
Citation: Sahachairungrueng, W.;

Meechan, C.; Veerachat, N.;

Thompson, A.K.; Teerachaichayut, S.

Assessing the Levels of Robusta and

Arabica in Roasted Ground Coffee

Using NIR Hyperspectral Imaging

and FTIR Spectroscopy. Foods 2022,

11, 3122. https://doi.org/10.3390/

foods11193122

Academic Editors: Zhuohong Xie

and Qinchun Rao

Received: 2 September 2022

Accepted: 3 October 2022

Published: 7 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

foods

Article

Assessing the Levels of Robusta and Arabica in Roasted
Ground Coffee Using NIR Hyperspectral Imaging and
FTIR Spectroscopy
Woranitta Sahachairungrueng 1, Chanyanuch Meechan 2, Nutchaya Veerachat 2, Anthony Keith Thompson 3

and Sontisuk Teerachaichayut 2,*

1 Department of Food Science, School of Food-Industry, King Mongkut’s Institute of Technology Ladkrabang,
Chalongkrung Road, Bangkok 10520, Thailand

2 Department of Food Process Engineering, School of Food-Industry, King Mongkut’s Institute of Technology
Ladkrabang, Chalongkrung Road, Bangkok 10520, Thailand

3 Department of Postharvest Technology, Cranfield University, College Road, Bedford MK43 0AL, UK
* Correspondence: sontisuk.te@kmitl.ac.th

Abstract: It has been reported that some brands of roasted ground coffee, whose ingredients are
labeled as 100% Arabica coffee, may also contain the cheaper Robusta coffee. Thus, the objective
of this research was to test whether near-infrared spectroscopy hyperspectral imaging (NIR-HSI)
or Fourier transform infrared spectroscopy (FTIRs) could be used to test whether samples of coffee
were pure Arabica or whether they contained Robusta, and if so, what were the levels of Robusta
they contained. Qualitative models of both the NIR-HSI and FTIRs techniques were established with
support vector machine classification (SVMC). Results showed that the highest levels of accuracy
in the prediction set were 98.04 and 97.06%, respectively. Quantitative models of both techniques
for predicting the concentration of Robusta in the samples of Arabica with Robusta were established
using support vector machine regression (SVMR), which gave the highest levels of accuracy in the
prediction set with a coefficient of determination for prediction (Rp

2) of 0.964 and 0.956 and root
mean square error of prediction (RMSEP) of 5.47 and 6.07%, respectively. It was therefore concluded
that the results showed that both techniques (NIR-HSI and FTIRs) have the potential for use in the
inspection of roasted ground coffee to classify and determine the respective levels of Arabica and
Robusta within the mixture.

Keywords: qualitative; quantitative; classification; detection; spectra

1. Introduction

Several factors can influence the flavor of brewed coffee, including: the climate,
environment and soil where the plants are grown, as well as the harvesting method and
maturity of the beans, but a major influence is the species from which the raw beans
are obtained [1,2]. There are more than 70 species of Coffea, with Arabica (C. arabica),
which originated in the Ethiopian highland, and Robusta (C. canephora), which originated
in central and western sub-Saharan Africa, being the main cultivated species. Arabica
accounts for approximately 60 to 70% of the total cultivated worldwide. The coffee made
from these two species has different characteristics and beans can be identified visually, but
it is not possible to differentiate between them visually when they have been ground. The
price of Arabica beans is approximately twice that of Robusta beans; therefore, branded
ground coffee or instant coffee can be a target of fraud, often through the partial or complete
substitution of Arabica with Robusta [3]. Reference [4] tested 22 roasted ground coffee
samples, labeled 100% Arabica coffee, from 12 different brands from shopping malls
and coffee stores in Taiwan and found that four samples were adulterated with Robusta
coffee. Moreover, ground coffee has been the target of fraudulent admixtures with cheaper
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materials, including coffee husks and other roasted grains [5] and roasted barley [6]. Many
commercial brands of ground coffee contain blends of Arabica and Robusta, which are
blended in order to achieve a flavor typical of that particular brand at a price that optimizes
the market for that brand. Arabica has half the caffeine of Robusta, but it is a delicate
plant that requires more attention and care and is sensitive to pests and diseases. It is also
cultivated in higher altitude land (in Colombia coffee for export can only be grown by law
between 1200 and 1800 m above sea level). Robusta is grown at heights between 200 and
800 m above sea level, does not require as much care as Arabica, is more resistant to pests
and diseases and has a higher yield per plant.

The NIR hyperspectral imaging (NIR-HSI) technique combines spectroscopy and
computer vision techniques in order to provide both spectral and spatial data that associates
with the characterization, composition and properties of the samples [7]. The hyperspectral
imaging technique can be applied as a fast, non-destructive method to detect contamination
of powdered food [7,8]. Previously, research has reported on using NIR-HSI for evaluating
the adulteration of powdered food such as prediction of black pepper adulteration [9,10],
adulterations in wheat products with cheap grains [11], identification and quantification of
adulterants in milk powder [12–14], detection of adulteration of peanut flour in chocolate
powder [8] and prediction of concentration of adulterants in tapioca starch [15].

Fourier transform infrared (FTIR) spectroscopy is one type of infrared spectrometry
that uses the principle of absorption energy of molecules based on their vibrations. Different
molecules have different spectra [16]. This method acquires the spectral information
of samples in the infrared wavelength range and measurement is fast, non-destructive,
accurate, reliable [16] and does not use any chemicals [17]. FTIR spectroscopy can be
used for both qualitative and quantitative analyses [18] and has been used both to identify
chemical components in samples and to detect contaminants in samples [19]. In addition, it
can be used for the analysis of adulteration in food [17]. FTIR spectroscopy was successfully
used for detecting adulteration in foods such as prediction of adulteration of starch in onion
powder [18], adulteration both qualitative and quantitative in tea [20,21], adulteration in
paprika powder [22] and adulteration in garlic powder [23,24]. In summary, both NIR-HSI
and FTIR spectroscopy techniques have been successfully used for detecting adulteration in
foods. Therefore, the aim of this research is to compare the performance of both techniques
for evaluating the adulteration in Arabica ground coffee with Robusta ground coffee based
on classification and calibration models. This will be useful for the industries in order to
consider a suitable technique to inspect the raw material of the ground roasted coffee before
feeding it to the processor.

2. Materials and Methods
2.1. Sample Preparation

The Arabica roasted coffee beans were purchased from a coffee plantation in Chiang
Rai province in northern Thailand and the Robusta roasted coffee beans from a coffee
plantation in Chumphon province in southern Thailand and then ground in a blender
(Blender 480, Kenwood, Thailand). Samples of Arabica were mixed with samples of
Robusta at a ratio of 1% to 99% (w/w) and increasing every 1% (w/w) until the ratio was
99% to 1% (w/w). Each of the samples was stored separately in a zip-lock plastic bag at
25 ◦C until required for NIR-HSI and FTIRs measurements.

2.2. NIR-HSI and FTIRs Data Acquisition

Each sample in a container was scanned using NIR hyperspectral imaging (Specim
FX17e, Spectral Imaging Ltd., Oulu, Finland) in an air conditioned room at 25 ◦C (Figure 1A).
Scanning was performed by 224 spectral bands in the wavelength range of 935–1720 nm
with an interval of 3.5 nm in the reflectance mode with a scanning speed of 15 mm/s.
Two references were used: a black reference (Rb) by closing the shutter and covering it with
a lid on the camera lens, and a white reference (Rw) using a rectangular Spectralon bar.
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Figure 1. Schematic view of: (A) NIR-HSI; and (B) FTIRs system.

Each sample was placed in an attenuated total reflectance (ATR) crystal and then
scanned using an FTIR spectrophotometer (Bruker Corporation, INVENIO-S, Ettlingen,
Germany) with a DLaTGS detector in the air conditioning room at 25 ◦C (Figure 1B). The
absorbance spectra were collected using 64 scans in the wavenumbers of 4000 cm−1 to
400 cm−1 with the interval of 4 cm−1 in the reflection mode and the average spectrum of
each sample, contained with 2519 independent variables, was acquired.

2.3. Principal Component Analysis (PCA)

PCA was used for verifying the possibility of discrimination between two groups
based on spectral information of both NIR-HSI and FTIRs. Additionally, PCA was carried
out for comparison between samples of pure Arabica and pure Robusta as well as between
samples of pure Arabica and Arabica with Robusta.

2.4. Support Vector Machine (SVM)

Samples from each of the measurements were divided between two sets. One set was
used for establishing the models, while the other was used for testing the models. For
qualitative analysis, the dependent variables were 0 (pure Arabica) and 1 (Arabica diluted
with Robusta), and the independent variables were spectral data. For quantitative analysis,
the dependent variables were the concentration levels of Robusta in samples, and the
independent variables were spectral data. Before creating the models, the acquired original
spectra of samples in the calibration set were preprocessed using spectral pretreatment
methods (smoothing, first derivative, second derivative, MSC, SNV) and combined meth-
ods in order to obtain the optimum models for predicting both qualitative and quantita-
tive analyses.

Previously, methods have been successfully used to establish the model from spec-
tral data, including partial least squares regression (PLSR) [18,25], multiple linear regres-
sion (MLR) [26], principal component regression (PCR) [27] and support vector machine
(SVM) [28]. Normally, PLSR is used for analysis since it has been shown to give better
results when compared to MLR and PCR [29,30]. However, some research reports indicate
that when SVM and PLSR were compared for qualitative and quantitative analysis [31]
the adulteration of melamine in liquid milk was detected and they found the SVM model
showed better results than the PLSR model. Ref. [32] used the SVM model for determining
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authentication of Spanish protected designation of origin (PDO) wine vinegars that the
SVM model provided a better result in discrimination than those of the PLS-DA model.
Ref. [33] tried to use the SVM and PLSR model for predicting the physicochemical proper-
ties of soybean paste. The results showed the SVM models gave more precisely than those
of the PLSR models. Thus, SVM was selected for establishing the models for comparison of
the two techniques in this study.

SVM is a machine learning technique that is used for classification and regression
analysis depending on statistical principles [34]. SVM models are developed based on
calculating a distance metric among data vectors by the concept of the structural risk
minimization induction principle therefore it can obtain a good solution in high dimensional
spaces that helps to increase the efficiency of the model [35,36]. It can be applied to establish
models for both SVMC and SVMR [34].

For qualitative analysis, SVMC is a supervised method of classification that uses
separate categories for two classes [37]. Qualitative models were created for classifying the
dependent variable that the number of 0 was a representative of a class of pure Arabica
while the number of 1 was a representative of a class of adulterated Arabica with Robusta.
The independent variables were spectral data at various wavelengths and wave numbers
for NIR-HSI and FTIRs, respectively. SVMC was used for developing the classification
models for discriminating between pure Arabica and adulterated Arabica with Robusta
in this study. Spectral data in the calibration set were preprocessed using various spectral
pretreatment methods. The best models were selected by cross-validation. To evaluate the
predictive ability of the models, the models were tested by the samples in the prediction
set. The acquired predicted values from the models were determined by comparing them
with the actual values. The result of each sample was presented as positive true, negative
true, positive false or negative false. The classification models were evaluated for accuracy
by Equation (1), specificity by Equation (2), sensitivity by Equation (3) and error rate by
Equation (4). Accuracy is used to present the overall accuracy of the classification model.
Both specificity and sensitivity are used together to present the predictive performance of
the classification model. Finally, the error rate is used to present to misclassify of overall
prediction of the classification model [38,39]. The same procedures in

Accuracy (%) =
(TP + TN)

Total
×100 (1)

Specificity (%) =
TN

(TN + FP)
× 100 (2)

Sensitivity (%) =
TP

(TP + FN)
× 100 (3)

Error rate (%) =
(FP + FN)

Total
× 100 (4)

where: TP = true positive, TN = true negative, FP = false positive, and FN = false negative.
For quantitative analysis, SVMR is a regression analysis of SVM which is used to

establish the calibration model that correlated between the spectra data and the dependent
variables [40]. Quantitative models were created for predicting the dependent variable,
which was the concentration of Robusta in the samples. The independent variables were
spectral data at various wavelengths and wave numbers for NIR-HSI and FTIRs, respec-
tively. SVMR was used for developing the models for predicting the concentration of
Robusta in this study. Spectral data in the calibration set were preprocessed by vari-
ous spectral pretreatment methods. The best models were selected by considering the
results of cross-validation using the coefficient of determination (Rcv

2) and root mean
square error (RMSECV). To evaluate the predictive ability of the models, the models were
tested by the samples in the prediction set. The accuracies of the models were considered
by the coefficient of determination for prediction (Rp

2) and root mean square error for
prediction (RMSEP).
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The Prediktera Evince software version 2.7.9 and the OPUS program version 8.5.29
was used for device control and data acquisition for NIR-HSI and FTIRs, respectively.
Statistical results were analyzed by the Unscrambler X 10.4.

3. Results and Discussion
3.1. Average Spectra Obtained from the NIR-HSI and FTIRs

The spectral image (640 × 1185 pixels) in the wavelength range of 935–1720 nm was
obtained from scanning with the NIR-HSI technique. Each spectral image of the samples
was removed from the spectra of the background and the edge of the container, and then
the spectra of each sample were averaged. The average spectrum of each sample in the full
wavelength range was used for both qualitative and quantitative analysis. Additionally, the
acquired spectra of each sample from FTIRs in the wavenumbers of 4000 cm−1 to 400 cm−1

were averaged and then the average spectrum of each sample in the full wave numbers
was also used for both qualitative and quantitative analysis.

3.2. Characterization of Spectra for Ground Roasted Coffee Using NIR-HSI

The average original absorbance spectra and 2nd derivative absorbance spectra of pure
Arabica and pure Robusta by NIR-HSI in the wavelength of 935–1720 nm (Figure 2), Show
only a few peaks in the original absorbance spectra. The absorbance peaks were observed
at around 1200 and 1450 nm, which are related to the overtone vibrations of the second
overtones and the first overtones of OH stretching, respectively, as shown in Figure 2A
and previously reported by [41,42]. The original absorbance spectra were preprocessed
with the 2nd derivative technique, which reduced overlaps of peaks in the spectra. The
2nd derivative spectra were used to identify the main components of both Arabica and
Robusta. The feature of both spectra of pure Arabica and pure Robusta showed peaks at the
same wavelength. Those peaks of the 2nd derivative spectra present chemical components
in the ground roasted coffee as reported by [43]. The spectra showed peaks of components
in coffee that were not only water but also chlorogenic acid, caffeine, trigonelline and
carbohydrates. The acquired absorbance peaks show that around 1412–1444 nm is the first
overtone of O-H and N-H, which is related to chlorogenic acid and caffeine as shown in
Figure 2B [44]. There were peaks of chlorogenic acid at 1100 and 1500 nm which are the
second overtone of C-H stretching and the first overtone of C-H stretching [45,46]. The
acquired spectra showed a clear peak of caffeine at 1216 nm which is related to molecules’
bonding with the second overtone of C-H stretching [47]. The acquired spectra also showed
the peak at around 1366–1378 nm that is correlated to the second overtone of C-H, which
is trigonelline, as well as the peak at around 1626–1640 nm concerns to the first overtone
of C-H related to trigonelline and caffeine [48]. The peak of carbohydrates showed at
around 1584 nm, which has been shown to be associated with the first overtone of the O-H
stretch [45].

3.3. Characterization of Spectra for Ground Roasted Coffee by FTIRs

Average spectra of pure Arabica and pure Robusta by FTIRs show the peaks of
components in ground roasted coffee (Figure 3) where both spectra of pure Arabica and
pure Robusta showed peaks at the same wave numbers indicating that the spectra showed
the peaks of components in coffee including water, caffeine, lipid, chlorogenic acid and
carbohydrates. Water peaks showed at the wavenumber around 3300 cm−1 in the region of
3676–3028 cm−1 [49,50]. Caffeine peaks showed at the wavenumber around 2852 cm−1 and
in the region of 1650–1600 cm−1 [51–53]. Lipid peaks were attributed at the wavenumber
around 1744 cm−1 and in the region of 2908–2920 cm−1 which is related to stretching
vibration of the carbonyl (C=O) and stretching asymmetric C-H of CH2 groups [53,54]. The
peaks of chlorogenic acid, which occurs by esterification between quinic acid and caffeic
acid, showed in the range of 1450–1000 cm−1 [5]. The peaks of carbohydrates showed in
the region of 1500–700 cm−1 [5].
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3.4. PCA

The acquired spectral data of samples from NIR-HSI and FTIRs were used for the
principal component analysis in order to determine the potential of classification of pure
Arabica and pure Robusta, as well as the Arabica diluted with Robusta. For pure Arabica
and pure Robusta, the score plot of PC1 and PC2 by PCA based on spectral data from
NIR-HSI (Figure 4A) shows complete separation between groups of pure Arabica and pure
Robusta with the variance percentage of 97% and 3% for PC1 and PC2, respectively. While
the score plot of PC1 and PC2 by PCA is based on spectral data from FTIRs (Figure 5A).
shows overlapping between groups of pure Arabica and pure Robusta with the variation of
95% and 2% for PC1 and PC2, respectively. For pure Arabica and the Arabica with Robusta,
the score plot of PC1 and PC2 by PCA based on spectral data from NIR-HSI (Figure 4B)
almost separates between groups of Arabica and Arabica with Robusta with the variance
percentage of 98% and 1% for PC1 and PC2, respectively. While the score plot of PC1 and
PC2 by PCA based on spectral data from (Figure 5B) shows overlapping between groups
of Arabica and Arabica with Robusta with the variation of 50% and 11% for PC1 and PC2,
respectively. Therefore, the classification results by using PC1 and PC2 showed that spectral
data from NIR-HSI had a better potential when compared with FTIRs.
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Samples from measurements were divided into the calibration set and the prediction
set for qualitative and quantitative analysis (Table 1). Acquired full-spectrum data of NIR-
HSI and FTIRs was used in order to establish the models using SVM. For the qualitative
study, the classification between samples of pure Arabica (defined as 0) and the Arabica
with Robusta (defined as 1) was analyzed. The pure Arabica samples were divided into the
same ratio for both sets and the deviation of the concentration of Robusta in both sets was
similar. The samples in the calibration set were 206 and the samples in the prediction set
were 102 for both NIR-HSI and FTIRs. For the quantitative study, dependent variables were
the various concentration levels of Robusta in the samples of the Arabica with Robusta.
The deviation of the concentration of Robusta of samples in the calibration set and the
prediction set was similar. The samples in the calibration set were 136 and the samples in
the prediction set were 66 for both NIR-HSI and FTIRs.

Table 1. The characteristics of samples in the calibration set and the prediction set for SVMC and
SVMR using NIR-HSI and FTIRs.

Techniques Items
Model

SVMC 5 SVMR 6

Cal 7 Pred 8 Cal Pred

NIR-HSI 1 Number of samples 206 102 136 66

% Concentration of Robusta 3 0–1 0–1 0–100 1–98

Mean (%) 0.64 0.65 50.24 49.50

SD 4 (%) 0.48 0.48 29.54 28.79

FTIRs 2 Number of samples 206 102 136 66

% Concentration of Robusta 0–1 0–1 0–100 1–98

Mean (%) 0.64 0.65 50.24 49.50

SD (%) 0.48 0.48 29.54 28.79
1 NIR hyperspectral imaging. 2 Fourier transform infrared spectroscopy. 3 Support vector machine classification.
4 Support vector machine regression. 5 Concentration of Robusta ground roasted coffee. 6 Standard deviation.
7 Calibration. 8 Prediction.

3.5. Qualitative Analysis

Due to the effects on spectra during measurement, including noise, scatter and baseline
shift, the data obtained from the NIR-HSI and FTIRs were improved by carrying out the
pre-treatment methods of smoothing, first derivative, second derivative, MSC, SNV and
combined methods in order to reduce those effects and produce the most accurate model.

For qualitative analysis, Figure 6 shows the confusion matrix for classification using
SVMC models. Comparison between results of NIR-HSI and FTIRs was investigated
resulting in NIR-HSI giving the best result of classification, obtained by preprocessing
the spectra before creating the model with SNV, which correctly predict 98.48% (130/132)
for class 1 and 100% (74/74) for class 0 in the calibration set and 96.97% (64/66) for class
1 and 100% (36/36) for class 0 in the prediction set. The overall accuracy for prediction
was 98.04% (100/102). Using FTIRs, the best result for classification was obtained by
preprocessing the spectra before creating the model with the first derivative combined
with SNV. Using this method, it was able to correctly predict 95.45% (126/132) for class
1 and 100% (74/74) for class 0 in the calibration set and 95.45% (63/66) for class 1 and
100% (36/36) for class 0 in the prediction set. The overall accuracy for prediction was
97.06% (99/102) (Table 2).
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Table 2. Performance of SVMC models for classification between pure Arabica and the Arabica with
Robusta using NIR-HSI and FTIRs.

Model Technique
Number of Samples

Pre-Treatment
% Accuracy % Specificity % Sensitivity % Error Rate

Cal Pred Cal 6 Pred 7 Cal Pred Cal Pred Cal Pred

SVMC 1
NIR-HSI 2 206 102 SNV 4 99.03 98.04 100 100 97.37 94.74 0.97 1.96

FTIRs 3 206 102 1st derivative 5 + SNV 97.09 97.06 100 100 92.50 92.31 2.91 3

1 Support vector machine classification. 2 NIR hyperspectral imaging. 3 Fourier transform infrared spectroscopy.
4 Standard normal variate transformation. 5 Savitzky-Golay first derivative. 6 Calibration. 7 Prediction.

3.6. Quantitative Analysis

The same procedures described for qualitative analysis were used for quantitative
analysis. The results showed that the spectral data obtained from NIR-HSI and FTIRs were
improved by using pre-treatment. For quantitative analysis, the calibration models for
predicting the concentration of Robusta were established using SVMR, with NIR-HSI giving
the best results for the calibration model that had been obtained by preprocessing spectra
data with the first derivative combined with SNV pretreatment method with Rp

2 and
RMSEP of 0.964 and 5.47%, respectively. When using FTIRs, the best result of the calibration
model was obtained by preprocessing spectra data with the first derivative combined with
MSC pretreatment method with Rp

2 and RMSEP of 0.956 and 6.07%, respectively. The
summarized results of the calibration models for predicting the concentration of Robusta
in the Arabica with Robusta (Table 3) showed that both techniques could be successfully
used for prediction but, the NIR-HSI technique had slightly better accuracy than the FTIRs
based on higher Rp

2 and lower RMSEP.
Figure 7 shows the scatter plots of samples in the calibration set and prediction set that

used SVMR models for predicting the concentration of Robusta compared with the actual
concentration by using NIR-HSI and FTIRs. The plots of data were close to the 45◦ line,
which indicated good accuracy of the models for prediction.
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Table 3. Results of SVMR models for detection of concentration of RC in the adulterated AC with RC
using NIR-HSI and FTIRs.

Model Technique
Number of Samples

Pre-Treatment R2
c R2

cv R2
p

RMSEC 9

(%)
RMSECV 10

(%)
RMSEP 11

(%)Cal 4 Pred 5

SVMR 1
NIR-HSI 2 178 88 1st derivative 6 0.970 0.953 0.958 4.66 5.86 5.35

FTIRs 3 131 63 2nd derivative 7 + SNV 8 0.965 0.913 0.951 5.85 9.04 6.96

1 Support vector machine regression. 2 NIR hyperspectral imaging. 3 Fourier transform infrared spectroscopy.
4 Calibration. 5 Prediction. 6 Savitzky-Golay first derivative. 7 Savitzky-Golay second derivative. 8 Standard
normal variate transformation. 9 Root mean square error of calibration. 10 Root mean square error of cross-
validation 11 Root mean square error of prediction.
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4. Conclusions

It was shown that for either qualitative and quantitative determinations of the levels of
Robusta coffee in samples of Arabica coffee, both near-infrared spectroscopy hyperspectral
imaging and Fourier transform infrared spectroscopy had potential. Moreover, this study
showed that models using NIR-HSI gave higher predictive accuracy for indicating the
differences between pure Arabica and Arabica with Robusta and could also be used to
determine the concentration of Robusta in the Arabica with Robusta mixture. It was
therefore concluded that the results showed that both techniques (NIR-HSI and FTIRs)
have the potential for use in the inspection of roasted ground coffee to determine the
respective levels of Arabica and Robusta within a mixture of the two.
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