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Abstract: PAI is a linoleic acid isomerase from Propionibacterium acnes and is the key enzyme in
the synthesis of trans10, cis12-conjugated linoleic acid. However, the majority of the expressed PAI
in Escherichia coli occurs in its nonfunctional form in inclusion bodies, limiting the biosynthesis of
conjugated linoleic acid. In an attempt to improve the solubility of recombinant PAI in Escherichia
coli, three promoters representing different transcriptional strengths (T7, CspA, and Trc), paired with
three fusion tags, (His6, MBP, and Fh8), respectively, were investigated in this study. Among the
nine recombinant strains, Escherichia coli BL21 (DE3) (pET24a-Mpai), containing the T7 promoter
and MBP fusion tag, led to a considerable increase in PAI solubility to 86.2%. MBP-PAI was purified
41-fold using affinity column chromatography. The optimum catalytical conditions of MBP-PAI were
37 ◦C and pH 7.5 with the addition of 1 mmol/L Tween-20. Most of the tested metal ions inhibited
MBP-PAI activity. The apparent kinetic parameters (Km and Vmax) were measured with linoleic acid
concentrations ranging from 71 µM to 1428 µM. The substrate linoleic acid did not exert any inhibitory
effect on MBP-PAI. The Km of MBP-PAI was 253.9 µmol/L, and the Vmax was 2253 nmol/min/mg.
This study provided a new method for improving the solubility of the recombinant linoleic acid
isomerase in Escherichia coli.

Keywords: PAI; promoter; fusion tag; soluble expression; enzyme activity

1. Introduction

Conjugated linoleic acid (CLA) is a group of polyunsaturated fatty acids that is widely
used in foods and dietary supplements. CLA has different structural isomers. Trans-10,
cis12-conjugated linoleic acid (t10, c12-CLA) is an octadecadienoic acid with two conjugated
double bonds that are found naturally in ruminant animal food products [1]. It has been
applied in food products and the medical industry for its physiological functions, including
antiobesity, antiatherosclerosis, improvement of diabetes, and anticancer [2–7].

Biosynthesis is a potential manufacturing method for CLA production and has gained
growing attention. PAI, a linoleic acid (LA) isomerase from Propionibacterium acnes (P. acnes),
is the only enzyme known to catalyzes the conversion of LA into t10, c12-CLA (Figure 1) [8].
However, P. acnes is a pathogenic microorganism unsuitable for CLA production. Therefore,
various microorganisms were investigated in an attempt to increase the PAI yield. Still, the
recombinant PAI either showed low expression levels or low solubility (such as Escherichia
coli, Saccharomyces cerevisiae, Pichia pastoris, Yarrowia lipolytica, and Mortieralla alpina) [9–13].
Escherichia coli (E. coli) remains the primary microorganism used in laboratory investigations
and initial development for commercial activities. However, some recombinant proteins
were produced as inclusion bodies due to the fast-folding kinetics in E. coli cells [14]. PAI
expression in E. coli appears to follow a similar trend [10]. Studies have shown that the
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solubility of foreign proteins in E. coli was closely related to the promoter strength and
the fusion partner compatibility [14–16]. Although coexpression with tags can effectively
reduce the formation of the inclusion bodies, there is no universal fusion tag that can
be applied to all proteins. Therefore, screening for a suitable promoter and fusion tag
combinations may be an effective strategy to improve the soluble expression of PAI.
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Figure 1. Conversion from linoleic acid to trans-10, cis-12-conjugated linoleic acid by PAI, a linoleic
acid isomerase from Propionibacterium acnes (P. acnes).

In this study, nine recombinant strains were constructed and assessed by pairing
three promoters of varying transcriptional strengths (T7, CspA and Trc) and three fusion
tags with both solubility and purification functions: MBP (maltose-binding protein), Fh8
(calcium-binding protein from Fasciola hepatica), and His6. The properties of the fusion
protein with the highest solubility and activity were also investigated.

2. Materials and Methods
2.1. Materials

TransStart® FastPfu DNA Polymerase was purchased from Transgen Biotech (Beijing,
China). The restriction enzymes NdeI, XhoI, SacI, HindIII, and XbaI were purchased from
NEB (Ipswich, MA, USA). The pEASY-Uni Seamless Cloning and Assembly Kit and Plasmid
miniprep kit were purchased from Transgen Biotech (Beijing, China). A gel extraction kit
was obtained from Thermo Fisher Scientific (Shanghai, China). The MBPTrapTM HP was
purchased from GE Healthcare (Boston, MA, USA). Antibodies were synthesized by our
team. The plasmids pCold IV, pET-24a(+), and pTrc99a were purchased from Takara (Dalian,
China) and Novagen (Madison, WI, USA), respectively. The strains E. coli BL21 (DE3), E.
coli BL21, and E. coli JM109 were purchased from NEB (Ipswich, MA, USA).

2.2. Construction of the Expression Vectors

The gene sequences of PAI (GenBank: AX062088), MBP-factorXa (GenBank: AHM366
06.1), and Fh8-factorXa (GenBank: AF213970.1) were synthesized by Genscript Biotech Co.
(Nanjing, China). The factor Xa recognition site encodes an amino acid sequence that can be
identified and digested by the factor Xa protease. The synthesized PAI gene was inserted
into the NdeI and XhoI restriction sites of the vector pET24a, resulting in the vector pET24a-
PAI. Using pET24a-PAI as a template, the PAI gene with His6-tag sequences was amplified
by polymerase chain reaction (PCR) using primers F1/R1 and F2/R2, respectively (Table 1).
The PCR products were cloned into pET-24a(+) as a NdeI/XhoI fragment and into pCold
IV and pTrc99a as a SacI/HindIII fragment, resulting in the vectors pET-His-PAI, pCold-
His-PAI, and pTrc-His-PAI. The vector pET-MBP-PAI was constructed by inserting the
synthesized fragments of MBP-Factor Xa into the plasmid pET24a-PAI using the pEASY-Uni
Seamless Cloning and Assembly Kit. Specifically, the plasmid pET24a-PAI was linearized
by NdeI. The MBP-Factor Xa was amplified by PCR using primers F3 and R3 (Table 1),
and using pUC57-(MBP-Factor Xa) as a template. Subsequently, the linearized vector and
the PCR products were ligated based on the kit protocol. The vector pET-Fh8-PAI was
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constructed using primers F4 and R4 (Table 1) in a similar process to that for the pET-MBP-
PAI. For the construction of the recombinant plasmids pCold-MBP-PAI and pTrc-MBP-PAI,
the vectors pCold IV and pTrc99a were double-digested with HindIII and XbaI. Using pET-
MBP-PAI as the template, the MBP-factorXa-PAI fragments were amplified with primers
F5/R5 and F6/R6 (Table 1) and cloned into the linearized plasmids pCold IV and pTrc99a,
respectively, using seamless cloning. Similarly, using pET-Fh8-PAI as the template, the
Fh8-factorXa-PAI fragments were amplified with primers F7/R7 and F8/R8 (Table 1) and
cloned into pCold IV and pTrc99a to generate the expression vectors pCold-Fh8-PAI and
pTrc-Fh8-PAI. All the recombinant vectors used in this study are shown in Figure 2. Finally,
the positive clones were selected through PCR and confirmed by DNA sequencing. The
constructed pET-24a(+) series plasmids were transformed into E. coli BL21 (DE3), the pCold
IV series plasmids were transformed into E. coli BL21, and the pTrc99a series plasmids were
transformed into E. coli JM109 for expression.

Table 1. Primers used for vector cloning. Underlined nucleotides refer to restriction sites or overlaps.

Primer Sequence Application Fragment

F1 5′-CGCCATATGCATCATCATCATCATCACATGTCCATCTCGAAGGATTCACG-3′ Fragment NdeI-His-PAI- XhoI for pET24a(+)
R1 5′-CCGCTCGAGTTACACGAAGAACCGCGTCAC-3′

F2 5′-CGAGCTCCATCATCATCATCATCACATGTCCATCTCGAAGGATTCACG-3′ Fragment SacI-His-PAI- HindIII for pCold IV
and pTrc99aR2 5′-CCCAAGCTTTTACACGAAGAACCGCGTCAC-3′

F3 5′-CTTTCAAATCAAGCTTATGAAAATCGAAGAAGGTAAAC-3′ Fragment MBP-Factor Xa for pET24a(+)
R3 5′-ACAATTCCCCTCTAGTCACACGAAGAACCGCGTC-3′

F4 5′-CAAAATTATTTCTAGATGCCTAGTGTTCAAGAGG-3′ Fragment Fh8-Factor Xa for pET24a(+)
R4 5′-CAAGGATGGCAAGCTCCTACCTTCGATCTATGATG-3′

F5 5′-CCTCGAGGGATCCGAATTCAATGAAAATCGAAGAAGGTAAACTGGTAATC-3′ Fragment MBP-Factor Xa-PAI for pCold IV
R5 5′-TTTAAGCAGAGATTACCTATTCACACGAAGAACCGCGTC-3′

F6 5′-GCTGGTACCCGGGGATCCATGAAAATCGAAGAAGGTAAACTGGTAATC-3′ Fragment MBP-Factor Xa-PAI for pTrc99a
R6 5′-CTCATCCGCCAAAACAGCCTCACACGAAGAACCGCGTC-3′

F7 5′-CCTCGAGGGATCCGAATTCATGCCTAGTGTTCAAGAGGTTG-3′ Fragment Fh8-Factor Xa-PAI for pCold IV
R7 5′-TTTAATCATATATTACCTATTCACACGAAGAACCGCGTC-3′

F8 5′-GCTCGGTACCCGGGGATCCTATGCCTAGTGTTCAAGAGGTTG-3′ Fragment Fh8-Factor Xa-PAI for pTrc99a
R8 5′-CTCATCCGCCAAAACAGAGCCATCACACGAAGAACCGCGTC-3′
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2.3. Recombinant Protein Expression

A seed culture was prepared by inoculation with a single colony of recombinant E.
coli strains and grown at 37 ◦C overnight in 5 mL of Luria–Bertani broth (1% peptone,
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0.5% yeast extract, and 1% sodium chloride; pH 7.0). Ampicillin (100 µg/mL) was used
for the pColdIV system and the pTrc99a system, while 50 µg/mL of kanamycin was used
for the pET-24a(+) system. About 500µL of seed culture was subcultured into 50 mL of
Luria–Bertani broth at 37 ◦C and 200 rpm until its OD600 reached 0.6. Isopropyl-β-D-
thiogalactopyranoside (IPTG) was added to achieve a final concentration of 0.1 mM. The
induction conditions depended on the expression vectors used (Table 2). For the pCold
system, the shaker was immediately cooled down to 15 ◦C and maintained for 30 min
before adding IPTG. The optimal induction conditions are displayed in Table 2.

Table 2. Induction conditions for the pET-24a(+), pColdIV, and pTrc99a systems.

Expression Vectors pET24a(+) pColdIV pTrc99a

OD600 0.6 0.6 0.6
Final concentration of IPTG 0.1 mM 0.1 mM 0.1 mM

Induction temperature 20 ◦C 15 ◦C 37 ◦C
Induction time 20 h 24 h 8 h

2.4. SDS-PAGE Analysis of Recombinant Proteins

The recombinant cells were harvested by centrifugation at 10,000× g for 10 min at 4 ◦C.
The cells were washed and suspended in a lysis buffer (100 mmol/L Tris-HCl, 10 mmol/L
NaCl, 1 mM EDTA; pH 7.4) and were then disrupted by ultrasonication on ice. All of the
soluble protein fraction was separated from the total protein by centrifugation at 14,000×
g at 4 ◦C for 15 min, and the protein concentration was measured respectively using a
BCA Protein Assay Kit (Beyotime, Shanghai, China). The total protein and the soluble
protein fraction were analyzed using 12% sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE). The band intensity volumes were observed to assess protein
expression. The quantity of recombinant protein was determined (as a percentage of total
E. coli protein) by analysis of Coomassie-Blue-stained SDS polyacylamide gels using the
image-analysis software Quantity One (BioRad, Hercules, CA, USA).

2.5. Measurement of Total PAI Activity with Cell Lysate

The total PAI activity with cell lysate was represented by the conversion ratio of LA into
CLA. The reaction system consisted of 100 µL of recombinant cell lysate, 900 µL of buffer F
(100 mmol/L Tris-HCl, 10 mmol/L NaCl, 1 mM EDTA; pH 7.4), and 10 µL of 20 µg/µL LA in
a shaker at 37 ◦C for 1 h. The complex composition of the cell lysate had a negative impact on
the measurement of CLA content. Therefore, gas chromatography was applied to measure the
total PAI activity with cell lysate. For fatty acid methylation, 400 µL of methanol and 20 µL of
(trimethylsilyl)-diazomethane was added to the samples. After 15 min of incubation at room
temperature, 5 µL of 5% acetic acid was added to inactivate the diazomethane. The samples
were dried, and the FA methyl esters were dissolved in 1 mL of N-hexane and analyzed
using a GC-2010 (Shimadzu Co., Kyoto, Japan) [12]. The total activity was represented by the
conversion ratio of LA to t10, c12-CLA. The relative conversion rate was calculated based on
the group with the highest conversion rate as 100%.

Conversion Ratio =
[CLA]

[LA] + [CLA]
×100%

2.6. Purification of MBP-PAI and Separation of PAI from the Fusion Tag

Recombinant MBP-PAI insoluble proteins were purified from the crude cell extracts
by maltose-affinity chromatography, using an MBPTrap HP (GE Healthcare, Boston, MA.
USA). The column was equilibrated with 5 column volumes of binding buffer (100 mmol/L
Tris-HCl, 100 mmol/L NaCl, 1 mM EDTA; pH 7.4), and the crude soluble proteins were then
pumped into the column. The column was washed with 10 column volumes of binding
buffer, and unbound proteins were washed with elution buffer (100 mmol/L Tris-HCl,
100 mM NaCl, 1 mM EDTA, 10 mM maltose; pH 7.4).
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The cleavage was carried out at a w/w ratio of 5% fusion protein; 0.005~1% SDS or
0.1~5% Factor Xa was added to cleave the fusion protein. The reaction mixtures were
incubated for 12 h and 24 h at room temperature, respectively.

2.7. Measurement of Purified MBP-PAI Activity

The purified enzyme activity was measured using spectrophotometry (UV-2450; Shi-
madzu Co., Japan). The enzyme reaction system consisted of 950 µL of buffer F, 60 µg of
LA, and 50 µL of purified PAI enzyme solution. The change in absorbance at the 234 nm
wavelength over the first minute was determined, and the amount of t10, c12-CLA was
calculated according to the standard product curve at a wavelength of 234 nm. One unit
(U) of MBP-PAI activity was defined as the production of 1 nmol CLA within 1 min, and
the specific enzyme activity of MBP-PAI was defined as the enzyme activity of 1 mg of
purified protein.

2.8. Analysis of the Enzymatic Properties of MBP-PAI

The optimum temperature of MBP-PAI was evaluated between 20 ◦C and 50 ◦C,
and the optimal pH for MBP-PAI activity was assessed from pH 6.5 to pH 9.0. To assess
the influence of the metal ions Ca2+, Mg2+, Co2+, Zn2+, Ba2+, Na+, Cu2+, Fe2+, Fe3+, and
Ni+ on MBP-PAI, the relative enzyme activity of MBP-PAI was determined in buffer F
containing 1 mM of metal ions. Four kinds of surfactants were selected to study their
effects on enzyme activity, including cationic cetyltrimethylammonium bromide (CTAB),
anionic sodium dodecyl sulfonate (SDS), nonionic Tween-20, and Triton X100. The test
concentrations of surfactants were 0.1, 0.5, 1, 5, and 10 mM.

The apparent kinetic parameters (Km and Vmax) were measured under optimal
catalytical conditions, with the tested concentration of LA ranging from 71 µM to 1428 µM.
The kinetic parameters Km and Vmax were calculated from double reciprocal plots.

3. Results and Discussion
3.1. Effects of Promoters and Fusion Tags on PAI Expression and Solubility

Strong promoters are the basis for the high-efficiency expression of exogenous genes.
However, excessively high transcription rates may cause misfolding of foreign proteins.
In order to find a suitable promoter for PAI expression, we investigated three expres-
sion systems—pET24a, pColdIV, and pTrc99a—paired with the promoters T7, CspA, and
Trc, respectively, representing different transcription strengths. Furthermore, solubility-
enhancing tags effectively decreased the proportion of misfolded recombinant proteins in
E. coli [15]. As a result, the commonly used His6 tag with the pET24a vector, as well as
MBP (42 kDa) and Fh8 (8 kDa), were optimized in combination with the promoters. These
fusion tags feature solubility and purification properties.

As shown in Figure 3A,B, the highest total expression and soluble expression of re-
combinant PAI were both achieved in the vector containing the T7 promoter and the MBP
fusion tag. When the same fusion tag was used, a higher total recombinant protein expres-
sion was observed in the T7 promoter cultures compared to the CspA or Trc promoters
(Figure 3A). This result indicated that the total expression level of recombinant protein was
closely related to the promoter strength (T7 > CspA > Trc). In contrast, the recombinant PAI
solubility did not vary across different promoters (Figure 3B), but significant differences
between fusion tags were observed. When His-PAI was paired with the T7, CspA, or
Trc promoter, the soluble recombinant protein percentages were 44.6%, 41.5%, and 40.9%,
respectively. When MBP-PAI was expressed with T7 or CspA, the soluble recombinant
protein percentages were 86.2% and 71.1%, respectively. These results suggested that fusion
tags affected the solubility of the fusion protein to a greater extent than the promoters.
According to previous research, MBP resulted in the highest solubility, playing a passive
role by inhibiting the aggregation of the fusion partners [17]. However, the soluble MBP-
PAI could not be detected when paired with the promoter Trc. This may have resulted
from the combination of the weaker promoter Trc and larger fusion protein MBP-PAI
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(92 KD). Moreover, the tag Fh8 was observed to exert a negative effect on PAI folding.
Irrespective of the promoter, the soluble Fh8-PAI was not detected by SDS-PAGE. Though
Western blot analysis revealed that soluble Fh8-PAI was expressed, its expression levels
were significantly lower than those of the fusion His or MBP proteins (data not shown).
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CspA + His6, CspA + Fh8, CspA + MBP, pTrc99a, Trc + His6, Trc + Fh8, Trc + MBP. Arrows indicate
recombinant PAI protein.

3.2. Effects of Promoters and Fusion Tags on Total Activity of Crude Enzyme Mixture

In order to study the effects of promoters and fusion tags on the total activity of PAI,
the conversion rate of LA into CLA was measured. The complex composition of the cell
lysate interferes with the CLA content determination by spectrophotometry. Therefore,
gas chromatography was applied for accurate measurement. While measuring the specific
activity of the purified PAI, spectrophotometry was used for real-time detection. The strain
E. coli BL21(DE3) (pET-MBP-PAI) showed the highest conversion rate, and was defined as
100% for comparison with other strains. The relative conversion rate of the crude extract of
every recombinant strain was calculated.

Consistent with the PAI expression results, the combination of promoter T7 and fusion
tag MBP was the most effective in catalyzing LA conversion to CLA. Specifically, in the
pET24a system, the conversion rates for MBP-PAI, His-PAI, and Fh8-PAI decreased suc-
cessively, yielding 100%, 72.5%, and 18.3%, respectively (Figure 4). In the pCold system,
the conversion rates for MBP-PAI, His-PAI, and Fh8-PAI showed similar trends, reaching
68.6%, 50.7%, and 16.3%, respectively. In the pTrc99a system, the conversion rates for
His-PAI, MBP-PAI, and Fh8-PAI yielded only 27.5%, 25.2%, and 9.7%, respectively. The
consistency between the soluble protein expression and the enzyme conversion rate indi-
cated that linoleic acid isomerase activity was retained. The large molecular fusion tag
MBP (42 KD) exerted no apparent negative effect on the enzyme activity. In addition, the
enzymatic activity results further indicated that all nine recombinant strains expressed
active recombinant PAI, including four strains that were undetected by SDS-PAGE.
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3.3. Purification and Cleavage of MBP-PAI by Factor Xa Protease

MBP is a member of the E. coli maltose transport system, which can combine maltose
and maltodextrin at micromolar levels and can be purified by cross-linked maltose agarose.
The soluble MBP-PAI fraction of E. coli BL21(DE3) (pET-MBP-PAI) was purified using
affinity column chromatography, yielding an MBP-PAI purity exceeding 85% (Figure 5).
The resulting concentration of MBP-PAI was 0.46 mg/mL, the enzyme activity yield was
54.5%, and the specific activity was 1084 nmol/min/mg, showing a 41-fold increase after
purification (Table 3).
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Table 3. Purification of the MBP-PAI from E. coli BL21 (DE3) (pET-MBP-PAI).

Step Protein
(mg)

Total Activity
(nmol/min)

Specific Activity
(nmol/min/mg)

Yield
(%)

Purification
(Fold)

Crude extract 34.8 914 26.3 100 1
Maltose-affinity
chromatography 0.461 498 1084 54.5 41
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The recognition sequence for Factor Xa protease was inserted between the MBP and
PAI genes and used to remove the MBP tag from the recombinant fusion protein. The
digestion was carried out with different concentrations of Factor Xa protease for 12 h
or 24 h. Subsequently, the samples were analyzed with SDS-PAGE. Under all the tested
digestion conditions, a new band of 50 kDa (PAI) appeared, while the 40 kDa (MBP) band
increased in intensity (Figure 6). However, the 50 kDa band appeared much fainter than
the 40 kDa band. Furthermore, multiple bands smaller than 50 kDa were formed following
digestion. The results suggested that PAI may be nonspecifically cleaved by Factor Xa
protease. The enzyme activity of the recombinant protein was measured to further confirm
the findings. After digestion, the total enzyme activity of PAI decreased to 61.2% of that
before Factor Xa protease treatment. This also confirmed the nonspecific cleavage by Factor
Xa and the reduction in functional PAI. In general, Factor Xa protease specifically recognizes
Ile-Glu(Asp)-Gly-Arg sequences, but several studies have indicated that Factor Xa cleavage
occurred at additional sites [18,19]. Future research should investigate methods to protect
MBP-PAI from nonspecific cleavage by Factor Xa protease.
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and 0.05% SDS for 24 h.

3.4. Characterization of MBP-PAI

The characteristics of MBP-PAI were studied comprehensively. The relative activity
of the fusion protein MBP-PAI increased with temperatures ranging from 20 ◦C to 37 ◦C
and decreased at higher temperatures (Figure 7A). The enzyme activity of MBP-PAI is
also influenced by pH. The optimum pH for catalyzing MBP-PAI is 7.5, and MBP-PAI
maintained high activity (relative activity > 95%) in the pH range of 7.5–8.0 (Figure 7B). The
effect of metal ions on the enzyme activity of MBP-PAI was determined in buffer solutions
containing 1 mmol/L Ca2+, Mg2+, Co2+, Zn2+, Ba2+, Na+, Cu2+, Fe2+, Fe3+, or Ni+. Except
for K+ and Na+, the other eight metal ions decreased the enzyme activity of MBP-PAI.
Notably, Cu2+, Fe2+, and Fe3+ caused an almost complete cessation of MBP-PAI catalytic
activity (Figure 7C). Due to the hydrophobicity of the substrate LA, surfactants were used
to increase the reaction efficiency. Thus, four surfactants were evaluated in the catalytic
process. As shown in Figure 7D, Tween-20 (1 mM) increased MBP-PAI activity by 54%.
However, when the concentration of Tween-20 was increased to 10 mM, the MBP-PAI
activity sharply decreased by 60%. Significant inhibition of enzyme activity was observed
with triton X-100, sodium dodecyl sulfate (SDS), and hexadecyl trimethyl ammonium
bromide (CTAB). These findings may have been due to competitive inhibition and the
denaturing effects of the surfactants on MBP-PAI. Tween 20 exerted positive effects at low
concentrations by improving the contact efficiency of the hydrophobic LA with MBP-PAI,
achieving a catalytically more favorable conformation of the enzyme [20].
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The kinetic parameters of MBP-PAI were determined using the purified enzyme.
The regression equation of the Lineweaver–Burk curve was Y = 0.00485X + 0.01989
(R2 = 0.9909). The Km of MBP-PAI was calculated to be 253.9 µmol/L, and the Vmax was
2253 nmol/min/mg (Figure 8A). In contrast, the Km of native PAI from Propionibacterium
acnes was 17.2 µmol/L [10]. In our previous study, PAI without any tags was heterologously
expressed in Yarrowia lipolityca, with a Km of 84.68 µmol/L (data not published). Compared
to the above data, the Km of MBP-PAI in this study was higher than those of native PAI and
the recombinant PAI without fusion tags. These results indicated that the fusion protein
had a low affinity for the substrate. It was speculated that MBP hindered the binding of
the substrate and PAI due to its similar molecular weight to PAI. The velocity of MBP-PAI
under different concentrations of LA was measured using spectrophotometry. In the first
stage, the initial rate increased with an increasing LA concentration. When the substrate
concentration was increased from 357µmol/L to 1428 µmol/L, the velocity remained stable
(Figure 8B). No substrate inhibition occurred at the substrate concentrations used in this
study, which was consistent with the research of Deng et al. [10].
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4. Conclusions

The low productivity and solubility of PAI from P. acnes are the main obstacles limit-
ing its industrial application for the mass production of high value-added t10, c12-CLA.
Although a proper promoter and an effective fusion tag are essential to optimize the ex-
pression of target proteins, there is no guaranteed outcome between a given expression
system and a particular protein. In this study, different promoters (T7, CspA, Trc) and
fusion tags (His, MBP, Fh8) were used to enhance the soluble expression of PAI in E. coli.
The T7 promoter and MBP tag combination were demonstrated to be the most suitable
system out of eight other expression vectors, improving the soluble PAI percentage (86.2%)
and obtaining the highest total activity of crude enzyme mixture. The characteristics of
MBP-PAI were studied comprehensively. The optimum catalytical conditions of MBP-PAI
were 37 ◦C and pH 7.5 with the addition of 1 mmol/L Tween-20. These results provided
an effective strategy to enhance the soluble expression of PAI and promote the industrial
production of specific t10, c12-CLA. It was noticed that we were not able to protect the
PAI from degradation during the removal of the MBP tag. In future research, we will
improve methods to prevent nonspecific cleavage to realize high-efficiency expression and
purification of PAI.
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