highest average concentration was determined in walnuts originating from Bulgaria
(72.6 µg/g). Relatively lower concentrations were determined for caffeic acid, compared
to the rest of the phenolic acids, which presented mean values of 2.05 µg/g, 4.25 µg/g,
and 3.65 µg/g, for Greek, Bulgarian, and French walnuts, respectively. As for the rest of
the flavonoids, the highest average concentration of diosmin (5.16 µg/g) was observed in
Bulgarian walnuts, and the lowest in French (3.06 µg/g). The highest mean concentrations
for vanillin were calculated in Greek walnuts (5.55 µg/g). Bulgarian walnuts were rich in
kaempferol (6.32 µg/g), while French walnuts showerd higher values for gallocatechin
gallate (7.02 µg/g). The obtained concentrations of querce-tin-3-o-glucoside were similar
to other varieties of walnuts, such as Black and English [40].

3.4. PLS-DA Model

A PLS-DA model was developed using the MetaboAnalyst platform [36]. The chemo-
metric model classified the samples according to the geographical origin (Bulgaria, Greece,
and France) successfully with an explained variance of 59.5% within the first two dimen-
sions. The score plot of the developed PLS-DA model is presented in Figure 3, showing
the clustering of three individual groups of walnut samples. The colored areas around the
samples (red for Bulgaria, blue for Greece, green for France) represent the 95% confidence
region of the replicates. Variable importance in projection (VIP) algorithm was used to
estimate the significance of each variable in projection used to build the PLS-DA model.
The VIP scores of the variables show their contribution in the final model. According to
Mehmood et al. [41], the cut-off value of above 0.83 was used for the VIP score. The Figure 4
shows the most important features with calculated VIP scores above 0.83. p-Coumaric
acid, kaempferol, rosmarinic acid, myricetin, caffeic acid, rutin, epigallocatechin gallate,
vanillic acid, and syringic acid were selected as the most important markers responsible
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for the discrimination between the walnut samples originating from different countries.
According to Figure 4, the compounds that cause greater variation and are characteristic
for each geographical origin are marked in red. In this respect, p-coumaric acid, myricetin,
epigallocatechin gallate, syringic acid and vanillic acid cause greater variation in the Greek
samples; while kaempferol, rosmarinic acid, caffeic acid and rutin are characteristic markers
of the Bulgarian walnuts. The compounds marked in yellow cause slightly lower variation
to each category of samples, and those marked in blue cause the lowest variation.

For validation, the Leave-One-Out Cross-Validation (LOOCV) method was applied
using five components. The goodness of fit (R2 = 0.99) and the predictability of the
model (Q2 = 0.90) values suggest that this is a PLS-DA model with strong predictive
power (Figure 5a). The accuracy = 0.96, was obtained from the third component, shown
in Figure 5a with asterisk. Permutation test statistics (100 random permutations) were
calculated and the results verified that the walnut samples significantly differed (with one
sample t-test with p-value < 0.01) from each other [42] (Figure 5b).
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4. Conclusions

A novel HPLC-DAD method was developed and optimized for the determination
of phenolic compounds in 26 walnut samples of the Chandler variety originating from
Bulgaria, Greece, and France. Overall, eighteen phenolic compounds were determined (caf-
feic acid, catechin, diosmin, epigallocatechin gallate, ferulic acid, gallic acid, gallocatechin
gallate, kaempferol, myricetin, myricitrin, p-coumaric acid, quercetin-3-o-glucoside, ros-
marinic acid, rutin, sinapic acid, syringic acid, vanillic acid, and vanillin) in walnut samples.
The quantification results were further analyzed with chemometrics, and a PLS-DA model
was developed and successfully classified the walnut samples based on their geographical
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origin, with the first two dimensions explaining the 59.5% of the total variance. p-coumaric
acid, kaempferol, rosmarinic acid, myricetin, caffeic acid, rutin, epigallo-catechin gallate,
vanillic acid, and syringic acid were proposed as markers responsible for the discrimination
between the walnut samples of different geographical origins.

This work has made progress towards the phenolic characterization of walnuts of
the Chandler variety originating from Bulgaria, Greece, and France highlighting that the
geographical affects the phenolic profile and proposing a robust PLS-DA model that
could be used for the prediction of the geographical origin in authenticity studies and the
detection of fraudulent indices.
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