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Abstract: Tieguanyin (TGY) is one kind of oolong tea that is widely appreciated for its aroma and taste.
To study the difference of volatile compounds among different types of TGY and other oolong teas,
solid-phase microextraction–gas chromatography–mass spectrometry and chemometrics analysis
were conducted in this experiment. Based on variable importance in projection > 1 and aroma charac-
ter impact > 1, the contents of heptanal (1.60–2.79 µg/L), (E,E)-2,4-heptadienal (34.15–70.68 µg/L),
(E)-2-octenal (1.57–2.94 µg/L), indole (48.44–122.21 µg/L), and (E)-nerolidol (32.64–96.63 µg/L) in
TGY were higher than in other varieties. With the increase in tea fermentation, the total content of
volatile compounds decreased slightly, mainly losing floral compounds. Heavily fermented tea con-
tained a higher content of monoterpenoids, whereas low-fermentation tea contained higher contents
of sesquiterpenes and indole, which could well distinguish the degree of TGY fermentation. Besides,
the volatiles analysis of different grades of TGY showed that the special-grade tea contained more
aroma compounds, mainly alcohols (28%). (E,E)-2,4-Heptadienal, (E)-2-octenal, benzeneacetaldehyde,
and (E)-nerolidol were the key volatile compounds to distinguish different grades of TGY. The results
obtained in this study could help enrich the theoretical basis of aroma substances in TGY.

Keywords: Tieguanyin; oolong tea; volatile compounds; aroma

1. Introduction

Oolong tea is a unique type of tea in China. Its unique floral and fruity aroma is
deeply loved by consumers. Furthermore, oolong tea can improve human health because
it contains rich biological functional substances, such as polyphenols, flavonoids, and
amino acids. Several studies have indicated that oolong tea has the functions of anticancer,
antiallergic, and improving vascular disease [1,2]. Tea variety, origin, and processing
methods lead to the differences in volatile compounds among different types of oolong
tea [3]. As a special tea in China, there are four famous oolong teas: Wuyi rock tea, Anxi
Tieguanyin tea, Fenghuang Dancong tea, and Dongding oolong tea [4]. Wuyi rock tea is well
known for its rich flavor and long-lasting fragrance, which is called “rock charm and floral
fragrance” [5]. Fenghuang Dancong tea is well known for its unique floral and fruity aroma,
which is traditionally divided into Youhua Xiang, Qilan Xiang, Yelai Xiang, etc. [6]. Anxi
Tieguanyin tea and Dongding oolong tea have a light and elegant floral aroma. The unique
biochemical composition of each cultivar greatly affects the aroma profile of oolong tea [7].
Compared with Tieguanyin (TGY), nitrogen exists in higher concentrations in Dongding
oolong tea [8]. When choosing oolong tea varieties, higher terpenoid and green leaf volatile
ratios may be a useful index for selecting cultivars [9]. The processing of oolong tea includes
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plucking, sun-withering, indoor-withering, shaking, fixing, rolling, and drying [10]. Aroma
formation can be divided into enzymatic (before the fixing procedure) and nonenzymatic
stages (after the drying procedure) [11]. During the enzymatic stage, oolong tea is formed
by the hydrolysis of glycosides and carotenoids, mainly including β-ionone, linalool, and
nerolidol [11]. During the nonenzymatic stage, the aroma compounds mainly undergo
thermochemical transformation to form large amounts of heterocyclic compounds, such as
furan and pyrrole [12].

At present, gas chromatography–mass spectrometry (GC–MS) combined with solid–
phase microextraction (SPME) is commonly used for the analysis of tea aroma volatiles. GC–
MS has a high separation effect on volatile compounds, strong identification ability, and can
provide detailed information on compounds [13]. Simultaneous distillation extraction and
SPME are commonly used to extract volatile compounds from tea [14]. However, volatile
compounds may be degraded during the thermal processing of simultaneous distillation
extraction, whereas SPME has the advantage of being fast, simple, and convenient and has
been applied to wine [15], “Marion” and “Black Diamond” blackberries [16], and tea [14].
An enormous amount of data is obtained using GC–MS analysis. Principal component
analysis, partial least-squares discriminant analysis (PLS–DA), and orthogonal PLS–DA
can extract relevant information and discover patterns in large series of data [17], which are
widely used in tea. PLS–DA is a steady discriminant statistical method that is especially
suitable for cases with large numbers of explanatory variables [18,19]. Variable importance
in projection (VIP) of PLS–DA can quantify the contribution of each variable to classification.
The larger the VIP value, the more significant the difference in variables between different
areas of oolong tea.

There are many kinds of oolong tea, among which TGY is an important one. Different
varieties and fermentation degrees will lead to different flavors and qualities of TGY. In
this experiment, different varieties of oolong tea were collected to analyze the difference
between TGY and other varieties. The aroma difference of TGY with different grades
and fermentation degrees was also analyzed. Based on SPME extraction and GC–MS
analysis, nontargeted analysis was conducted on volatile aroma substances in oolong tea
samples. Combined with statistical analysis, differences in aroma substances in tea samples
of different varieties (TGY vs. other oolong tea), fermentation, and grades of TGY were
found. Based on this study, the aroma components of TGY oolong tea with different grades
and fermentation levels could be improved, and the theoretical basis of aroma substances
in TGY could be enriched.

2. Material and Methods
2.1. Tea Samples

In this study, a total of 25 tea samples were collected (Figure S1), including five special-
grade TGY with low fermentation (LF-T), five special-grade TGY with heavy fermentation
(HF-T), five first-grade TGY with heavy fermentation (HF-F), five other TGY samples, two
Huangdan samples (HD), one Baiyaqilan sample (BYQL), and two Zhangpinshuixian samples
(ZPSX). All tea samples were purchased from the local markets in Fujian, China. All tea
samples were sealed in containers and stored in a −20 ◦C freezer for further analysis.

2.2. Chemicals and Instruments

Decanoic acid ethyl ester (analytically pure reagent, purity ≥ 99.5%) was purchased
from Shanghai Guo Yao Group Chemical Reagent Co., Ltd. (Shanghai, China). Purified
water used in this experiment was purchased from Hangzhou Wahaha Group Co., Ltd.
(Hangzhou, China). A standard mixture of n-alkanes C8–C30 was purchased from o2si
(North Charleston, SC, USA).

2.3. Tea Aroma Extraction Using SPME

The fiber was preconditioned for 5 min in the injection port of the gas chromatograph
at 230 ◦C to remove any volatiles remaining on the fiber before each extraction. Tea samples
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(0.1 g) were weighed and placed in one 20 mL headspace vial, then 5 mL of boiling distilled
water and 20 µL of decanoic acid ethyl ester (5 µg/L internal standard) were added. The
vials were kept in a 60 ◦C water bath for 5 min. After that, the SPME fiber was used for the
extraction of volatiles for 60 min in a 60 ◦C water bath. Subsequently, the volatiles were
desorbed at the injector (230 ◦C) of the GC–MS for 5 min [20].

2.4. GC–MS Analysis of Volatile Compounds

An Agilent 6890 gas chromatograph interfaced with an Agilent HP 5973 MSD ion
trap mass spectrometer (Wilmington, DE, USA) was used for the analysis of volatiles. The
separation was performed on a DB-5MS capillary column (30 m × 250 µm × 0.25 µm).
The GC inlet temperature was set at 230 ◦C. High purity helium (99.999%) was used as
the carrier gas with a constant flow of 0.544 mL/min. The temperature procedure was as
follows: 40 ◦C for 3 min, raised to 120 ◦C at 2 ◦C/min, then held at 120 ◦C for 2 min, and
finally raised to 230 ◦C at 10 ◦C/min and held for 2 min. For MS analysis, the electronic
energy of the EI mode was 70 eV. The temperature of the ion source was set at 230 ◦C. The
mass scan range was m/z 40–400. Each sample was analyzed in triplicate [21].

2.5. Statistical Analysis

The volatile compounds were identified using retention indices (RIs), authentic stan-
dards, or comparison with mass spectra in the National Institute of Standards and Tech-
nology library (NIST14.L). The linear RIs were determined via sample injection with a
homologous series of alkanes (C5−C30) (Sigma-Aldrich (Shanghai, China)). The PLS-DA
was performed using SIMCA-P 13.0 software (Umetric, Umea, Sweden). MultiExperiment
Viewer software (version 4.7.4, Boston, MA, USA) was employed for heatmap analysis.
ACI value calculation reference [22,23] as a standard.

3. Results and Discussion
3.1. Identification of Volatile Compounds in TGY

Volatile compounds obtained using GC–MS analysis (Figure 1) were identified using
NIST14.L, combined with the retention time, indices, reference data, and data processing
software. Finally, a total of 118 volatile compounds were identified, namely 18 alcohols,
13 aromatics, 23 aldehydes, 10 ketones, 18 heterocyclic compounds, 5 N-containing com-
pounds, 22 esters, and 9 other compounds. The relative content of the identified compounds
was calculated according to internal standards [20]. The analysis results showed that the
main volatile compounds of TGY were (E)-nerolidol, indole, (E,E)-2,4-heptadienal, ben-
zeneacetaldehyde, hotrienol, linalool, n-butyl acetate, hexanal, and phenylethyl alcohol.
Among them, (E)-nerolidol (11.86–21.14%), indole (12.15–34.05%), and (E,E)-2,4-heptadienal
(6.13–18.12%) were the three most abundant volatile compounds with the highest content in
TGY samples, which was consistent with the results of previous studies [24,25]. Retention
time, odor description, and type of volatile compounds are listed in Table 1.
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Figure 1. GC–MS total ion chromatogram of aroma components in the four tea varieties sampled. 

Table 1. Identified volatile compounds in Tieguanyin. 

Retention Time Volatile Compounds RI ID a 
Odor 
Type Odor Description b 

2.071 3-Methyl-furan 594 MS, RI Roasted / 
2.385 Acetic acid 613 RI Chemical Strong odor of vinegar 
2.516 3-Methyl-butanal 621 MS, RI Fruity Apple-like 
2.624 2-Methyl-butanal 627 MS, RI Roasted / 
2.856 1-Penten-3-ol 641 MS, RI Green Grassy-green 
2.912 1-Penten-3-one 645 MS, RI Chemical Penetrating 
3.060 Pentanal 654 MS, RI Chemical Strong, acrid, pungent odor 
3.124 2-Ethyl-furan 657 MS, RI Roasted Smoky burnt 
3.709 3-Methyl-butanenitrile 693 MS, RI / / 
3.714 Acetal 693 MS, RI Floral Pleasant odor 
4.008 2-Methyl-butanenitrile 711 RI / odorless 
4.244 (E)-2-Pentenal 725 MS, RI Green Pungent green 
4.514 Toluene 741 MS, RI Chemical Benzene-like 
4.709 (Z)-2-Penten-1-ol 753 MS, RI Green Green diffusive 
5.520 Hexanal 801 MS, RI Green Strong, green 
5.521 n-Butyl acetate 801 RI Fruity Fruity 
6.015 3-Ethyl-1H-pyrrole 812 MS, RI Roasted / 
6.414 2-Ethyl-2-butenal 821 RI Green Grassy green 
6.556 n-Pentyl formate 824 RI Fruity Plum-like 
6.815 Furfural 830 MS, RI Roasted Almond-like 
7.600 (E)-2-Hexenal 848 MS, RI Green Vegetable-like 
7.868 Ethylbenzene 855 MS, RI Floral Aromatic 
8.237 1,3-Dimethyl-benzene 863 MS, RI Floral Sweet 
8.464 1-Hexanol 868 MS, RI Green Sweet alcohol 
9.264 Styrene 887 RI Floral Floral 
9.456 2-Heptanone 891 MS, RI Fruity Fruity 
9.849 (Z)-4-Heptenal 900 MS, RI Green Fatty, green 
9.951 Heptanal 902 MS, RI Green Penetrating fruity 
10.547 Acetylfuran 912 MS, RI Roasted Coffee-like 
11.353 Methyl hexoate 925 RI Fruity Pineapple 

Figure 1. Cont.
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Figure 1. GC–MS total ion chromatogram of aroma components in the four tea varieties sampled.

Table 1. Identified volatile compounds in Tieguanyin.

Retention
Time Volatile Compounds RI ID a Odor Type Odor Description b

2.071 3-Methyl-furan 594 MS, RI Roasted /
2.385 Acetic acid 613 RI Chemical Strong odor of vinegar
2.516 3-Methyl-butanal 621 MS, RI Fruity Apple-like
2.624 2-Methyl-butanal 627 MS, RI Roasted /
2.856 1-Penten-3-ol 641 MS, RI Green Grassy-green
2.912 1-Penten-3-one 645 MS, RI Chemical Penetrating
3.060 Pentanal 654 MS, RI Chemical Strong, acrid, pungent odor
3.124 2-Ethyl-furan 657 MS, RI Roasted Smoky burnt
3.709 3-Methyl-butanenitrile 693 MS, RI / /
3.714 Acetal 693 MS, RI Floral Pleasant odor
4.008 2-Methyl-butanenitrile 711 RI / odorless
4.244 (E)-2-Pentenal 725 MS, RI Green Pungent green
4.514 Toluene 741 MS, RI Chemical Benzene-like
4.709 (Z)-2-Penten-1-ol 753 MS, RI Green Green diffusive
5.520 Hexanal 801 MS, RI Green Strong, green
5.521 n-Butyl acetate 801 RI Fruity Fruity
6.015 3-Ethyl-1H-pyrrole 812 MS, RI Roasted /
6.414 2-Ethyl-2-butenal 821 RI Green Grassy green
6.556 n-Pentyl formate 824 RI Fruity Plum-like
6.815 Furfural 830 MS, RI Roasted Almond-like
7.600 (E)-2-Hexenal 848 MS, RI Green Vegetable-like
7.868 Ethylbenzene 855 MS, RI Floral Aromatic
8.237 1,3-Dimethyl-benzene 863 MS, RI Floral Sweet
8.464 1-Hexanol 868 MS, RI Green Sweet alcohol
9.264 Styrene 887 RI Floral Floral
9.456 2-Heptanone 891 MS, RI Fruity Fruity
9.849 (Z)-4-Heptenal 900 MS, RI Green Fatty, green
9.951 Heptanal 902 MS, RI Green Penetrating fruity

10.547 Acetylfuran 912 MS, RI Roasted Coffee-like
11.353 Methyl hexoate 925 RI Fruity Pineapple
11.353 Methyl (Z)-3-hexenoate 925 MS, RI Fruity Fruity
13.092 (E)-2-Heptenal 954 MS, RI Green Pungent green
13.147 Benzaldehyde 955 MS, RI Roasted Almond
13.671 5-Methyl-2-furancarboxaldehyde 963 MS, RI Roasted Caramellic
14.148 1-Heptanol 971 MS, RI Green Fragrant
14.666 1-Octen-3-ol 980 MS, RI Chemical Sweet earthy
15.114 6-Methyl-5-Hepten-2-one 987 MS, RI Green Green citrus-like
15.297 β-Myrcene 990 MS, RI Woody /
15.678 (E,E)-2,4-Heptadienal 996 MS, RI Chemical Fatty, green
15.774 n-Butyl butanoate 998 RI Fruity Fruity, pineapple-
16.082 Octanal 1003 MS, RI Fruity Strong, fruity
17.025 1,2,3-Trimethyl-benzene 1016 MS, RI Chemical Aromatic
17.284 o-Cymene 1020 MS, RI Floral Aromatic
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Table 1. Cont.

Retention
Time Volatile Compounds RI ID a Odor Type Odor Description b

17.528 D-Limonene 1024 MS, RI Fruity Citrus odor
17.720 1,3-Dichloro-benzene 1027 RI Floral Aromatic
17.941 2-Ethyl-1-hexanol 1030 MS, RI Floral Floral
18.197 Benzyl alcohol 1034 MS, RI Fruity Faint aromatic
18.607 Benzeneacetaldehyde 1040 MS, RI Floral Green floral and sweet
19.000 1-Ethyl-2-formylpyrrole 1046 MS, RI Roasted burnt smokey
19.087 β-Ocimene 1047 MS, RI Floral /
19.739 (E)-2-Octenal 1056 MS, RI Green Fatty, green aroma
20.105 Acetophenone 1062 RI Fruity Oranges
20.652 cis-Furan linalool oxide 1070 MS, RI / /
20.847 1-Octanol 1073 MS Floral Penetrating Aromatic
21.755 (E)-Linalool oxide (furan) 1086 MS, RI Floral /
21.790 2-Methoxy-phenol 1087 RI Roasted Smoky
22.729 Linalool 1100 MS, RI Floral Floral odor
23.020 Hotrienol 1105 MS, RI Floral Mouldy
23.451 Phenylethyl Alcohol 1111 MS, RI Fruity Honey-like
23.805 (E)-4,8-Dimethylnona-1,3,7-triene 1116 RI / /
25.190 Benzyl nitrile 1136 MS, RI Floral Aromatic
25.882 5-Ethyl-6-methyl-3(E)-hepten-2-one 1146 RI / /
27.343 trans-Linalool 3,7-oxide 1167 MS, RI / /
28.265 Octanoic acid 1180 RI Chemical Unpleasant
28.733 α-Terpineol 1187 MS, RI Floral Pleasant, floral
28.736 1-Furfurylpyrrole 1187 MS, RI Roasted Vegetable aroma
28.864 Methyl salicylate 1189 MS, RI Green Wintergreen

29.059 trans-3,7-Dimethyl-1,5-octadien-3,
7-diol 1192 MS, RI / /

29.257 β-Safranal 1195 MS, RI Green Green-floral
29.969 Decanal 1205 MS, RI Floral Floral-fatty odor
30.205 2,4-Dimethyl-benzaldehyde 1208 MS, RI Roasted Bitter-almond
30.671 β-Cyclocitral 1215 MS, RI Woody /
31.828 (3Z)-3-Hexenyl 2-methylbutanoate 1233 RI / /
32.174 Isovaleric acid, dodecyl ester 1238 RI Fruity Fruity
33.137 β-Cyclohomocitral 1252 MS, RI / /
33.370 Geraniol 1256 MS, RI Floral Sweet rose odor
33.693 (E)-2-Decenal 1260 MS, RI Green Green, fatty
34.313 Citral 1270 MS, RI Fruity Strong lemon
35.648 Indole 1290 MS, RI Floral Light jasmine
35.982 (2-nitroethyl)-benzene 1294 MS, RI / /
36.201 2-Methylnaphthalene 1298 RI / /
40.331 2-Undecenal 1362 MS, RI Fruity Orange peel

40.808 3-hydroxy-2,2,4-trimethylpentyl
isobutyrate 1370 MS, RI / Characteristic

41.568 β-Damascenone 1382 MS, RI Fruity Floral, fruity
41.585 cis-3-Hexenyl hexanoate 1382 MS, RI Green Fruity green
41.917 n-Hexyl hexanoate 1387 MS, RI Green Herbaceous
42.467 Jasmone 1396 MS, RI Floral Odor of jasmine
42.702 Dodecanal 1399 RI Chemical Fatty
44.032 Syrfynol 104 1425 MS, RI / /
44.279 α-Ionone 1430 MS, RI Floral /
45.256 β-Phenylethyl butyrate 1448 MS, RI Fruity /
45.422 Octyl-cyclohexane 1452 RI / /
46.481 3-Methyltetradecane 1472 RI / /
47.168 1-Dodecanol 1485 RI Fruity Sweet
47.220 α-Curcumene 1486 RI / /
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Table 1. Cont.

Retention
Time Volatile Compounds RI ID a Odor Type Odor Description b

47.357 2,6-Di-tert-butylbenzoquinone 1489 RI / /
47.607 Jasmine lactone 1494 MS, RI Roasted Coconut-fruity
48.166 α-Farnesene 1509 MS, RI Fruity Citrus, herbal, lavender-like
48.355 2,4-Di-tert-butylphenol 1517 MS, RI / /
48.512 β-Sesquiphellandrene 1524 MS, RI / /
49.664 (E)-Nerolidol 1571 MS, RI Floral Rose apple
50.324 Txib 1599 MS, RI Chemical Musty
50.342 Cedrol 1599 RI Fruity Cedar-like

51.264 Methyl jasmonate 1654 MS, RI Floral Powerful floral-herbaceous,
sweet aroma

51.704 n-Hexyl salicylate 1680 MS, RI / /
53.016 Benzyl Benzoate 1772 MS, RI Floral Faint, pleasant
53.339 Ethyl myristate 1796 MS, RI Chemical Waxy
53.729 Isopropyl myristate 1828 MS, RI / Odorless
53.883 Neophytadiene 1842 MS, RI / /
53.970 Phytone 1849 MS, RI / /
54.084 Caffeine 1859 MS, RI / Odorless
54.287 Diisobutyl phthalate 1876 MS, RI Chemical Slight ester
54.872 Methyl palmitate 1926 MS, RI Chemical Oily, waxy, fatty

54.898 7,9-Di-tert-butyl-1-oxaspiro (4,5)
deca-6,9-diene-2,8-dione 1928 MS, RI / /

55.329 Dibutyl phthalate 1965 MS, RI Floral Slight, aromatic
55.591 Hexadecanoic acid, ethyl ester 1987 MS, RI Floral Slight, aromatic
56.725 Methyl linolenate 2083 MS, RI / /

56.929 Phytol 2101 MS, RI Floral Floral, balsam,
powdery, waxy

‘/’, information was not found in the literature. a: Identification methods. MS, identification based on the
NIST14.L; RI, retention index. b: Odor description found in the literature with database (Flavornet; https:
//pubchem.ncbi.nlm.nih.gov/ (accessed on 10 January 2022).

3.2. Differences of Volatile Compounds in TGY from Other Varieties of Oolong Tea

The data obtained using GC–MS analysis were analyzed with PLS–DA after data
preprocessing. Figure 2A shows that there is clear discrimination between TGY and other
varieties of oolong tea; HD, ZPSX, and BYQL could also be clearly separated. The PLS–DA
model was confirmed by 200 permutation tests (Figure 2B). The results indicated that the
model was not overfitted. Not all identified volatile compounds played an important role
in the differentiation analysis of different types of oolong tea samples. To find the key
differential volatiles, after PLS-DA analysis, compounds with VIP > 1 were screened out
for further analysis (Figure 2C). Compounds with VIP > 1 were generally considered to
be the important contributors to tea aroma difference. These compounds were divided
into two groups (a and b in Figure 2C). The contents of compounds in group a were
lower in TGY, including methyl jasmonate, 1-octanol, linalool, and its oxides. Methyl
jasmonate has a powerful floral-herbaceous and sweet aroma, linalool has a floral aroma,
and 1-octanol presents a penetrating aromatic aroma. This may be the reason why other
varieties were sweeter than TGY. In group b, the content of compounds in TGY was higher,
mainly including (E)-nerolidol, indole, and α-farnesene. These aromatic compounds
were characteristic of oolong tea aroma [11]. Cluster analysis could distinguish TGY
samples from other tea variety samples, and HD, ZPSX, and BYQL were also separated.
This indicates that variety selection was very important to the aroma characteristics of
oolong tea.

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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Figure 2. GC−MS analysis results of Tieguanyin and other varieties. (A) The score scatter plots
of PLS−DA of TGY and four other varieties. (B) Validation of the PLS−DA model. (C) Heatmap
of differential substances in different varieties. TGY: Tieguanyin, HD: Huangdan, BYQL: Baiyaqilan,
ZPSX: Zhangpinshuixian. Figure 2B: The vector value of R2 (0.0, 0.445) and Q2 (0.0, −0.251) from
200permutations, which indicated that this PLS−DA model was not overfitting. Figure 2C: The
contents of compounds in group a were lower in TGY, the content of compounds in group b was
higher in TGY.

There were still many differential compounds screened by PLS-DA. Aroma character
impact (ACI) was introduced to further screen the differential compounds. ACI is a ratio
of odor-activity in a mixture and is more useful for comparing the contribution of the
individual components to the overall aroma [22,23]. Therefore, ACI values of compounds
(VIP > 1) were calculated, and the results are shown in Table 2. The contents of heptanal,
(E,E)-2,4-heptadienal, (E)-2-octenal, indole, and (E)-nerolidol in TGY were higher than
in other varieties, whereas the content of 1-octen-3-ol and linalool were lower. (E,E)-2,4-
Heptadienal as fatty and oil notes, was mostly derived from lipid degradation during
manufacture [26] and contained a larger quantity in high-grade green or black tea [27].
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(E)-2-Octanal has a fatty, green aroma. Indole is widely distributed and plays an important
role in plants and accumulates at the turnover stage of the oolong tea manufacturing
process [28]. (E)-Nerolidol is a sesquiterpene presenting as an essential oil in many plants
with a floral odor [29] and as a potent signal that elicits plant defenses [30]. The proportion
of indole and (E)-nerolidol were higher in TGY, which might be caused by its fragrant and
fruit aroma. 1-Octen-3-ol has a sweet earthy odor and is often used as mosquito bait [31].
Linalool is a mate attractant pheromone component in the bee Colletes cunicularius with a
floral aroma [32]. Taken together, the data indicate that (E,E)-2,4-heptadienal, (E)-2-octenal,
indole, (E)-nerolidol, 1-octen-3-ol, and linalool were key differentiating volatiles of TGY
from other varieties.

Table 2. The key compounds associated with Tieguanyin and other varieties with significantly high
odor-activity values (VIP > 1).

Volatile Compounds
ACI (%) OT

(µg/L)TGY-1 TGY-2 TGY-3 TGY-4 TGY-5 HD-1 HD-2 BYQL ZPSX-1 ZPSX-2

3-Methyl-butanal 0.02 0.03 0.02 0.03 0.03 0.06 0.06 0.52 0.08 0.08 1.1
1-Penten-3-one 0.10 0.10 0.08 0.09 0.09 0.04 0.07 0.02 0.02 0.03 23
(E)-2-Pentenal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 980
(E)-2-Hexenal 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.04 0.02 0.02 19.2
Ethylbenzene 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 220.5

1-Hexanol 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.06 0.04 0.03 5.6
2-Heptanone 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 140

(Z)-4-Heptenal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 900
Heptanal 0.54 0.60 0.53 0.66 0.51 0.36 0.54 0.19 0.21 0.19 2.8

Methyl (Z)-3-hexenoate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 70
(E)-2-Heptenal 0.19 0.21 0.17 0.22 0.16 0.13 0.17 0.09 0.08 0.07 2.8

1-Heptanol 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.05 0.01 5.4
1-Octen-3-ol 0.32 0.34 0.34 0.39 0.34 0.74 0.67 0.67 0.65 0.42 1.5

(E,E)-2,4-Heptadienal 2.46 2.84 2.60 3.15 1.93 1.16 1.99 0.61 0.26 0.24 15.4
2-Ethyl-1-hexanol 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 25,480

β-Ocimene 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.04 0.01 0.01 34
(E)-2-Octenal 8.51 8.86 8.27 10.14 6.45 5.18 6.92 3.13 2.99 2.86 0.2

cis-Furan linalool oxide 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 320
1-Octanol 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 125.8

(E)-Linalool oxide (furan) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 320
Linalool 17.95 21.60 17.42 22.36 20.35 22.35 26.56 25.49 29.38 39.53 0.22

β-Safranal 0.01 0.02 0.02 0.02 0.02 0.04 0.04 0.23 0.10 0.10 3
Decanal 0.04 0.03 0.03 0.05 0.03 0.04 0.06 0.04 0.04 0.04 3

(E)-2-Decenal 0.15 0.10 0.19 0.18 0.11 0.16 0.11 2.84 1.31 1.35 0.4
Citral 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.01 400
Indole 1.35 1.34 1.79 1.97 1.39 1.60 0.55 0.22 0.71 0.44 40

α-Farnesene 0.05 0.04 0.04 0.06 0.03 0.03 0.02 0.02 0.01 0.01 87
(E)-Nerolidol 0.20 0.16 0.18 0.25 0.13 0.17 0.07 0.03 0.07 0.05 250

Methyl jasmonate 0.01 0.01 0.01 0.01 0.01 0.03 0.01 0.01 0.04 0.04 3
n-Hexyl salicylate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 73
Methyl palmitate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 19,000

OT: odor thresholds in water were obtained from [33]. TGY: Tieguanyin, HD: Huangdan, BYQL: Baiyaqilan,
ZPSX: Zhangpinshuixian. Aroma character impact (ACI): a ratio of odor-activity in a mixture and is more useful
for comparing the contribution of the individual components to the overall aroma.

3.3. Difference Analysis of Volatiles in TGY with Different Fermentation

Oolong tea fermentation mainly occurs in the withering and turnover procedures. In
the fermentation process, grassy flavors were diminished, and the flowery and fruity fra-
grances appeared sequentially [24]. The reason was that the continuous mechanical damage
during fermentation facilitated the synthesis of terpenoids, fatty acids, and benzenoid-
derived compounds [34], such as trans-β-ocimene, indole, and linalool [35]. Therefore, the
degree of fermentation was very important to the quality of oolong tea.

In this study, 118 volatile compounds were identified by analyzing TGY samples
of different fermentation levels and classified according to aroma type and compound
type (Figure 3A,B), the floral and fruity compounds were dominant in TGY. With the
continuation of fermentation, the total content of compounds decreased, mainly the floral
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aroma compounds. The compounds with the highest proportion in HF-T were alcohols,
whereas that in LF-T were N-containing compounds. Aldehydes and alcohols were often
characterized by experts with strong sensory descriptions and associated with greenery,
freshness, green plants, citrusy, fatty, and sweet notes [26].
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Through data analysis, the TGY samples with different fermentation levels were clearly
separated in the PLS-DA plot (Figure 4A). To eliminate the interference of irrelevant vari-
ables and find the key compounds that affected this classification of tea samples, VIPs were
used to screen compounds with significant differences among different fermentations of
TGY. As the fermentation level increased (Figure 4C), the contents of (E,E)-2,4-heptadienal,
n-butyl butanoate, indole, jasmine lactone, phenylethyl alcohol, benzeneacetaldehyde,
(2-nitroethyl)-benzene, (E)-nerolidol, and α-farnesene decreased, whereas the content of
hotrienol, benzyl alcohol, geraniol, linalool, and its oxides increased, which was consistent
with previous studies [36]. Hotrienol, geraniol, and linalool are monoterpenoids, which
were induced and composed by the methylerythritol phosphate pathway. (E)-Nerolidol
and α-farnesene are sesquiterpenes and were induced and composed by the mevalonic
acid pathway [37]. The synthesis of these terpenes requires the same precursor, geranyl
pyrophosphate, and there may be competition between the two pathways. The mevalonic
acid pathway may be dominant when the fermentation degree is low. Monoterpenes were
synthesized mainly through the methylerythritol phosphate pathway at high fermentation
levels. The content of indole was high in lightly fermented oolong tea, but low in heavily
fermented Beauty tea or black tea [10,28], which was consistent with our study results
that indole content decreased with the deepening of fermentation. In conclusion, HF-T
contained a high content of monoterpenoids, whereas LF-T contained a high content of
sesquiterpenes and indole. These compounds were useful for the classification of TGY with
different fermentation degrees.
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Figure 4. GC−MS analysis results of differently fermented Tieguanyin. (A) The score scatter plots
of PLS−DA of TGY. (B) Validation of the PLS−DA model. (C) Heatmap of differential substances
in different fermentation Tieguanyin. HF: heavy fermentation, LF: low fermentation. Figure 4B: The
vector value of R2 (0.0, 0.258) and Q2 (0.0, −0.16) from 200permutations, which indicated that this
PLS−DA model was not overfitting.

3.4. Difference Analysis of Volatiles in Different Grades of TGY

According to the tenderness, aroma, taste, and appearance, different types of tea can
be classified into different grades [38]. TGY is usually classified into special grades and
grades 1–4 [39]. Exploring the signature compounds of different grades of TGY could help
identify the grade of TGY. Then, in this study, the differences in volatiles of TGY with
different grades were analyzed. As shown in Figure 5, the total amount of aroma in the
special-grade tea was higher than that in first-grade tea, especially in the floral-scented
compounds. Therefore, the special-grade tea was richer in floral types under sensory
evaluation, which was consistent with previous studies [27,40]. Based on the analysis of
compound types, the highest proportion of volatile compounds in the special grade tea
was alcohols (28%). In first-grade tea, aldehydes accounted for a higher proportion (25%),
which may be caused by the oxidation of more primary alcohols into aldehydes.

The PLS–DA analysis result is shown in Figure 6. Volatile compounds with VIP > 1
were screened out (Figure 6C). Compared with the special grade tea, the relative con-
tent of benzaldehyde (volatile oil of almond), jasmine lactone (coconut-fruity odor), and
α-farnesene (woody, citrus, sweet) in first-grade tea were higher, but that of acetal (pleasant
odor), 2-ethyl-1-hexanol (mild, oily, sweet, slightly floral odor), benzyl alcohol (faint, aro-
matic, fruity odor), (E)-nerolidol (rose apple), and n-hexyl salicylate is lower. (E)-Nerolidol
content was positively correlated with oolong tea grade [41,42]. The special-grade tea and
first-grade tea were the highest grades of tea, and their quality evaluation was used to find
out whether there was an inferior odor in the tea aroma and whether the aroma type was
typical. For example, the fresh-scented TGY typically had a fresh flowers aroma, whereas
that of Oriental Beauty was honey and sweet aroma. The aroma of benzaldehyde had a
roasted aroma, which was not consistent with the TGY aroma type.
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PLS–DA of TG. (B) Validation of the PLS–DA model. (C) Heatmap of differential substances in
different grades. T: special grade, F: first grade. Figure 6B: The vector value of R2 (0.0, 0.561) and
Q2 (0.0,−0.138) from 200permutations, which indicated that this PLS−DA model was not overfitting.

Here, ACI values were also calculated to further screen out key aroma compounds
related to TGY grades (Table 3). The content of (E,E)-2,4-heptadienal (1.68–2.19%) and
(E)-2-octenal (6.36–9.10%) was higher in first-grade tea, whereas the content of benzeneac-
etaldehyde (0.83–1.25%) and (E)-nerolidol (0.06–0.1%) was lower. (E,E)-2,4-Heptadienal
had a fatty and oil aroma, and its concentration was lower in the special grade tea, which
was opposite to the previous results [27]. (E)-2-Octenal had a fatty and green aroma, and
gave rise to inferior flavor. (E)-Nerolidol was an important contributor to oolong tea aroma,
which could be regarded as one of the key odors of oolong tea quality. In general, its
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content was positively correlated with oolong tea grade [42]. In conclusion, the higher
grade was the grade of TGY, the more volatile compounds that were present. Furthermore,
(E,E)-2,4-heptadienal, (E)-2-octenal, benzeneacetaldehyde, and (E)-nerolidol could be used
as the key volatile compounds to distinguish different grades of TGY.

Table 3. The key compounds responsible for the different grades of TGY with significantly high
odor-activity values (VIP > 1).

Volatile Compounds
ACI (%) OT

(µg/L)T-1 T-2 T-3 T-4 T-5 F-1 F-2 F-3 F-4 F-5

Acetal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 80
3-Ethyl-1H-pyrrole 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10,000

Benzaldehyde 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 750.89
(E,E)-2,4-Heptadienal 1.23 1.64 2.09 1.44 1.26 2.19 2.17 1.68 2.05 2.00 15.4

o-Cymene 0.06 0.06 0.06 0.04 0.03 0.06 0.04 0.03 0.03 0.03 11.4
2-Ethyl-1-hexanol 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 25,480

Benzyl alcohol 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 254.6
Benzeneacetaldehyde 2.19 1.39 3.20 3.9 2.25 1.25 0.90 0.83 1.08 1.14 6.3

β-Ocimene 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 34
(E)-2-Octenal 5.46 6.31 7.21 5.77 4.91 9.10 7.88 6.36 7.58 6.83 0.2

cis-Furan linalool oxide 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 320
1-Octanol 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 125.8
Hotrienol 0.08 0.06 0.16 0.06 0.06 0.06 0.06 0.05 0.06 0.04 110

Phenylethyl alcohol 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 564
trans-Linalool 3,7-oxide 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 190

β-Cyclocitral 0.14 0.19 0.17 0.14 0.13 0.26 0.22 0.17 0.17 0.17 3
β-Phenylethyl butyrate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 376

α-Farnesene 0.01 0.02 0.02 0.03 0.02 0.02 0.01 0.02 0.02 0.02 87
(E)-Nerolidol 0.10 0.13 0.12 0.17 0.11 0.06 0.07 0.10 0.09 0.09 250

n-Hexyl salicylate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 73
Benzyl Benzoate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 341
Methyl palmitate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 19,000

OT: odor thresholds in water were obtained from [33]. Aroma character impact (ACI): a ratio of odor-activity in a
mixture and is more useful for comparing the contribution of the individual components to the overall aroma.

4. Conclusions

In this study, a combination of SPME–GC–MS and chemometrics analysis provided a
convenient and reproducible method for differential analysis of oolong tea samples. The
content of heptanal, (E,E)-2,4-heptadienal, (E)-2-octenal, indole, and (E)-nerolidol in TGY
was higher than in other varieties, whereas the content of 1-octen-3-ol and linalool was
lower than in other varieties. With the extension of fermentation, HF contains a high
content of monoterpenoids, whereas LF contains a high content of sesquiterpenes and
indole. (E,E)-2,4-Heptadienal, (E)-2-octenal, benzeneacetaldehyde, and (E)-nerolidol were
the key volatile compounds to distinguish different grades of TGY. (E)-nerolidol, (E,E)-
2,4-heptadienal, and (E)-2-octanal were important compounds contributing to the aroma
quality of TGY. The results enriched the theoretical basis of aroma substances in TGY and
could also provide theoretical guidance for consumers to choose tea.
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