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Abstract: Pickering high internal phase emulsions (HIPEs) are gel-like concentrated emulsions
that have the potential to be an alternative to partially hydrogenated oil (PHO). In this study, egg
yolk granules (EYGs), natural complexes of protein and lipid isolated from egg yolk, were used as
an emulsifier to prepare Pickering HIPEs. Gel-like HIPEs with an oil phase volume fraction of 85%
and with an emulsifier concentration of only 0.5% could be prepared by using EYGs as an emulsifier.
The EYGs were able to form stable HIPEs at NaCl ionic strengths over 0.2 M and at pH over 5.0 with
NaCl ionic strength of 0.3 M. The EYGs, which could stabilize HIPEs, were easily to adsorb and cover
the oil-water interface to form emulsion droplets with small particle size. In addition, interacting
EYGs in the aqueous phase formed a continuous network structure, and the oil droplets packed
closely, exhibiting high elasticity and shear thinning behavior. Furthermore, the formed HIPEs had
suitable storage stability with no significant changes in appearance and microstructure after storage
for 60 days. This work can transform traditional oils from liquid-like to solid-like by using EYGs to
enrich food processing diversity and improve the storage stability of oils while reducing the intake of
PHO and providing a healthier diet for consumers.

Keywords: egg yolk granule; Pickering high internal phase emulsions; partially hydrogenated oil
substitutes; healthier diet

1. Introduction

Excessive intake of trans fatty acids will increase the risk of cardiovascular disease,
diabetes, hypertension, and cancer [1]. The main source of trans fatty acids in the food
industry is partially hydrogenated oil (PHO), which can result in fat hardening. The U.S.
Food and Drug Administration has banned the addition of trans fatty acids to foods in
2018 because of their harmful effects on humans [2]. Therefore, there is an urgent need to
find a healthy substitute for partially hydrogenated oils in the food industry. At present,
high internal phase emulsions (HIPEs) can be used to convert liquid-like oil directly into
solid-like oil without the addition of PHO to meet the health needs of consumers [3].

HIPEs are generally defined as emulsion systems with internal phase volume fractions
exceeding 74%. The droplets of HIPEs are tightly packed and form a network structure, in
which the oil droplets are trapped, resulting in the gel-like rheology, solid-like appearance,
and excellent stability [4]. Emulsifiers for stabilizing HIPEs include low molecular inorganic
particles (such as silicon dioxide and titanium dioxide), macromolecules (such as artificial
polymers and proteins), and other Pickering particles [4,5]. HIPEs stabilized by low
molecule inorganic particles are not suitable for the food industry due to their high cost,
high dosage, environmental pollution, and food safety [6]. However, HIPEs stabilized by
food-derived Pickering particles have more advantages: less dosage required, better storage
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stability, high environmentally friendly degree (easy degradation), safety, and non-toxic
side effects [7]. In addition, Pickering particles are irreversibly adsorbed to the oil-water
interface, and the strong gravitational interaction between the particles also forms a rigid
layer to protect the oil droplets [8]. Therefore, emulsions stabilized by Pickering particles
are highly resistant to agglomeration and Ostwald ripening [8]. At present, more and more
studies have proved that protein, as a food-grade Pickering particle, could stabilize HIPEs,
such as whey protein [9], zein [2], ovalbumin [10], and gelatin [5]. However, most Pickering
protein particles could not stabilize HIPEs alone. They stabilized HIPEs by interacting with
other co-stabilizers such as polysaccharides or polyphenols, which might lead to a more
complicated preparation process.

Egg yolk granules (EYGs) are precipitated material obtained by centrifuging the egg
yolk solution, natural complexes of protein and lipid, which have been shown to be a novel
food-derived Pickering stabilizer [11]. EYGs contain high-density lipoproteins (HDLs),
phosvitin, and low-density lipoproteins (LDLs) [11]. As an outstanding food material, due
to low cholesterol, low fat, high nutritional value, and excellent emulsifying properties,
EYGs had the potential to replace egg yolk in the preparation of mayonnaise, a typical
high internal phase emulsion [12]. Therefore, EYGs might have the potential to be used
to prepare HIPEs. However, the strong calcium phosphate bridges structure of EYGs led
to its low solubility, which in turn affected its emulsifying properties [13,14]. Fortunately,
its dense structure caused by calcium phosphate bridges was highly regulated by pH and
NaCl ionic strength [13]. Thus, EYGs with high solubility are possible to be obtained by
adjusting pH and NaCl ionic strength in order to prepare emulsions with high oil content.
Recent studies have confirmed that EYGs were able to stabilize 75% of the oil, and the
formed emulsions were gel-like, suggesting that EYGs could be used to stabilize HIPEs [15].
However, the preparation of stable Pickering emulsions by means of EYGs and the role of
EYGs in stabilizing them are still not clear.

It is well known that pH and NaCl ionic strength play a vital role in the formation
of emulsions. The properties of EYGs were also highly dependent on pH and NaCl ionic
strength of the surroundings. Therefore, the aim of this study was to obtain different
morphologies of EYGs by modulating factors of pH and NaCl ionic strength to form HIPEs
with excellent properties. In this paper, the physicochemical and morphological properties
of EYGs were characterized in different pH and NaCl ionic strength, and their ability to
form and stabilize HIPEs were investigated. Furthermore, the effect of oil phase volume
fraction (ϕ) and EYGs concentration on the formation of HIPEs were studied. Finally, the
storage stability of HIPEs stabilized by EYGs was assessed. These results have important
significance for the replacement of PHO in the food industry.

2. Materials and Methods
2.1. Materials

All eggs used for the laboratory were purchased from Jiufeng Chicken Farm in Wuhan.
Soybean oil was obtained from a local supermarket in Wuhan. Nile red and fluorescein
isothiocyanate (FITC) were purchased from Sinopharm Chemical Reagent Co., Ltd. Other
chemical reagents were bought from the Sigma Company and were analytical grade. All
solutions were prepared in distilled water purified with Clever-S30 (Shanghai, China).

2.2. Preparation of EYGs

The method for preparing egg yolk granules referred to a previous study with some
modifications [11]. Firstly, the shells were broken, and the liquid egg was placed in an egg
yolk separator to remove most of the egg white. The egg yolk was then rolled on filter
paper to remove the proteins from the surface of the egg yolk membrane. The egg yolk
membrane was then poked through with tweezers to collect the egg yolk. Afterward, the
collected egg yolk was added to an equal volume of 0.15 mol/L NaCl solution and stirred
with a magnetic stirrer. The diluted egg yolk solution was then centrifuged at 10,000× g
for 45 min at 4 ◦C. The precipitated material obtained was the EYGs. Later, the surface of
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granule precipitation was rinsed with distilled water and then collected from the bottles
and kept in the freezer. Finally, the EYGs were completely freeze-dried for subsequent use.
The apparatus model of the freeze drier was CTFD-10S. The temperature of the condenser
was −70 ◦C, and the temperature of the shelf was from −20 to 20 ◦C at a speed of 4 ◦C/h.

2.3. EYGs Characterization
2.3.1. Zeta Potential

The zeta potential of EYGs at different NaCl ionic strength (0, 0.1, 0.2, 0.3, and 0.5 M)
and at a fixed NaCl ionic strength of 0.3 M with different pH (2.0, 3.0, 4.0, 5.0, 6.0, 7.0,
8.0, and 9.0) were determined by Zetasizer Nano ZS zeta potential analyzer (Malvern
Instruments Ltd., Worcestershire, UK). The EYGs solutions were diluted to 0.1 mg/mL
with distilled water. All the samples were examined three times at 25 ◦C.

2.3.2. Scanning Electron Microscope (SEM)

SEM was carried out according to a previous study with some modifications [16]. JM-
6390LV scanning electron microscope (Fukuyama, Japan) was used to observe the images
of the EYGs. The EYGs were pasted to the tape adhering to the aluminum tube and then
sprayed with gold before observation. Then, the images of the EYGs were observed.

2.4. Preparation of HIPEs Stabilized by EYGs

Pickering HIPEs were prepared using EYGs and soybean oil. Pickering HIPEs formed
at different NaCl ionic strength (0, 0.1, 0.2, 0.3, and 0.5 M) or at a fixed NaCl ionic strength
of 0.3 M with different pH (2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, and 9.0). Pickering HIPEs were
generated by a one-step homogenization method. The mixtures of soybean oil and the
EYGs solutions at different ϕ (0.75–0.86) with different EYGs concentrations (0.4–3.0 wt%)
were sheared at 12,000 rpm for 1 min.

2.5. Emulsion Characterization
2.5.1. Particle Size Distribution of Emulsions

Mastersizer 2000 (Malvern Instruments Ltd., Malvern, Worcestershire, UK) were used
to test droplet sizes of HIPEs according to a previous report [11]. The refractive indices of
soybean oil and EYGs solutions were set to 1.467 and 1.330.

2.5.2. Confocal Laser Scanning Microscope (CLSM)

FV12000MPE confocal laser scanning microscope (CLSM, Olympus Optical Co. Ltd.,
Tokyo, Japan) was used to observe the microstructure of oil droplets according to previous
research with some modifications [17]. The proteins and oil droplets in the emulsion were
stained with Nile red and FITC, respectively. Later, 10 µL of the emulsion was aspirated
onto a slide and covered with a coverslip for subsequent observation.

2.5.3. Optical Microscope

DM3000 optical microscope (Leica Instruments Ltd., Wetzlar, Germany) was also used
to observe the microstructure of the emulsions. A total of 10 µL of the emulsion was
aspirated onto a slide and covered with a coverslip. Then, the appropriate droplet image at
40×magnification was searched.

2.5.4. Rheological Properties of Emulsions

Rheometer (R2000ex, American TA Instruments, New York, NY, USA) was used to
test storage modulus (G′) and loss modulus (G′′) of the HIPEs according to a previous
work with some modifications [18]. The plates used for measurement were 40 mm parallel
plates, and the gap value was set to 1.0 mm. The range of oscillation strain was from
0.01 to 100%, at the frequency 1 Hz (strain sweeps). The range of frequency was from
0.1 to 10 Hz (frequency sweeps). The range of shear rate was from 1 to 100 1/s (apparent
viscosity). The test temperature was 25 ◦C.
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2.5.5. Storage Stability of Emulsions

The storage stability of the HIPEs was tested after 60 days at 4 ◦C. A total of 0.02 wt%
sodium azide was added to the emulsion to avoid the effects of microbial contamination.
The appearance, droplet morphology, and rheological property of HIPEs before and after
60 days of storage were tested.

2.6. Statistic Analysis

All data were subjected to Duncan’s significance analysis at the 5% significance level
by IBM SPSS Statistics 19.0 software (IBM 150, New York, NY, USA). All experiments were
repeated three times. All the pictures were prepared through the Origin 2018 software.

3. Results and Discussion
3.1. Zeta Potential of EYGs at Different NaCl Ionic Strength and pH

The zeta potential of the particles can indicate the surface charge of the particles. The
surface charge of the particles plays an important role in the dispersion properties of the
particles in aqueous solution. The zeta potential of EYGs at different NaCl ionic strength
(0, 0.1, 0.2, 0.3, and 0.5 M) and at an NaCl ionic strength of 0.3 M under different pH (2.0,
3.0, 4.0, 5.0, 6.0, 7.0, 8.0, and 9.0) were shown in Figure 1. With the growing NaCl ionic
strength from 0 to 0.5 M, the zeta potential of EYGs gradually increased from −13.07 mV to
−0.92 mV (Figure 1A). The zeta potential of the EYGs was negative at NaCl ionic strength
of 0 to 0.5 M, which might be related to the high content of phosphate groups [14]. The
phenomenon of decreasing surface potential might be due to the electrostatic shielding
effect of salt ions, which could reduce the surface charge of EYGs in solution, resulting in
a reduction in electrostatic repulsion. Similar trends could also be observed in previous
studies [19]. With the growing pH from 2.0 to 9.0, the zeta potential of EYGs gradually
decreased from +8.79 mv to −3.24 mv (Figure 1B). The surface charge of the EYGs was
positive under pH of 2.0 to 4.0, and it turned negative under pH of 6.0 to 9.0. As shown in
Figure 1B, the isoelectric point of EYGs was close to 5.0. However, in the absence of NaCl
salt ions, the isoelectric point of the EYGs was 4.0 instead of 5.0 [15]. Similarly, it had also
been found that the isoelectric point of the EYGs was between 4.0 and 5.0 with the addition
of 0.15 M NaCl in solution [20]. This result might be due to the increase in environmental
NaCl ionic strength changing the ionization state of protein groups, which affected the
number of surface charges. Therefore, the addition of NaCl to the solution could boost the
isoelectric point of the EYGs. From pH 2.0 to 3.0, the absolute value of zeta potential of
EYGs was much larger than that at other pH values, which might be due to the different
aggregation states of EYGs under different pH. This phenomenon was consistent with the
previous study [20].
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3.2. Aggregation States of EYGs under Different NaCl Ionic Strength and pH
3.2.1. Visual Appearance of Suspension

The visual appearance of particles in aqueous solution can reflect their aggregation
states. The visual appearance of suspension of EYGs at different NaCl ionic strengths and
at a NaCl ionic strength of 0.3 M with different pH is shown in Figure 2. As shown in
Figure 2A, the suspension was turbid at NaCl ionic strengths of 0 and 0.1 M, while the
NaCl ionic strength increased to 0.3 M, the suspension became clarified. This phenomenon
implied that the EYGs in the suspension were changed from a larger aggregated state to
a smaller dispersed state gradually with the continuous addition of NaCl. The turbidity of
the suspension might also be related to the solubility of EYGs. At low NaCl ionic strength
(<0.2 M), the main components of EYGs were HDL and phosvitin complexes connected
by calcium phosphate bridges [14]. Because of these calcium phosphate bridges, the EYGs
structure was very dense, which contributed to low solubility. At high NaCl ionic strength
(>0.3 M), the divalent calcium of the calcium phosphate bridges of EYGs was replaced by
monovalent sodium, resulting in the dissociation of the EYGs [21]. In the previous study, at
a NaCl ionic strength below 0.1 M, the solubility of EYGs was low to 10% [13]. However, at
NaCl ionic strengths over 0.3 M, their solubility increased to 80% and remained constant at
0.5 M because disrupted EYGs could release soluble phosvitin and HDL similar to soluble
proteins [13,21].
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ionic strength of 0.3 M with different pH (B).

As shown in Figure 2B, precipitation could be observed in the suspension at NaCl
ionic strength of 0.3 M with pH 2.0, 3.0, and 4.0. While at pH over 4.0, the suspension
became more clarified than that under low pH. This result was due to the fact that the EYGs
were in the form of insoluble aggregates at low acidic pH and 0.3 M NaCl ionic strength,
while the EYGs were in the form of soluble micelles at neutral pH and 0.3 M NaCl ionic
strength [14]. In a previous study, Anton (2013) summarized that the protein solubility of
EYGs was only 8% at a pH of 4.0 and a NaCl ionic strength of 0.1 M [14]. While the pH
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increased to 7.0, the protein solubility increased to 60% [14]. This further indicated that pH
had a significant role in regulating the aggregation state of EYGs.

3.2.2. SEM of EYGs

To observe the morphological change of EYGs at different NaCl ionic strengths and
different pH, the SEM was employed. As shown in Figure 3, all the spherical particles were
EYGs, which was similar to the description of EYGs in previous studies [22]. Moreover, the
EYGs in the aggregation state could also be observed.
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As shown in Figure 3A, EYGs were highly dense aggregated lumps without the addi-
tion of NaCl. With the NaCl ionic strength increased, the large aggregates of EYGs gradually
dissociated into small and uniform micelles or aggregates, which was consistent with the
results of the visual appearance of EYGs suspension (Figure 2A). Furthermore, in a recent
study, the Z-average hydrodynamic diameter of EYGs decreased from 2646.1 ± 299.0 nm
to 171.9 ± 3.1 nm as the NaCl ionic strength increased from 0 to 0.5 M at pH 6.0 [23].

As shown in Figure 3B, clustered aggregates of EYGs could be observed at pH of 2.0
and 4.0. While the aggregates of EYGs dissociated at pH over 5.0. These results were also
consistent with the results of the visual appearance of suspension. These results might be
due to that EYGs were complexes composed of LDL micelles and HDL particles, and the
state of association among them varied with pH [13]. In addition, in previous studies, the
Z-average hydrodynamic diameter of EYGs at pH 2.0, 3.0, and 4.0 was 2283.0 ± 420.7 nm,
3711.0 ± 111.7 nm, and 3646.0 ± 701.0 nm, respectively, at NaCl ionic strength of 0.3 M [23].
While the hydrodynamic diameter of EYGs decreased gradually from 1853.0 ± 207.5 nm
to 108.3 ± 3.2 nm at pH from 5.0 to 9.0 with NaCl ionic strength of 0.3 M [23]. The results
of the visual appearance of suspension and SEM suggested that the NaCl ionic strength
and pH played an important role in the electrical charge and aggregation state of the EYGs.
This knowledge may help to design HIPEs with different functions and properties.

3.3. Emulsion Characterization

Soybean oil (80% volume) was added to the EYGs solution to prepare HIPEs. In the
pre-experiment, gel-like HIPEs could not be prepared only by changing the pH of the EYGs
suspension (result not shown). However, by varying the NaCl ionic strength of the EYGs
suspension, stable HIPE could be successfully prepared. Therefore, the effect of NaCl ionic
strength on HIPE stabilized by EYGs was investigated, followed by the effect of pH on
HIPEs stabilized by EYGs at a fixed NaCl ionic strength (0.3 M).

3.3.1. Effect of NaCl Ionic Strength on Emulsion Properties

It could be seen in Figure 4A that at NaCl ionic strengths of 0 and 0.1 M, the HIPEs
stabilized by EYGs presented a liquid-like concentrated emulsion. The HIPEs in liquid form
were thought to be unstable for practical applications [9]. In contrast, at NaCl ionic strength
over 0.1 M, HIPEs stabilized by EYGs appeared as gel-like emulsions that could hang
upside down at the bottom of the bottle without slipping off. These phenomena reflected
that EYGs at low NaCl ionic strength (<0.1 M) could not stabilize HIPEs, while they could
at high NaCl ionic strength (>0.2 M). These results might be due to the increasing NaCl
ionic strength, and the EYGs gradually dissociated from insoluble aggregates into smaller
soluble micelles. In addition, the LDL and HDL obtained after dissociation were more
easily adsorbed to the oil-water interface [21]. Previous studies also showed that disrupted
EYGs by NaCl were more effective in forming and stabilizing oil-in-water emulsions than
natural EYGs [24]. Moreover, high-charged particles failed to stabilize emulsions because
of the “image charge” seen by them at the oil-water interface and encountered exclusive
energy barriers as they approached the interface [25]. For highly charged EYGs (0 and
0.1 M), the convective forces that forced them to move to the interface during emulsification
might not counteract the repulsive forces. This was why they had difficulty adsorbing to
the oil-water interface, failing to form a stable emulsion. For example, HIPEs stabilized by
gliadin colloidal particles with a zeta potential of +21.6 mV were also unstable [3].

It is well known that the size distribution of HIPEs is an important indicator of the
performance of the emulsion. With the increasing NaCl ionic strength from 0 to 0.5 M, the
particle size of the HIPEs stabilized by EYGs shifted to a smaller distribution, implying that
the average droplet size of the emulsions was decreasing continuously. The HIPEs stabilized
by EYGs at NaCl ionic strength of 0.5 M had the smallest droplet size (Figure 4B). According
to previous reports, HIPEs with small particle sizes had relatively high stability [26]. The
HIPEs stabilized by EYGs at NaCl ionic strength of 0 and 0.1 M had relatively large particle
sizes, which might lead to the inability to form stable HIPEs. Similarly, with increasing
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NaCl ionic strength, the particle size of HIPEs stabilized by starch/whey protein isolate
complex also decreased [9].

Foods 2022, 11, 229 9 of 19 
 

 

 
Figure 4. The visual observation (A), particle size distribution (B), and CLSM images (C) of HIPEs 
stabilized by EYGs at different NaCl ionic strengths. The concentration of EYGs was 3.0 wt%, and 
the volume of the oil phase was 0.8. The corresponding bar is 100 µm. 

It is well known that the size distribution of HIPEs is an important indicator of the 
performance of the emulsion. With the increasing NaCl ionic strength from 0 to 0.5 M, the 
particle size of the HIPEs stabilized by EYGs shifted to a smaller distribution, implying 
that the average droplet size of the emulsions was decreasing continuously. The HIPEs 
stabilized by EYGs at NaCl ionic strength of 0.5 M had the smallest droplet size (Figure 
4B). According to previous reports, HIPEs with small particle sizes had relatively high 
stability [26]. The HIPEs stabilized by EYGs at NaCl ionic strength of 0 and 0.1 M had 
relatively large particle sizes, which might lead to the inability to form stable HIPEs. 
Similarly, with increasing NaCl ionic strength, the particle size of HIPEs stabilized by 
starch/whey protein isolate complex also decreased [9]. 

The microstructure of the emulsion, including the interfacial structure and the 
distribution state of the droplets, could be detected by CLSM, which was a key feature 
connected with the physical properties of Pickering HIPEs. In the fluorescence image, the 
oil droplets in the emulsion were dyed red by Nile red, while the proteins were dyed 
green by FITC. The fluorescence images of all the gel-like emulsions seemed to indicate 
that proteins formed thin barriers around the oil droplets, and the proteins in the aqueous 
phase might interact to act as steric hindrances around the oil droplets (Figure 4C). This 
result implied that EYGs at high NaCl ionic strengths (>0.2 M) could be well adsorbed to 
the oil-water interface and had the ability to form stable oil-in-water HIPEs. At NaCl ionic 
strengths above 0.2 M, the presence of network structure in the emulsion implied the 
formation of stronger emulsion gels [7], which was similar to the result of high 
viscoelasticity of HIPEs in rheological properties. Large droplets of HIPEs could be 
observed at low NaCl ionic strength (0 and 0.1 M), which was consistent with the results 
of particle size distribution. Moreover, it could be found that smaller EYGs were adsorbed 
to the oil-water interface with the NaCl ionic strength increased, which might be due to 
the dissociation of EYGs. 
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The microstructure of the emulsion, including the interfacial structure and the distri-
bution state of the droplets, could be detected by CLSM, which was a key feature connected
with the physical properties of Pickering HIPEs. In the fluorescence image, the oil droplets
in the emulsion were dyed red by Nile red, while the proteins were dyed green by FITC.
The fluorescence images of all the gel-like emulsions seemed to indicate that proteins
formed thin barriers around the oil droplets, and the proteins in the aqueous phase might
interact to act as steric hindrances around the oil droplets (Figure 4C). This result implied
that EYGs at high NaCl ionic strengths (>0.2 M) could be well adsorbed to the oil-water
interface and had the ability to form stable oil-in-water HIPEs. At NaCl ionic strengths
above 0.2 M, the presence of network structure in the emulsion implied the formation of
stronger emulsion gels [7], which was similar to the result of high viscoelasticity of HIPEs
in rheological properties. Large droplets of HIPEs could be observed at low NaCl ionic
strength (0 and 0.1 M), which was consistent with the results of particle size distribution.
Moreover, it could be found that smaller EYGs were adsorbed to the oil-water interface
with the NaCl ionic strength increased, which might be due to the dissociation of EYGs.

3.3.2. Effect of pH on Emulsion Properties

As shown in Figure 5A, the HIPEs stabilized at pH 2.0 to 4.0 were phase-separated
liquid emulsions, which indicated that no stable Pickering emulsion system had formed.
The oil droplets moved upward to form a gel layer, and the aqueous phase formed a serum
layer at the bottom due to gravity. In contrast, HIPEs stabilized by EYGs at pH from 5.0 to
9.0 were in the form of gel-like emulsions that could hang upside down at the bottom of the
bottle without slipping off. These phenomena indicated that regulation of pH could lead to
solid-like or liquid-like states of HIPEs stabilized by EYGs. The reason for this result might
be the fact that at NaCl ionic strength of 0.3 M, the EYGs continuously dissociated from
large aggregates into smaller particles and micelles as the pH increased from 2.0 to 9.0 [14].
Therefore, at higher pH (5.0 to 9.0), smaller particle fractions and released phospholipid
micelles could migrate and adsorb faster to the oil-water interface [20,27].



Foods 2022, 11, 229 9 of 16

Foods 2022, 11, 229 10 of 19 
 

 

3.3.2. Effect of pH on Emulsion Properties 
As shown in Figure 5A, the HIPEs stabilized at pH 2.0 to 4.0 were phase-separated 

liquid emulsions, which indicated that no stable Pickering emulsion system had formed. 
The oil droplets moved upward to form a gel layer, and the aqueous phase formed a 
serum layer at the bottom due to gravity. In contrast, HIPEs stabilized by EYGs at pH 
from 5.0 to 9.0 were in the form of gel-like emulsions that could hang upside down at the 
bottom of the bottle without slipping off. These phenomena indicated that regulation of 
pH could lead to solid-like or liquid-like states of HIPEs stabilized by EYGs. The reason 
for this result might be the fact that at NaCl ionic strength of 0.3 M, the EYGs continuously 
dissociated from large aggregates into smaller particles and micelles as the pH increased 
from 2.0 to 9.0 [14]. Therefore, at higher pH (5.0 to 9.0), smaller particle fractions and 
released phospholipid micelles could migrate and adsorb faster to the oil-water interface 
[20,27]. 

 
Figure 5. The visual observation (A), particle size distribution (B), and CLSM images (C) of HIPEs 
stabilized by EYGs at different pH. The concentration of EYGs was 3.0 wt%, the NaCl ionic strength 
was 0.3 M, and the volume of the oil phase was 0.8. The corresponding bar is 100 µm. 

Figure 5. The visual observation (A), particle size distribution (B), and CLSM images (C) of HIPEs
stabilized by EYGs at different pH. The concentration of EYGs was 3.0 wt%, the NaCl ionic strength
was 0.3 M, and the volume of the oil phase was 0.8. The corresponding bar is 100 µm.

From the results of CLSM, at pH 5.0 to 9.0, the EYGs formed a continuous network
structure in the aqueous phase, trapping the tightly packed oil droplets, which might be
responsible for the formation of gel-like emulsions (Figure 5C). In addition, the relatively
high surface charge at pH 2.0 and 3.0 might prevent the aggregation and adsorption of
EYGs at the oil-water interface due to electrostatic repulsion. On the contrary, at pH over
4.0, the low surface charge enhanced the adsorption of EYGs at the oil-water interface.
Moreover, previous studies found that the surface tension between oil and water in EYGs-
stabilized emulsions decreased continuously with increasing pH at NaCl ionic strength
of 0.15 M [20]. Under alkaline conditions, triglycerides were hydrolyzed to mono- and
diglycerides, whose adsorption led to a decrease in oil-water interfacial tension [20].

As the pH increased from 2.0 to 9.0, the particle size of the emulsions became smaller
(Figure 5B). Moreover, it was also observed in the results of CLSM that the particle size
of the emulsion droplets was very large at pH from 2.0 to 4.0, while the particle size of
the emulsion droplets was significantly reduced at pH from 5.0 to 9.0 (Figure 5C). With
the increase in pH, the EYGs disintegrated. During emulsification, the high solubility
and small size might cause the particles to adsorb faster at the new oil-water interface,
thus showing the small oil droplets [20]. Therefore, emulsions prepared from EYGs under
alkaline conditions had higher emulsifying stability than those under acidic conditions [28].
As mentioned above, mono- and diglycerides formed under alkaline conditions as small



Foods 2022, 11, 229 10 of 16

molecular surfactants might be helpful to the barrier formed around oil droplets. They
could compete with EYGs for adsorption at the oil-water interface, which accelerate the
decrease in surface tension and lead to smaller oil droplets [20]. Previous studies also found
decreasing trend in particle size of emulsion stabilized by EYGs as the pH increased from
3.0 to 9.0 at NaCl ionic strength of 0.15 M [20]. In addition, among all gel-like emulsions,
the particle size of the emulsion at pH 5.0 was the largest, which was similar to other
researchers’ studies [15]. However, the decreasing trend of emulsion particle size as the pH
value moved away from the isoelectric point (pH 5.0) was contrary to the study by other
researchers [15]. This result might be attributed to the high oil content of the emulsion
system or the effect of NaCl on the EYGs.

3.3.3. Effect of Concentration of EYGs on Emulsion Properties

As shown in Figure 6A, the HIPEs stabilized by EYGs at a concentration of 0.4 wt%
were in the form of liquid-like emulsions with phase separation. However, they were
solid-like appearances and did not flow after inversion with the addition of EYGs over
0.5 wt%. This phenomenon indicated that the minimum concentration required to form
homogeneous and gelatinous HIPEs was 0.5 wt%. Moreover, the increase in the concentra-
tion of EYGs promoted the decrease in the particle size of the droplets, which improved
the stability of HIPEs (Figure 6B). These phenomena might be due to that EYGs were
loosely arranged at the oil-water interface and not enough to wrap all the oil phases at
low concentration (<0.5 wt%) (Figure 6C) [15]. The droplets of emulsions were prone to
agglomeration, resulting in extreme instability of HIPEs. Similarly, the HIPEs stabilized by
soy β-conglycinin could only form gel-like emulsion at high concentration (>0.2 wt%) but
present flow dynamics at low concentration (0.1 wt%) [29]. Furthermore, at high concentra-
tions (>2.0 wt%), the oil droplets were closely packed with each other inside the emulsion,
which might lead to the appearance of HIPEs resembling elastic gels [30].

3.3.4. Effect of ϕ on Emulsion Properties

As shown in Figure 7A, the HIPEs stabilized by EYGs were able to form self-supporting
emulsion gels at ϕ from 0.75 to 0.85. While at ϕ of 0.86, the HIPEs became liquid-like and
flowed freely, which was probably due to the agglomeration among droplets, resulting
in phase separation of the emulsion [5]. Previous studies showed that the increase in the
internal phase ratio could reduce the stability of emulsion [29]. Because the oil droplets
were subjected to repulsive forces from more surrounding droplets, facilitating droplet
agglomeration and Ostwald ripening. In addition, as the ϕ increased, the oil droplets
became larger, which was probably due to that the amount of EYGs particles per unit
surface area adsorbed at the oil-water interface decreased [29]. The result of the particle size
distribution of the HIPEs also proved that asϕ continuously increased from 0.75 to 0.86, the
particle size of HIPEs continued to increase (Figure 7B). As shown in the results of CLSM
(Figure 7C), EYGs in the aqueous phase formed a continuous network through mutual
interaction and trapped the oil droplets, which might be responsible for the formation of
HIPE gels. While ϕ exceeded 0.83, the droplets of HIPEs underwent deformation due to
dense packing, especially at ϕ of 0.85. Similarly, the HIPEs stabilized by egg chalaza also
show the phase inversion with 86% oil content [7]. The accumulation and deformation
of droplets into irregular shape was a distinct microstructural feature of HIPEs [31]. This
result was also observed in HIPEs prepared from ovalbumin at ϕ of 0.91 [10].
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3.3.5. Rheological Properties of HIPEs

Besides the size distribution and microstructure, the application and processing prop-
erties of HIPEs are strongly associated with their rheological properties [32]. The effect
of NaCl ionic strength and pH on the rheological properties of HIPEs stabilized by EYGs
could be seen in Figures 8 and 9. The result of dynamic frequency sweep reflected that
G′ was higher than G′′ (Figures 8A and 9A), which indicated that the HIPEs stabilized by
EYGs were mainly elastic-like and exhibited strong gelatinous behavior. The formation of
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gelatinous HIPEs might be due to the tightly packed oil droplets [29], which was reflected
in the results of CLSM (Figure 4C). Furthermore, the G′ value of HIPEs was gradually
increased with the growing NaCl ionic strength (Figure 8A), which was opposite to the
trend of particle size. This result might be due to that EYGs gradually dissociated into
smaller soluble micelles with the increasing NaCl ionic strength, resulting in more EYGs
adsorbed to the oil-water interface. Zhang et al. (2020) also found that an increased number
of colloidal nanoparticles adsorbed at the oil-water interface could enhance the viscoelastic
structure of HIPEs with the increasing NaCl ionic strength [33]. Meanwhile, the G′ value of
HIPEs under alkaline conditions was higher than that under acidic conditions (Figure 8A).
This result might also be attributed to the dissociation of EYGs in response to changes in pH.
Similarly, it also had been reported that pH affected the interfacial packing behavior of zein
particles and their cross-linking behavior in the aqueous phase [2]. Therefore, the network
structure formed might be influenced, resulting in different viscoelasticity of HIPEs at
different pH values (Figures 8B and 9B).
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Figure 9. Rheological behavior of HIPEs stabilized by 3.0 wt% EYGs at NaCl ionic strength of 0.3 M
with different pH. The ϕ is 0.8. Storage (G′) and loss (G′′) moduli of the HIPEs as a function of
frequency (A). Apparent viscosity of the HIPEs as a function of shear rate (B). G′ and G′′ of the HIPEs
as a function of oscillation strain (C).

With the shear rates increased, significant shear thinning behavior of the HIPEs could
be observed (Figures 8B and 9B), which might be due to that the interacting EYGs were
destroyed by shear stress at high shear rates. In addition, the viscosity of emulsions rose
gradually with increasing pH; correspondingly, the particle size of the oil droplets gradually
became smaller. This result could be attributed to the fact that in a fixed volume of oil,
the smaller oil droplets, the more friction points there were [20]. Aggregation of EYGs
in the aqueous phase also contributed to friction among droplets and increased viscosity.
Furthermore, the degree of decomposition of EYGs increased with the growing pH. Smaller
EYGs particles were easier to adsorb to the oil-water interface. Therefore, the composition
of barrier layers on the surface of the oil droplets might also be changed with pH, which
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might increase the interaction among the oil droplets and lead to higher viscoelasticity [20].
Moreover, the viscosity of emulsions rose gradually with increasing NaCl ionic strength,
which was opposite to the trend of particle size. Similar results had also been presented in
moringa seed residue protein [34].

The results of stress sweeps showed that G′ still dominates the rheological properties
in HIPEs (Figures 8C and 9C). This result suggested that the dominant elastic behavior and
the stiffness of the gel-like HIPEs gradually improved for all samples. The values of G′ and
G′′ still showed an increasing trend with growing NaCl ionic strength and pH, which was
similar to the results of frequency sweeps and strain sweeps. In addition, oscillatory yield
stress (the stress value at the crossover point) could well reflect the flow performance of
the HIPEs. Below the oscillatory yield stress, the HIPEs behaved as solid-like, dominated
by elasticity. Above the oscillatory yield stress, the HIPEs structure was disrupted and
transformed from solid-like to liquid-like, flowing like fluid [32]. In summary, the results
of rheological properties further confirmed the results of CLSM and the visual appearance
of HIPEs. The HIPEs stabilized by EYGs under suitable NaCl ionic strength and pH
were viscoelastic and self-supporting. Therefore, the HIPEs stabilized by EYGs had great
potential to substitute for PHOs in the food field [7].

3.3.6. Storage Stability of HIPEs

As shown in Figure 10, HIPEs stabilized by 3.0 wt% EYGs at 0.3 M showed no
significant changes in visual appearance and optical microscopy images after 60 days
of storage and could hang upside down at the bottom of the bottle without slipping off.
Meanwhile, oil leakage and creaming stratification could not be observed in the samples
after 60 days of storage, which indicated that HIPEs stabilized by EYGs had suitable anti-
emulsification and coalescence stability. However, in rheological tests, HIPEs showed an
increase in G′ and G′′ after 60 days of storage. This result might be due to the evaporation
of water from the HIPEs during storage, which led to higher oil content, thus increasing
the emulsion viscosity [26]. As a result, the migration of droplets slowed down, which
might lead to the formation of stronger network structures and improve the stability of
the HIPEs. Similarly, Li et al. (2020) found that HIPEs stabilized by meat protein particles
formed stronger and more homogeneous network structures after 60 days of storage, which
resulted in stronger viscoelasticity [35].

Foods 2022, 11, 229 17 of 19 
 

 

 
Figure 10. Visual appearance, microstructure (A), and frequency sweeps (B) of HIPEs stabilized by 
3.0 wt% EYGs at NaCl ionic strength of 0.3 M before and after 60 days. The φ is 0.8. The 
corresponding bar is 100 µm. 

4. Conclusions 
In this study, EYGs as potential emulsifiers of Pickering particles for stabilizing 

HIPEs were reported. HIPEs could be successfully prepared with an internal phase up to 
85% and concentration of EYGs as low as 0.5 wt%, respectively, through a one-step 
homogenization method. At high NaCl ionic strengths (>0.2 M), the strong calcium 
phosphate of the EYGs was disrupted, causing the EYGs to decompose into small particles 
and micelles. At the NaCl ionic strength of 0.3 M, as the pH increased from 2.0 to 9.0, the 
EYGs disintegrated from the aggregated state into small particles and micelles. The 
smaller particles and micelles were more easily adsorbed at the oil-water interface, 
forming thin barriers around the oil droplets to prevent coalescence. Therefore, EYGs 
could stabilize self-supporting HIPEs at NaCl ionic strengths over 0.2 M and at pH over 
5.0 with NaCl ionic strength of 0.3 M. Due to the irreversibility of EYGs as Pickering 
particles adsorbed at the oil-water interface, the HIPEs had suitable storage stability. In 
addition, the interacting EYGs formed a continuous network, and the droplets packed 
tightly, endowing the HIPEs with great viscoelasticity and self-supporting properties. The 
rheological results also showed that HIPEs stabilized by EYGs were able to convert liquid 
oil into solid gels. This study showed the potential of bioactive EYGs-stabilized HIPEs as 
replacements for PHOs in the food industry. 

Author Contributions: S.M.: Conceptualization, Methodology, Formal analysis, Writing—Original 
Draft. M.X.: Writing—Review and Editing. X.Z.: Writing—Review and Editing. J.L.: Supervision. 
Z.C.: Resources, Project administration, funding acquisition. All authors have read and agreed to 
the published version of the manuscript. 

Funding: This research was supported by the Fundamental Research Funds for the Central 
Universities (no. 2662020SPPY005) and the China Agriculture Research System of MOF and MARA 
(CARS-40). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare that this manuscript is submitted without any conflict of 
interest and is published with the consent of all authors. 

Figure 10. Visual appearance, microstructure (A), and frequency sweeps (B) of HIPEs stabilized by
3.0 wt% EYGs at NaCl ionic strength of 0.3 M before and after 60 days. Theϕ is 0.8. The corresponding
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4. Conclusions

In this study, EYGs as potential emulsifiers of Pickering particles for stabilizing HIPEs
were reported. HIPEs could be successfully prepared with an internal phase up to 85% and
concentration of EYGs as low as 0.5 wt%, respectively, through a one-step homogenization
method. At high NaCl ionic strengths (>0.2 M), the strong calcium phosphate of the EYGs
was disrupted, causing the EYGs to decompose into small particles and micelles. At the
NaCl ionic strength of 0.3 M, as the pH increased from 2.0 to 9.0, the EYGs disintegrated
from the aggregated state into small particles and micelles. The smaller particles and
micelles were more easily adsorbed at the oil-water interface, forming thin barriers around
the oil droplets to prevent coalescence. Therefore, EYGs could stabilize self-supporting
HIPEs at NaCl ionic strengths over 0.2 M and at pH over 5.0 with NaCl ionic strength
of 0.3 M. Due to the irreversibility of EYGs as Pickering particles adsorbed at the oil-
water interface, the HIPEs had suitable storage stability. In addition, the interacting EYGs
formed a continuous network, and the droplets packed tightly, endowing the HIPEs with
great viscoelasticity and self-supporting properties. The rheological results also showed
that HIPEs stabilized by EYGs were able to convert liquid oil into solid gels. This study
showed the potential of bioactive EYGs-stabilized HIPEs as replacements for PHOs in
the food industry.
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