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Abstract: As a raw material for beer, barley seeds play a critical role in producing beers with
various flavors. Unexcepted mixed varieties of barley seeds make malt quality uncontrollable and
can even destroy beer flavors. To ensure the quality and flavor of malts and beers, beer brewers
will strictly check the appropriate varieties of barley seeds during the malting process. There are
wide varieties of barley seeds with small sizes and similar features. Professionals can visually
distinguish these varieties, which can be tedious and time-consuming and have high misjudgment
rates. However, biological testing requires professional equipment, reagents, and laboratories, which
are expensive. This study aims to build an automatic artificial intelligence detection method to
achieve high performance in multi-barley seed datasets. There are nine varieties of barley seeds
(CDC Copeland, AC Metcalfe, Hockett, Scarlett, Expedition, AAC Synergy, Celebration, Legacy, and
Tradition). We captured images of these original barley seeds using an iPhone 11 Pro. This study used
two mixed datasets, including a single-barley seed dataset and a multi-barley seed dataset, to improve
the detection accuracy of multi-barley seeds. The multi-barley seed dataset had random amounts and
varieties of barley seeds in each image. The single-barley seed dataset had one barley seed in each
image. Data augmentation can reduce overfitting and maximize model performance and accuracy.
Multi-variety barley seed recognition deploys an efficient data augmentation method to effectively
expand the barley dataset. After adjusting the hyperparameters of the networks and analyzing and
augmenting the datasets, the YOLOV5 series network was the most effective in training the two
barley seed datasets and achieved the highest performance. The YOLOv5x6 network achieved the
second highest performance. The mAP (mean Average Precision) of the trained YOLOv5x6 was
97.5%; precision was 98.4%; recall was 98.1%; the average speed of image detection reached 0.024 s.
YOLOV5x6 only trained the multi-barley seed dataset; the trained performance was greater than
that of the YOLOVS5 series. The two datasets had 39.5% higher precision, 27.1% higher recall, and
40.1% higher mAP than when just using the original multi-barley seed dataset. The multi-barley
seed detection results showed high performance, robustness, and speed. Therefore, malting and
brewing industries can assess the original barley seed quality with the assistance of fast, intelligent,
and detected multi-barley seed images.

Keywords: barley seed detection; deep learning; object detection; Yolov5

1. Introduction

Modern agriculture industries have been well developed using agricultural science,
and the modern malting industry urgently needs intelligence assistance. The image process-
ing method is widely used in agriculture as a form of touchless and automatic detection,
and is a promising method for barley recognition. There are about 140 varieties of barley in
the United States and Canada [1]. According to the growing environment and proficiency,
farmers choose the correct barley variety to grow. Barley seed is a primary material for the
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manufacturing of beer. Generally, specific types of beer are made with malt from specific
barley seeds; different malts make different beer flavors. Malts with unexpected mixed
barley seed varieties can result in poor modification and uniformity, reduced extractives,
elevated beta-glucans and arabinoxylans, and poor flavors in beer products [2,3]. These
may lead to reduced malt yields, increased barley seed costs, and potential economic losses
for malting businesses. With continuous improvement at the brewing level and the pursuit
of beer quality, research on beer products is urgently required [4]. Identifying barley seed
varieties is the first crucial step in ensuring the purity of beer flavors.

As shown in Figure 1, there are nine varieties of barley seeds. Barley seeds are about
6-8 mm long and 34 mm wide, and have a dorsal side without creases (left side image in
every type of barley seed) and a ventral side with creases (right side image in every type of
barley seed). Different barley seeds have many different features on the dorsal and ventral
sides. They show significant differences in barley kernel shape and color, morphology at the
base of the lemma, and the density of spikelets [5]. These different features are related to
many factors, such as the growing environment (weather, soil condition, planting season),
cultivating conditions (water composition, fertilization), and the spikelet location (two-row
and six-row barley). However, the same barley seeds also have minor morphology variations
because of these different cultivating factors. Therefore, barley seeds, by using the ventral
and dorsal sides, have many standardizable features for detection. Indeed, professionals
judge barley seed varieties by these different features. However, they are difficult to directly
identify with the naked eye, and the varieties are small in size and have similar features;
thus, the manual detection of barley seeds can result in detection errors. Barley seed va-
riety identification usually uses morphological analysis, immunological analysis, protein
electrophoresis, and DNA fingerprinting technology. The morphological analysis method,
also called visual analysis, uses touchless technology and does not destroy the structure of the
seeds. Other methods can achieve high identifying accuracy, but destroy the structures of the
seed samples in the process; they are also highly time-consuming and high in cost, and can

require professional laboratories.
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Figure 1. Images of nine barley varieties.
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Intelligent detection technology is widely used in image detection, such as single-object
images, multi-object images, small object images, and sub-category images [6]. Machine
learning includes supervised learning, unsupervised learning, and reinforcement learning.
Image recognition is mainly processed by supervised learning. When using supervised
learning technology, the target objects are manually labeled by the user, and these labeled
images are then trained to obtain the corresponding model. The model can test unlabeled
images to identify the target object [7]. When using intelligent detection technology, the
methods used evaluate barley seed variety and quality at high speeds, low costs, and with
high accuracy. Artificial intelligence and supervised deep learning networks help with
barley seed detection and recognition. This study aims to build an efficient, automatic
artificial intelligence detection method based on a multi-barley seed dataset with random
varieties and numbers in each image. Notably, there are no published barley seed detection
studies on multi-barley seed datasets. The intelligent detection method sets professionals
free from visual inspection, and is a helpful method by which to check the purity of barley
seeds. Professionals could use the barley variety detection images to judge if the collected
malt barley seeds are qualified for making malts and beers.

2. Object Detection Methods

Traditional object detection includes three processes: acquiring detection bounding
boxes, extracting interest features of the objects, and training the classifier [8-10]. This
method achieves high detection accuracy, but is time-consuming, has high window re-
dundancy, and uses an untargeted detection process. With the development of computer
technology and hardware facilities, object detection algorithms based on deep learning
networks are widely used and have high performance. Object detection based on deep
learning networks is divided into two-stage and one-stage detection.

Two-stage methods, also called region-proposal-based methods, use sliding windows
to detect the objects in the image and then use a Convolutional Neural Network (CNN)
to recognize detected objects [11]. CNN is a representational algorithm for deep learning
networks. As shown in Figure 2, a basic CNN structure includes a convolutional layer, a
ReLU layer, a pooling layer, and a fully connected layer [12]. The convolutional layer with
filters and the ReLU layer with ReLU activate function transfer the input image information
into invariant feature information, such as color, shade, and outline. The pooling layer can
contract the size of the image and retain the critical information in the images and in the
fully connected layer output images. CNN can automatically extract features and efficiently
enhance the direct learning of image features based on processing high dimension datasets.
In 2014, Girshick et al. proposed the R-CNN network of two-stage detection methods [13].
As shown in Figure 3, R-CNN uses selective search algorithms to extract all object region
proposals and features from region proposals by CNN. Finally, these features input the
SVM classifier by conducting bounding box regression to classify region proposals. The
R-CNN algorithm significantly improves object detection performance in comparison to
traditional algorithms. However, feature extraction for each region proposal takes a long
time; many image feature files take up considerable space, and the detection speed is often
too slow. The R-CNN algorithm represents the classical two-stage method. Although Fast R-
CNN [14], Faster R-CNN [15], Mask R-CNN [16], and other two-stage algorithms perform
well, the detection speed is still too low to satisfy the requirements of some scenarios.

In 2016, Redmon et al. proposed the YOLO algorithm as a one-stage method, as shown
in Figure 4 [17]. Compared with a two-stage detection method, the YOLO series algorithms,
also referred to as regression or classification-based methods, extract features directly
from the networks to predict both object classification and localization [17]. Moreover,
the speed of YOLO algorithms is greatly improved and the accuracy rate remains high.
The one-stage algorithms are widely used at fast speeds and with high accuracy. In 2017,
Redmon and Farhadi proposed YOLOvV2, a new training method that directly predicts
the offset based on the grid and the anchor-replaced bounding box to obtain a stable
training process [18]. Figure 5 displays the YOLOv2 detection structure. YOLOV2 uses
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(a)

Darknet-19 as its pre-trained network and adds the Batch Normalization layer for higher
performance. However, YOLOv2 was not overly effective for small object detection. In
2018, Redmon and Farhadi proposed YOLOv3, which uses a more complicated framework,
Darknet-53, and adds FPN after removing softmax as a selective classification [19]. FPN
uses nine anchor boxes, including three small, three medium, and three big boxes [20].
Thus, YOLOV3 achieves higher speed and accuracy, as shown in Figure 6. An improved
version of YOLOv3, YOLOv4, was proposed in 2020 [21]. YOLOv4 uses multi-anchors for
single-ground truth, while YOLOvV3 uses a single anchor for single-ground truth, as shown
in Figure 7. YOLOv4 also uses the CloU_loss function and mosaic data augmentation to
perform more effectively [21]. YOLOVS5 has been more recently proposed, and its structure
is similar to YOLOv4; using an adaptive anchor based on the different labeled datasets.
YOLOVS5 series networks have the advantages of having a small size, fast speeds, and high
accuracy, as shown in Figure 8 [22].
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Figure 2. Building blocks of a Convolutional Neural Network (a) and explanation of feature
extraction (b).
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Figure 3. Network architecture of R-CNN.
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Figure 4. YOLO detection system.
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Figure 8. Network architecture of YOLOV5.

3. Objectives of the Study

Object detection tasks include classification and localization, which belong to the
multi-task process. An automatic intelligent imaging processing detection method for
mixed barley variety identification would replace traditional manual methods used in
the agricultural and food processing industries. There is no real need for professionals
to manually classify these barley varieties; machines could automatically judge these
varieties. This study aims to automatically identify all barley seeds in the images when
inputting captured barley seed images into the final well-trained artificial intelligent model.
Professionals could use the identified barley seed results to assess if the batches of barley
seeds were qualified for malt and beer products.

This study aims to detect nine varieties of barley seeds, featured in random amounts
and varieties in each image. Based on the wide varieties of the small and similar features
of barley seeds, this is a challenging task. There have been no published studies on the
detection of nine varieties of barley seed. In 2019, Kozlowski et al. used a customized
model to classify six barley seed varieties and achieved an excellent test accuracy of
93% [23]. In 2018, Dolata and Reiner classified eight varieties of barley seeds based on
a viewpoint-aware approach, and achieved a best test accuracy of 88.97% [24]. In 2022,
Yaying et al. used the InceptionV3 network to classify nine categories of barley seeds, and
achieved a test accuracy of 95.7% [25]. These studies achieved high accuracy for barley
seed classification, but they did not detect multiclass barley in one image. Multi-barley
seed detection is essential for professionals to directly classify wide varieties of barley seeds
and assist professionals in assessing the quality of barley seeds. This will reduce the loss of
interest and time consumption in the malting and brewing industries. There has been no
published study on the detection of nine varieties of barley seeds. Our study aims to build
an automatic well-trained YOLOV5 network to efficiently detect nine varieties of barley
seeds and to quickly distinguish multi-barley seeds in one image.

4. Materials and Methods
4.1. Barley Material

Generally, barley seeds are processed into malt to produce various products, such
as beer, some beverages, and various food products. Different varieties of barley seeds
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have different components and contents, so the malting effect on production differs [26].
Barley (Hordeum vulgare L.) samples were taken from large commercial barley farms during
the 2018 and 2019 crop years. Barley seeds are divided into 2-row varieties and 6-row
varieties. Figure 1 shows nine barley varieties; the 2-row varieties (CDC Copeland, AC
Metcalfe, Hockett, Scarlett, Expedition, AAC Synergy) are symmetrical, and the 6-row
varieties (Celebration, Legacy, Tradition) are not all symmetrical based on kernel shape. All
representative broad-malt varieties were listed by the American Malting Barley Association
(AMBA) as recommended malting barley varieties to U.S. growers in 2019 and 2020 [25].

4.2. Dataset

The dataset included nine varieties of barley seed samples. These barley seed images
were captured by iOS smartphone iPhone 11 Pro with a 12-mega pixel camera, which
is produced by the Apple Computer, Inc in the USA. The barley seeds were small, and
there were around 10-90 barley seeds in one photo. Barley seeds were placed on black
paper as a background to reduce complex background effects. This study used two types
of datasets. One was the multi-barley seed dataset. The multi-barley seed dataset had
random amounts and varieties of barley seeds in each image with different angle postures,
as shown in Figure 9; we captured 235 photos as multi-barley seed images. The other was
the single-barley dataset, collecting the same single-barley seed image for each variety,
as shown in Figure 10. The single-barley seed image dataset was photographed initially
with 40-50 individual barley seeds uniformly distributed, as shown in Figure 11a. The
photographed barley seeds images were segmented into the individual barley seeds of
each image, as shown in Figure 11b; we captured 27 photos of the nine varieties of barley
seeds, and segmented them into 1080 single-barley seed images. The seed direction was
vertical in the single-barley seed images, but multi-barley seeds were randomly placed
at different angles. All datasets were photographed on black background paper without
blocking each other. The sides of the kernels in the two types of datasets were arbitrary,
with both dorsal side kernels and ventral side kernels used. We combined the two types of
datasets, the multi-barley seed dataset and the single-barley seed dataset, to achieve high
performance of multi-variety barley seed recognition.

Figure 9. Multi-barley seeds in one image.
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Figure 11. Kernels pre-processing procedure. (a) Original image. (b) Segmented kernels.

4.3. Image Pre-Processing

Image pre-processing mainly converts the original photographed dataset into the
model training format. Our main pre-processing steps were split into three: individual
barley seed segmentation, data labeling, and data augmentation.

The single-barley dataset was isolated to individual seed kernel regions, as shown in
Figure 11. All captured barley images included 40-50 individual seed kernels arranged
in order. An image segmentation algorithm located each barley kernel and separated
it into individual barley seed images with about 350 x 650 pixels [25]. There were two
types of original datasets, including 235 mixed multi-barley seed images and 1080 single-
barley seed images. All these datasets were labeled in XML format files, as shown in
Figure 12. Generally, image data augmentation expands the diversity of training samples to
improve training performance. Basic augmentation methods include noise addition (blur,
mosaic) and transformation methods (translation, zoom, flips, shearing, mirror, rotation,
color-shifting) [27]. The datasets were labeled, and data augmentation was used on both
images and label files. Different dataset types had different statements, and different data
augmentation methods were used on different datasets. The single-barley seed images were
generally in a vertical statement. Multiple data augmentations were conducted to show
various states of random placement in the dataset, such as flipping, rotating small angles,
and other data augmentation effects, as shown in Figure 13. Finally, the total number of
images was 5400. The images of the multi-barley seed were in arbitrary angle directions.
Therefore, we performed classical augmentation to expand the multi-barley seed dataset
by flipping, as shown in Figure 14. After data augmentation, the total number of images
was 940. Finally, simultaneous data augmentation was performed on all data, including
pictures of single-barley seed, multi-barley seed datasets, and the marked content, to obtain
more seed state data and increase the dataset.
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Figure 12. Some examples of labeled images.

(a) (b) (©) (d) (e)

Figure 13. Single-barley image augmentation: (a) original image; (b) fliph; (c) flipv; (d) rotation 10°;
(e) rotation 30°. Note: “fliph” and “flipv” represent flipping the image horizontally and vertically.

Figure 14. Multi-barley seed image augmentation: (a) original image; (b) fliph_flipv; (c) fliph; (d) flipv.
Note: “fliph” and “flipv” represent flipping the image horizontally and vertically.
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For the training model, the single-barley seeds dataset and the multi-seed dataset
were each split into two separate disjoint sets: the training set and test set. There were
6340 images, with 5400 images for the single-barley seed dataset and 940 images for the
multi-barley seed dataset. We split the two datasets by a ratio of 80/20. The training
set included 4320 single-barley seed images and 752 multi-barley seed images; providing
a total of 5072 images. The test set included 1080 individual barley seed images and
188 multi-barley seed images; totaling 1268 images. After labeling the dataset, we acquired
the labeled complex XML format files, mainly including the names of the barley seed
varieties and the four maximum and minimum values (xmin, ymin, xmax, and ymax),
representing bounding box locations. Normalization linearly transformed the name of the
barley seed varieties into zero-indexed variety numbers (starting at 0) and four values of
the XML format dataset into the [0,1] range (x_center, y_center, width, and height) of the
TXT data format.

4.4. Object Detection Models

Figure 15 displays the barley detection process and includes data pre-processing,
dataset labeling, data augmentation, dataset split, and dataset training. We used YOLOv5
series networks to train and analyze the dataset, and YOLOv5 improved some structures
based on YOLOv3 and YOLOv4. This included input, backbone, neck, and prediction, as
shown in Figure 8. After analyzing the features and functions of the barley seed dataset, an
effective data augmentation method was used to obtain more valuable training data, and a
transfer learning method was used to improve detection accuracy. Since most data or tasks
are related, transfer learning will share the parameters of a well-trained model to accelerate
and optimize the training efficiency of the new model [28]. YOLOVS5 series networks
include the transfer learning method, directly improving the training effect. Finally, the
processed barley dataset was trained using YOLOV5 series models.

Splitintotrainingset

Multi-seed images Labelling images Multi-seed
in arbitrary angels Data augmentation " | dataset
A 4
Multi-seed images Train set Test set
in vertical direction
gl
9
M}
Q)
2
g 5
< g
Single barley Labellingimages , | Single seed
—PTrained model result
kernelimages |Dataaugmentatio dataset s merel

Figure 15. The whole process of barley dataset training.

Firstly, the Input includes zooming in on the picture, adopting the mosaic data en-
hancement method, and automatically calculating the best anchor frame value of the
dataset. Then, the backbone structure contains the Focus structure and CSPNet structure.
The Focus structure is new in the YOLOvV5 network. Its primary function is the slicing
operation, which can reduce the number of layers, parameters, amount of calculations,
and the usage memory of Cuda, as well as improve the speed of inference and gradient
back-propagation. The CSPNet structure is taken from the YOLOv4 network. YOLOv5
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combines bottleneck and CSPNet structures to enforce the learning performance of CNN,
reduce memory cost, and reduce calculation cost; the neck contains FPN and PAN struc-
tures. FPN (Feature Pyramid Network) has nine anchor boxes and strengthens the feature
expression of the shallow feature map through the fusion of the upsampling process and
the shallow feature map [20]. PANet (Path Aggregation network) aggregates structured
shallow features through bottom-up and upward paths, forming a full fusion of different
image features and facilitating the transfer of information. Finally, the prediction uses the
GIOU_Loss function to evaluate detection performance [29].

YOLOWS5 series networks include YOLOv5s, YOLOvV5, YOLOv5], and YOLOv5x mod-
els. These models have the same backbone, neck, and head; the only differences are the
set depth and width in these models, which decide the depth of models and the number
of convolutional kernels. This study used the improved parameters of the YOLOVS series
models to train barley datasets. The trained YOLOv5x6 (Version 6.0 of the YOLOv5x)
network achieved the best performance and realized automatic classification and detection.

4.5. Loss Function

YOLO series loss calculation is based on objectness, class probability, and bounding box
regression. YOLOVS deploys the BCEclsloss (Binary Cross-Entropy loss) function to calculate
the loss of class probability and target score, and the GIOU_Loss (Generalized Intersection
over Union loss) as the loss function of the bounding box [29]. In Equation (1), where §
is the ith scalar value in the model output, y¥) is the corresponding target value, and N is
the number of scalar values in the model output [30]. Rezatofighi proposed the GIOU_Loss
function, which sets the Generalized Intersection over Union (GIOU) loss for bounding box
regression [29]. In Equation (2), A and B represent the predicted bounding box and the ground-
truth bounding box. The Intersection over Union (IOU) requires comparing the similarity

between A and B. C is the minor enclosing shape, which includes the whole boxes of A and
B. This ratio w represents a normalized measure focusing on the empty area between
A and B. Finally, the GIOU results from IOU subtracting the ratio in the function, and the

GIOU_Loss equals one subtracting the GIOU in the Equation (3).

1N 4 . ,
= Ly @ e 4 (1 -y g0
L Nl;y togg® + (1 -y )1og(1- ) 1)
IC\(AUB)| _ |[ANB| [C\(AUB)|
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ARl T [ @
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4.6. Assessment Method
Three evaluation parameters [30] were employed in the project:
(1) Precision: The ratio of correctly predicted positive values to total values;
(2) Recall: The percentage of correctly predicted positive values to all the values in the

relevant class;
(3) mAP: The average mean value of all categories AP.

Each of the metrics are defined below:

True Positive

Recall =
eca True Positive + False Negative

True Positive

Recall =
eca True Positive + False Negative

1 K
AP = =) AP
m Kl; ;
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In multi-object detection tasks, the TP (true positive) means the predicted correct box
that includes comparing the value of classification and bounding box, which also means
the corresponding calculated IOU is over the set threshold value of IOU. Therefore, the
FP (false positive) means the corresponding calculated IOU is less than the set threshold
value of IOU. False-negative means negative samples are calculated as positive samples.
The precision metric is calculated from a true and false positive, and the recall metric
is calculated from the true positive and false negative. The mAP value is based on the
Precision-Recall curve. The AP is the area of the Precision-Recall curve, also called average
precision. Finally, the mAP is the average value of all classes of AP.

5. Experiment and Discussion
5.1. Model Training

Table 1 displays the configuration of the experimental environment. We used RTX
3090 as the central processor, and the network model was based on PyTorch architecture.
We trained the YOLOv5 model on labeled datasets. During training, the hyperparameters
of the YOLOVS5 network were adjusted to minimize the training loss. The learning rate
was set to 0.001, and the batch size was 12. We obtained a well-trained model based on the
dataset for 300 epochs. YOLOVS5 series networks with different depths and widths trained
the mixed datasets to compare their performance. Moreover, the YOLOv5x6 model also
trained the dataset with 940 multi-barley seed images. The dataset was split into a ratio of
80/20; the training set had 752 images, and the test set had 188 images. Finally, the split
multi-barley seed dataset was trained by the YOLOv5x6 network.

Table 1. Training computer configuration list.

Item Model
CPU + Motherboard CPU Ryzen 9 Motherboard X570 AORUS Ultra
CPU Cooler Noctua NH-U14S TR4-SP3 82.52 CFM CPU Cooler
Memory Corsair Vengeance 64 GB
Storage Samsung 1TB SSD
Video Card RTX 3090

5.2. Result Analysis

After model training, we obtained a well-trained model and good performance on
barley datasets. We used the YOLOV5 series network to train the dataset and adjusted the
hyperparameters of the YOLOv5 network to obtain the corresponding well-trained results
shown in Table 2. Compared with other YOLOV5 series, YOLOv5x6 achieved the highest
performance and accuracy; trained precision was 98.4%, recall accuracy was 98.1%, and
the mAP was 97.5%. Compared with the YOLOv5s trained model, YOLOv5x6 improved
the precision by 11.8%, the recall by 19.7%, and the mAP by 20.2%. However, the training
time of YOLOV5x6 was 12.48 h longer than the YOLOVS5s. Therefore, the network with
greater depth and width achieved higher accuracy, but had the longer training time. We
also trained the YOLOv5x6 network on the multi-barley seed dataset; trained precision
reached 58.9%, recall accuracy reached 71%, and the mAP reached 57.4%. The two mixed
datasets achieved 39.5% higher precision, 27.1% higher recall, and 40.1% higher mAP.
The single-barley dataset provided more barley seed features, and the dataset that used
data augmentation provided more barley postures. These types of single-barley seed
images enhanced multi-variety barley seed image detection. Finally, YOLOv5x6 with
mixed datasets was the best-trained model and achieved the highest performance; the
model detected the inputting of multi-barley seeds images to achieve high accuracy and
obtained minor errors. The training time of YOLOvV5x6 was 12.48 h, but the well-trained
YOLOV5x6 detected one image at an average speed of 0.024 s.
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Table 2. YOLOVS5 series trained model results list.
Model Category Precision Recall MAP Training Time

YOLOvV5s 84.6% 78.4% 87.3% 6.68 h

YOLOv5m 83.7% 85.7% 90.5% 7.89h

YOLOV5I 94.3% 94.8% 96.2% 10.72h

YOLOvV5x6 98.4% 98.1% 97.5% 19.16 h

YOLOv5x6 on 58.9% 71% 57.4% 7.68h

multi-barley seed dataset

Figure 16 visualizes information for all the barley seeds, including quantity and labeled
normalized TXT content, which helped to analyze the YOLOv5x6 model performance.
Figure 16a shows the number of each barley seed variety; Figure 16b displays all the
normalized labeled boxes; Figure 16¢ displays all center coordinates for normalized boxes;
Figure 16d displays the width and height for all normalized boxes; Figure 17 displays the
confusion matrix for the YOLOv5x6 network. Each row of the confusion matrix represents
the predicted variety; each column represents the true variety; and the background FN
identifies the missed variety without detection frame and those judged as background.
The confusion matrix displays every variety of barley detection accuracy and presents the
confusing relation with each of the other barley seed varieties. Background FN precision
was 0%, which means all seeds were located in the detection frame and detected without
missing seeds in the test dataset. All barley seed recognition precisions were over 85%, and
many were close to 100%; except for the Cele, which was 97.9%, and the Hock, which was
85.2%. The confusion matrix results proved that the well-trained YOLOv5x6 could detect
all barley seeds and achieve high accuracy. It detects all nine barley seed varieties fast and
accurately; while 3% of Cele was falsely detected as Lega, 7% of Hock was falsely detected
as Lega, and 8% of Hock was falsely detected as Syne. Figure 16 shows that both Hock and
Syne have around 3000 instances, with Lega having the most, with around 7000 instances,
and Cele at least, with around 2500 instances. Fewer Hocks and Celes are falsely detected
as Lega at a high rate. However, Hock was falsely detected as Syne at a high rate, and their
numbers were similar. It proved that many factors affect the training results; not only the
quantity, but also the color, size, posture, distribution, and even uncertain characteristics
of the barley seeds. YOLOvV5x6 trained the barley seed dataset with various complex
identified features to achieve a well-trained model and high performance.

Figure 18 displays detection result plots of barley seeds after 300 epochs of training.
The box loss plot shows the bounding box loss of barley seeds; the objectness loss plot
shows the average detection loss value of barley seeds; the classification loss plot shows
the average classification loss value of barley seeds. The smaller the loss values of the
box, objectness, and classification loss, the higher the accuracy of the barley seeds training
dataset. In contrast, the val box loss plot, val objectness loss plot, and val classification loss
plot are taken from the test dataset of barley seeds. The precision plot shows the ratio of
true positive values to the total positive values of the barley seed datasets. The recall plot
shows the percentage of true positive values to all the values in the relevant class from
the barley seed dataset, which describes how many of the true positive seed samples in
the test set were selected by the second classifier. The mAP@0.5 shows the average mAP
with an IOU threshold greater than 0.5. The mAP@0.5:0.95 shows the average mAP value,
while the different IOU thresholds were set as 0.5 to 0.95 with a step size of 0.05 [30]. The
mAP@0.5:0.95 plot indicates barley detection efficiency with a different range of thresholds.
When mAP values are bigger, the performance of barley seed detection is better. YOLOv5x6
displayed high performance for barley seed recognition.
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Figure 16. Distribution image of barley seeds varieties and labels: (a) the number of each barley seed
variety; (b) all the normalized labeled boxes; (c) all center coordinates for normalized boxes; (d) the
width and height for all normalized boxes.
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Figure 18. Training result plots of box loss, objectness loss, classification loss, precision, recall, and

mean average precision (mAP) over the training epochs for the training and validation datasets.

Figure 19 displays some barley seed detection results, which proved to be effective.
Figure 19a displays some single-barley seed identification accuracy close to 100%. Figure 19b
displays some multi-barley identification accuracy, showing that the detection accuracy of
these barley seeds was almost over 90% and close to 100%. Single-barley and multi-barley seed
images were detected with high performance and without missed seeds. After the well-trained
YOLOv5x6 model was built with nine categories of barley seeds, any iPhone 11 Pro captured
high-resolution images with randomly placed barley seeds input well-trained models will
achieve high detection results.

Figure 19. Cont.
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Figure 19. Some examples of barley seed detection results: (a) some single-barley seed identification
images; (b) some multi-barley identification images.

6. Conclusions

There has been no research conducted to automatically and efficiently detect nine
varieties of barley seeds of random amounts and varieties in one image. This study
established an automatic, quick, and reliable multi-barley seed detection method with high
detection performance based on iPhone images and the YOLOv5x6 network, which can be
widely used in malting and brewing industries for barley quality assessment. Evaluating
barley seed variety is crucial for assuring the appropriate barley variety seeds are used to
make premium malt and beer. A well-prepared dataset and improved training models were
used to automatically detect barley seeds. The automatic barley seed detection method will
completely replace the manual testing method, with higher detection speed, accuracy, and
better robustness.

According to the different varieties of barley seed requirements, our project can adjust
to different detailed functions. When more barley seed variety detection is required, barley
seed images can be captured and the outlined data-segmentation algorithm and data-
augmentation method can be used to acquire additional varieties of barley seed datasets.
The well-adjusted hyperparameters of the YOLOv5x6 network training can be used to
determine more varieties through barley seed detection. In the future, our research interests
will focus on integrating the well-trained YOLOv5x6 model of barley seed detection into
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portable devices, such as smartphones, tablets, and other smart mobile devices. In the
future, anyone could potentially take a photo of barley seeds to check the barley seed
variety on smart mobile devices. Moreover, the ideal barley seed features are plump and
sized grains; our research can also focus on intelligently identifying the features of size,
color, and shape to select close to ideal barley seeds or assess the quality of barley seeds for
the farming, malting, and brewing industries.
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