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Abstract: The objective of this study was to assess the influence of storage under different storage
conditions on black currant quality in a non-destructive and inexpensive manner using image
processing and artificial intelligence. Black currants were stored at a room temperature of 20 ± 1 ◦C
and a temperature of 3 ◦C (refrigerator). The images of black currants directly after harvest and
fruit stored for one and two weeks were obtained using a digital camera. Then, texture parameters
were computed from the images converted to color channels R (red), G (green), B (blue), L (lightness
component from black to white), a (green for negative and red for positive values), b (blue for
negative and yellow for positive values), X (component with color information), Y (lightness), and Z
(component with color information). Models for the classification of black currants were built using
various machine learning algorithms based on selected textures for RGB, Lab, and XYZ color spaces.
Models built using the IBk, multilayer perceptron, and multiclass classifier for textures from RGB
color space, and the IBk algorithm for textures from Lab color space distinguished unstored black
currants and samples stored in the room for one and two weeks with an average accuracy of 100%,
and the kappa statistic and weighted averages of precision, recall, Matthews correlation coefficient
(MCC), receiver operating characteristic (ROC) area, and precision–recall (PRC) area equal to 1.000.
This indicated a very distinct change in the external structure of the fruit after the first week and more
and more visible changes in quality with increasing storage time. A classification accuracy reaching
98.67% (multilayer perceptron, Lab color space) for the samples stored in the refrigerator may indicate
smaller quality changes caused by storage at a low temperature. The approach combining image
textures and artificial intelligence turned out to be promising to monitor the quality changes in black
currants during storage.

Keywords: black currant storage; image processing; texture parameters; machine vision; classification

1. Introduction

Black currant (Ribes nigrum L.) is a deciduous shrub with dark fruit native to northern
and central Europe and Asia. Black currant is grown for the production of fruit and for
ornamental purposes. The cultivation is a cost-effective and profitable mainly due to
using black currant as a valuable ingredient in a healthy diet [1]. Black currant shrubs
have high cold tolerance and can be cultivated in cooler and humid areas. In addition to
crops for economic purposes, black currant shrubs are important components of forest
ecosystems of the Northern Hemisphere in terms of their productivity and diversity [2].
After domestication, black currant was spread throughout Europe, China, North America,
and New Zealand. Poland is considered the top producer and the primary exporter of fresh
and processed black currant. Due to its importance in human nutrition and suitability for
industrial processing, the cultivation of black currants is in continuous expansion [3,4].

Fruits are small, astringent berries containing bioactive compounds and nutrients
with health benefits. Black currants contain polyphenols and high levels of calcium, potas-
sium, and phosphorus [5]. Black currants are rich in flavonoids, anthocyanins, organic
acids, vitamins, polysaccharides, and unsaturated fatty acids [6]. The unique flavor of
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black currant and its health-promoting and nutritional properties, mainly due to the high
contents of phenolic acids, anthocyanins, and vitamin C, contributed to increasing its con-
sumption [7–9]. Black currants are characterized by typical flavor and distinct purple-black
color. Black currant crop is economically important and especially popular in northern
and eastern European countries [10]. Black currants can be consumed fresh and in their
processed forms, among others, as jams, juices, jellies, purees, yogurt ingredients, and
syrups with health-promoting properties and nutraceutical composition [3,10]. Black cur-
rant fruit and buds can also be used for the production of alcoholic beverages, such as wine,
spirits, or liqueur, and essential oil for perfumes and food flavoring [11]. Black currant,
due to its high level of colored pigments, can be a natural food colorant and dye [12]. As
a nutraceutical, black currant can regulate or alleviate some diseases [12]. Fruit can be
characterized by antioxidant, antimicrobial, anticancer, anti-inflammatory, anti-obesity, and
immuno-stimulating effects and can protect blood vessels, improve eye functions, and
promote dark adaptation [6,13,14].

Black currants in their fresh form are available for a few weeks in the year. They
are very perishable and have a very short shelf life. Therefore, lowering the storage
temperature or even freezing them can extend their shelf life [15,16]. Black currant is a
non-climacteric fruit. The respiration rate decreases after harvest and is significantly higher
for freshly harvested fruit than for the air-stored samples. Black currants designated for
consumption can be stored under room conditions for about 2–3 weeks [17]. Storage can
cause some quality changes in black currant [18]. Generally, berries as non-climacteric
fruit are harvested fully ripened and are characterized by relatively rapid water loss and
susceptibility toward damage and decay. Changes in berry quality during storage can also
include the content of polyphenols, vitamins, minerals, titratable acidity, soluble solids,
and pH. Refrigeration and freezing used for short- and long-term storage protect against
the loss of heat-sensitive nutrients. Lowering the storage temperature reduces respiration
rate, mold growth, pigment degradation, chemical changes, enzymatic reactions, and
changes in cell structure [19]. Besides chemical composition and internal structure, external
characteristics of black currant berries are important quality parameters. For example, fruit
color and gloss are essential quality indicators [20]. In addition to the quality and chemical
composition of berries, sensory attributes related to taste, appearance, and structure can
also change during storage [21,22].

Instead of traditional manual fruit quality evaluation, machine vision enables more
accurate and rapid detection of wrinkled berries and other defects caused by water loss, me-
chanical damage, or fungal decay. Non-destructive fruit quality evaluation using computer
vision techniques and artificial intelligence can reduce food postharvest losses [23]. Artifi-
cial intelligence (AI) is increasingly used in agriculture, including precision agriculture and
smart farming, also to obtain better yield quality. Artificial intelligence can help humanity
address some of the most important challenges, such as feeding a rapidly increasing human
population [24]. AI techniques are widely used in various fields of smart farming and
agriculture for monitoring the quality of fruit [25]. The robustness and fault tolerance
of fruit quality control can be enhanced by the ability to learn and continuously adapt
AI systems. Computer vision systems are composed of an imaging device, e.g., a digital
camera; a light source; and computer hardware with software. These systems can enable the
measurements of quality parameters of products due to image acquisition, segmentation,
feature extraction, classification, and data interpretation [26]. Computer vision as a part
of AI allows the classification of fruit based on quality and identification of damages [27].
Fruit classification using machine vision using appropriate image features and learning
algorithms can result in achieving the maximum economic value of fruit efficiently and
accurately [28].

In this study, an innovative approach to monitoring the quality of black currant during
storage was used. The undertaken research was intended to extend the use of artificial
intelligence in fruit quality assessment. This study aimed to prove the effectiveness of
the models developed based on image textures using artificial intelligence algorithms to
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identify changes in the quality of black currant with increasing time during storage under
various conditions. The novelty of the present study was related to the classification of black
currant samples using models built for textures selected for color space RGB including
images from color channels R, G, and B; color space Lab, images from color channels L,
a, and b; and color space XYZ, images from color channels X, Y, and Z. In the case of
each color space, textures with the highest power for distinguishing the samples were
selected from sets of 543 image parameters. The application of image analysis and artificial
intelligence allowed for the objective, non-destructive, fast, and inexpensive assessment of
the quality of stored black currant.

2. Materials and Methods
2.1. Materials

The black currants were harvested on 1 August from a garden located in Olsztyn
in northeastern Poland. Black currant berries were characterized by maturity but were
not overripe. The black currant bunches were transported to the laboratory in plastic
boxes with perforated walls. Only fully developed and undamaged black currants from
each bunch were considered. Storage experiments began immediately after the fruit was
harvested. Two hundred black currants were sampled to divide them into a set of one
hundred objects intended to be stored in a room and a set of one hundred objects for storage
in a refrigerator. Berries were arranged in a single layer at the bottom of the plastic boxes
with perforated walls. One hundred black currants stored in the room were placed in a
shaded place at an ambient temperature of 20 ± 1 ◦C. The remaining one hundred black
currants were stored at a low temperature of 3 ◦C (refrigerator). Black currants were stored
for two weeks.

2.2. Image Processing

The vision system was composed of a digital camera (Canon Inc., Tokyo, Japan), two
LED (light-emitting diode) lamps as a light source, and a computer (HP Inc., Palo Alto, CA,
USA) with programs for image analysis and classification. The imaging was performed
in a completely dark room. Black currants were placed on a white surface. Samples were
imaged directly after harvest, treating the part for storage in the room and the part for
storage in the refrigerator separately. For each set of one hundred black currants, five
images were obtained with twenty fruits in each image. Then, samples were subjected to
storage for one week. After one week, black currants stored at room temperature and in the
refrigerator were imaged again. In the case of the fruit stored in the refrigerator, no changes
in the shape and structure of the outer surface were visible to the naked eye. In the case
of samples kept in the room, only some of the fruit showed visible quality changes, such
as wrinkling, water and mass losses, color fading, and changes in gloss. Based on visual
observations, it was decided to extend the storage for another week. Afterward, the images
of samples stored in the room and the refrigerator for two weeks were acquired. After
two weeks of storage under room conditions, all black currants were wrinkled with visible
loss of water and mass and changes in color and gloss that indicated a distinct change in
quality. The changes were less noticeable for the fruit stored at a lower temperature in the
refrigerator. However, after two weeks of storage, the quality of the fruit in the room did
not allow the experiment to be continued.

The obtained images for unstored black currant and samples stored for one and two
weeks in the room and the refrigerator were processed with the use of the MaZda software
(Łódź University of Technology, Institute of Electronics, Łódź, Poland) [29–31]. Firstly, the
images were converted to the BMP (bitmap) file format, and the background of the images
was changed to black (intensity of 0). Then, the image conversion to individual color
channels R, G, B, L, a, b, X, Y, and Z; the image segmentation based on the pixel brightness
intensity; and image texture extraction were carried out using MaZda (Łódź University
of Technology, Institute of Electronics, Łódź, Poland). In the case of each fruit, 181 texture
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parameters based on the gradient map, histogram, autoregressive model, co-occurrence
matrix, and run-length matrix were computed for images from each color channel.

2.3. Classification of Black Currant Stored under Different Conditions

The dataset was divided into six classes: black currants at the beginning of storage
in the room (room 0), black currants stored at room temperature for 1 week (room 1) and
2 weeks (room 2), black currants before storage in the refrigerator (refrigerator 0), and
black currants after storage in the refrigerator for 1 week (refrigerator 1) and 2 weeks
(refrigerator 2). The classification was performed to compare the influence of prolonged
time of storage at room temperature and a lower temperature in the refrigerator on black
currant quality. Models for distinguishing black currants were built for classes of room 0 vs.
room 1 vs. room 2 and refrigerator 0 vs. refrigerator 1 vs. refrigerator 2. The models were
developed using WEKA machine learning software (Machine Learning Group, University
of Waikato, New Zealand) [32–34] based on selected textures for RGB, Lab, and XYZ color
spaces. The texture selection was carried out using the best-first search algorithm with
the correlation-based feature selection (CFS) subset evaluator. A test mode of 10-fold
cross-validation was used for the model development. The algorithms from groups of
Lazy, Functions, Meta, Rules, Trees, and Bayes were tested, and the results obtained using
one most effective algorithm from each group were chosen to be presented in this paper.
The results obtained for each model are shown as average accuracy; kappa statistic; and
weighted averages of precision, recall, Matthews correlation coefficient (MCC), receiver
operating characteristic (ROC) area, and precision–recall (PRC) area [35,36]. For selected
models, confusion matrices are also presented to better understand the impact of storage
on black currant samples.

3. Results and Discussion

The black currant samples were classified as unstored vs. stored in the room for one week
vs. stored in the room for two weeks and unstored vs. stored in the refrigerator for one week vs.
stored in the refrigerator for two weeks. The exemplary images of unstored black currants and
samples stored under different conditions for different times are presented in Figure 1.

Among the algorithms belonging to different groups, IBk from the group of Lazy,
multilayer perceptron from Functions, multiclass classifier from Meta, JRip from Rules,
random forest from Trees, and Bayes net from Bayes turned out to be the most effective.
In the first stage of the classification of black currant samples, models were developed
based on textures selected from sets of combined features from R, G, and B color channels
of images belonging to the color space RGB. In the case of storage at room temperature,
the unstored sample and black currants stored for one and two weeks were distinguished
with an average accuracy reaching 100% for models developed using the IBk, multilayer
perceptron, and multiclass classifier (Table 1). The kappa statistic and weighted averages
of precision, recall, MCC, ROC area, and PRC area were equal to 1.000. This meant that
all three classes were completely different in terms of selected image textures of the outer
surface of black currant and were distinguished with 100% correctness from other samples.
Thus, the strong influence of storage time on the fruit quality was revealed. The structure
of the black currant surface changed after one week of storage sufficiently to distinguish
the unstored sample from those stored for a week with 100% accuracy. Storage for another
week influenced further changes in the quality of black currants. Classes of samples stored
for two weeks and one week were correctly classified in 100% of cases and fruit samples
stored for two weeks were also distinguished from unstored ones with an accuracy of
100% (Figure 2a). Due to the differences in quality of all three samples (unstored, stored
in the room for one and two weeks) allowing for their completely correct differentiation,
the average accuracy was equal to 100%. Models developed using other machine learning
algorithms provided also satisfactory results including an average accuracy of up to 99.32%
for random forest and Bayes net and 98.67% for JRip (Table 1). For the JRip algorithm
providing the lowest average accuracy, samples stored in the room for one and two weeks
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were correctly distinguished from each other and unstored class in 100% of cases. Unstored
black currants were correctly classified in 96% of cases, and the remaining 2% were included
in the class of fruit stored for one week and 2% in the class of sample stored for two weeks
(Figure 2b).
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Table 1. The performance metrics of the classification of three classes of black currants (unstored,
stored in the room for one week, and stored in the room for two weeks) based on models including
selected image textures from color space RGB built using different algorithms.

Algorithm
Average
Accuracy

(%)

Kappa
Statistic

Precision
(Weighted
Average)

Recall
(Weighted
Average)

MCC
(Weighted
Average)

ROC Area
(Weighted
Average)

PRC Area
(Weighted
Average)

lazy.IBk 100 1.000 1.000 1.000 1.000 1.000 1.000
functions.MultilayerPerceptron 100 1.000 1.000 1.000 1.000 1.000 1.000
meta.MultiClassClassifier 100 1.000 1.000 1.000 1.000 1.000 1.000

rules.JRip 98.67 0.9796 0.987 0.987 0.980 0.989 0.976
trees.RandomForest 99.32 0.9898 0.993 0.993 0.990 1.000 1.000

bayes.BayesNet 99.32 0.9898 0.993 0.993 0.990 1.000 1.000

MCC—Matthews correlation coefficient; ROC Area—receiver operating characteristic area; PRC Area—precision–
recall area.

In the case of models built based on selected textures for RGB color space to classify
unstored black currants and samples stored in the refrigerator for one and two weeks, a
100% accuracy was not achieved (Table 2). This may indicate a reduced negative influence of
storage at lower temperature on the quality of black currants. All classes were distinguished
with an average accuracy of up to 96.67% for models built using IBk, multilayer perceptron,
and Bayes net. For these algorithms, the kappa statistic reached 0.950 and recall reached
0.967. The values (weighted averages) of precision equal to 0.968 and MCC equal to 0.951
were the highest for IBk and multilayer perceptron. The ROC area of 0.998 and PRC area
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of 0.996 were the highest for Bayes net (Table 2). Different values of other performance
metrics, despite the same average accuracy, resulted from different accuracies of classifying
individual samples as shown in Figure 3a,b. For example, in the case of the IBk algorithm,
black currants stored in the refrigerator for two weeks were completely correctly classified
(100%) as stored in the refrigerator for two weeks, and for Bayes net, the correctness was
equal to 96%. The sample stored in the refrigerator for one week was classified with
accuracies of 92% for IBk and 96% for Bayes net, whereas 98% of black currants belonging
to the actual class unstored were correctly classified as unstored for both IBk and Bayes net
algorithms. The JRip algorithm was characterized by the lowest average accuracy (89.33%)
in distinguishing unstored fruit and samples stored in the refrigerator for one and two
weeks. In addition, other metrics were the lowest and equal to 0.840 for kappa statistic,
0.896 for precision, 0.893 for recall, 0.841 for MCC, 0.932 for ROC area, and 0.857 for PRC
area (Table 2). Low values of classification performance metrics for the JRip algorithm were
related to the low correctness of distinguishing between individual classes. The accuracies
of classification of the unstored sample and black currants stored for one and two weeks
were equal to 92%, 86%, and 90%, respectively (Figure 3c).
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Figure 2. The confusion matrices of the classification of three classes of black currants, namely
unstored (room 0) and stored at room temperature for 1 week (room 1) and 2 weeks (room 2), based
on selected image textures from color space RGB using models developed using the IBk (a) and JRip
algorithms (b).

Table 2. The results of the classification of black currants (unstored, stored in the refrigerator for one
week and two weeks) using models developed based on selected image textures from color space
RGB using algorithms from different groups.

Algorithm
Average
Accuracy

(%)

Kappa
Statistic

Precision
(Weighted
Average)

Recall
(Weighted
Average)

MCC
(Weighted
Average)

ROC Area
(Weighted
Average)

PRC Area
(Weighted
Average)

lazy.IBk 96.67 0.950 0.968 0.967 0.951 0.975 0.947
functions.MultilayerPerceptron 96.67 0.950 0.968 0.967 0.951 0.993 0.989
meta.MultiClassClassifier 95.33 0.930 0.954 0.953 0.930 0.985 0.970

rules.JRip 89.33 0.840 0.893 0.893 0.841 0.932 0.857
trees.RandomForest 96.00 0.940 0.960 0.960 0.940 0.997 0.993

bayes.BayesNet 96.67 0.950 0.967 0.967 0.950 0.998 0.996

MCC—Matthews correlation coefficient; ROC Area—receiver operating characteristic area; PRC Area—precision–
recall area.
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Figure 3. The confusion matrices of the classification of black currant samples, namely unstored
(refrigerator 0) and stored in the refrigerator for 1 week (refrigerator 1) and 2 weeks (refrigerator 2),
using selected image textures from color space RGB for the models built using the IBk (a), Bayes net,
(b) and JRip algorithms (c).

For the Lab color space, the obtained results were also very high. However, an average
accuracy of 100% and the kappa statistic and weighted averages of precision, recall, MCC,
ROC area, and PRC area equal to 1.000 for distinguishing unstored black currants and samples
stored in the room for one and two weeks were found only for a model built using the IBk
algorithm (Table 3). In the case of results for storage at room temperature, other algorithms
allowed the classification of samples with an average accuracy of 96.67% for JRip to 99.33%
for multilayer perceptron. Confusion matrices shown in Figure 4 confirmed the completely
correct distinguishing of three samples for IBk (Figure 4a) and revealed the lowest accuracies
equal to 92% for the unstored sample, 98% for the sample stored in the room for one week,
and 100% for fruit stored in the room for two weeks in the case of JRip (Figure 4b).

Table 3. The average accuracies, kappa statistic values, and weighted averages of other classification
performance metrics for distinguishing unstored black currants and samples stored at room temperature
for one week and two weeks using models combining selected textures from color space Lab.

Algorithm
Average
Accuracy

(%)

Kappa
Statistic

Precision
(Weighted
Average)

Recall
(Weighted
Average)

MCC
(Weighted
Average)

ROC Area
(Weighted
Average)

PRC Area
(Weighted
Average)

lazy.IBk 100 1.000 1.000 1.000 1.000 1.000 1.000
functions.MultilayerPerceptron 99.33 0.990 0.993 0.993 0.990 0.998 0.997
meta.MultiClassClassifier 98.67 0.980 0.987 0.987 0.980 0.998 0.998

rules.JRip 96.67 0.950 0.967 0.967 0.950 0.977 0.955
trees.RandomForest 97.33 0.960 0.973 0.973 0.960 0.999 0.998

bayes.BayesNet 97.33 0.960 0.974 0.973 0.960 0.998 0.997

MCC—Matthews correlation coefficient; ROC Area—receiver operating characteristic area; PRC Area—precision–
recall area.
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The completely correct classification of three samples, namely unstored and stored
in the refrigerator for one and two weeks, was not observed for any model built based on
selected textures from the Lab color space (Table 4). The average accuracies were lower,
from 91.39% for JRip to 98.67% for multilayer perceptron. The model developed using
multilayer perceptron provided the highest values of kappa statistic (0.9801), precision
(0.987), recall (0.987), MCC (0.980), ROC area (1.000), and PRC area (0.999). The accuracies
for individual classes were the highest for multilayer perceptron (100% for the unstored
sample and 98% for both samples stored for one and two weeks) (Figure 5a) and the lowest
for JRip (96% for the unstored sample, 86% for the sample stored for one week, and 93%
for the sample stored for weeks) (Figure 5b).

Table 4. The performance metrics of distinguishing unstored black currants and black currants stored
in the refrigerator (for one week and two weeks) based on models including selected textures from
color space Lab developed using different algorithms.

Algorithm Average
Accuracy (%)

Kappa
Statistic

Precision
(Weighted
Average)

Recall
(Weighted
Average)

MCC
(Weighted
Average)

ROC Area
(Weighted
Average)

PRC Area
(Weighted
Average)

lazy.IBk 96.69 0.9503 0.968 0.967 0.951 0.973 0.944
functions.MultilayerPerceptron 98.67 0.9801 0.987 0.987 0.980 1.000 0.999

meta.MultiClassClassifier 98.01 0.9702 0.981 0.980 0.971 0.999 0.997
rules.JRip 91.39 0.8708 0.914 0.914 0.871 0.940 0.883

trees.RandomForest 96.69 0.9503 0.968 0.967 0.951 0.997 0.994
bayes.BayesNet 95.36 0.9305 0.954 0.954 0.933 0.996 0.993

MCC—Matthews correlation coefficient; ROC Area—receiver operating characteristic area; PRC Area—precision–
recall area.
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Models built based on selected textures from XYZ color space for the classification
of stored in the room and unstored samples were characterized by the correctness from
93.33% for multiclass classifier to 98.67% for random forest (Table 5). The kappa statistic
reached 0.980 for random forest. The weighted averages of precision (0.987), recall (0.987),
and MCC (0.980) were also the highest for the model developed using random forest.
The weighted averages of ROC area (0.999) and PRC area (0.998) were the highest for the
model built using Bayes net classifying samples with an average accuracy of 97.33%. The
confusion matrix obtained for the classification performed using random forest revealed
an accuracy of 100% for black currants stored at room temperature for one week and 95%
for the unstored sample and fruit stored in the room for two weeks (Figure 6a). Multiclass
classifier, distinguishing classes with the lowest average accuracy, was characterized by
90% correctness for the unstored sample, 94% for fruit stored for one week, and 96% for
black currants stored for two weeks in the room (Figure 6b).

Table 5. The results of distinguishing unstored black currants and samples stored in the room for one
week and two weeks using models built based on selected textures from color space XYZ.

Algorithm Average
Accuracy (%)

Kappa
Statistic

Precision
(Weighted
Average)

Recall
(Weighted
Average)

MCC
(Weighted
Average)

ROC Area
(Weighted
Average)

PRC Area
(Weighted
Average)

lazy.IBk 98 0.970 0.980 0.980 0.970 0.985 0.967
functions.MultilayerPerceptron 98 0.970 0.980 0.980 0.970 0.995 0.995

meta.MultiClassClassifier 93.33 0.900 0.933 0.933 0.900 0.969 0.954
rules.JRip 98 0.970 0.980 0.980 0.970 0.988 0.973

trees.RandomForest 98.67 0.980 0.987 0.987 0.980 0.997 0.996
bayes.BayesNet 97.33 0.960 0.973 0.973 0.960 0.999 0.998

MCC—Matthews correlation coefficient; ROC Area—receiver operating characteristic area; PRC Area—precision–
recall area.
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The average accuracy of classification of unstored black currants and fruit stored in
the refrigerator for one and two weeks reached 97.33% for models developed using random
forest based on textures selected from XYZ color space (Table 6). For this model, other
classification performance metrics were also the highest. The kappa statistic was equal to
0.9603. Additionally, the highest weighted averages of precision (0.974), recall (0.973), MCC
(0.960), ROC area (0.998), and PRC area (0.996) were determined. The obtained confusion
matrix showed that unstored fruit and sample stored in the refrigerator for two weeks
were classified with an accuracy of 98%, and the sample stored in the refrigerator for one
week were distinguished from others at an accuracy of 96% (Figure 7a). The lowest average
accuracy was equal to 89.33% in the case of the multiclass classifier (Table 6). The multiclass
classifier produced accuracies for individual classes equal to 98% for unstored fruit, 82%
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for fruit stored in the refrigerator for one week, and 88% for black currants stored in the
refrigerator for two weeks (Figure 7b).

Table 6. The performance metrics of the classification of unstored black currants and black currants
stored in the refrigerator (one and two weeks) based on models developed based on selected textures
from color space XYZ using different algorithms.

Algorithm Average
Accuracy (%)

Kappa
Statistic

Precision
(Weighted
Average)

Recall
(Weighted
Average)

MCC
(Weighted
Average)

ROC Area
(Weighted
Average)

PRC Area
(Weighted
Average)

lazy.IBk 96.03 0.9404 0.961 0.960 0.941 0.967 0.933
functions.MultilayerPerceptron 94.70 0.9205 0.947 0.947 0.921 0.996 0.993

meta.MultiClassClassifier 89.33 0.841 0.893 0.893 0.841 0.983 0.964
rules.JRip 93.38 0.9006 0.935 0.934 0.901 0.961 0.930

trees.RandomForest 97.33 0.9603 0.974 0.973 0.960 0.998 0.996
bayes.BayesNet 95.33 0.930 0.954 0.953 0.930 0.991 0.984

MCC—Matthews correlation coefficient; ROC Area—receiver operating characteristic area; PRC Area—precision–
recall area.
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The combination of image analysis and artificial intelligence proved to be effective
for monitoring the changes in black currants during storage. The experiments carried
out included different storage conditions (at room temperature and in the refrigerator at
4 ◦C) and lengths of time (one week and two weeks). However, in view of the usefulness
of the procedure used, there are many different possibilities to extend the scope of the
experiments to other storage technologies that may also result in an extension of the storage
time. Among others, it was reported that lowering the temperature to 0–1 ◦C combined
with a relative humidity of 95% can be optimal conditions in a normal atmosphere (NA)
for storing berries for up to 3 weeks. Furthermore, currants do not produce ethylene and
are not susceptible to ethylene, but sulfur dioxide can be positively related to a modified
atmosphere strategy [37]. In the case of the treatment of berries with sulfur dioxide during
storage, abscission can be inhibited by the use of edible coatings [38]. Besides modified
atmosphere packaging (MAP) and controlled atmosphere (CA), a successful solution for
the storage of perishable fruit such as berries is the use of gaseous ozone (O3), which can
be safer than other gases such as CO2, O2, and N2 [39]. Gaseous ozone can also be effective
in the reduction of pesticide residue levels in currants and improvement of microbiological
purity and can lead to berry fruit preservation and long-term storage [40,41]. Gaseous
ozone can be applied as a pretreatment before the use of other storage techniques for
berries, e.g., modified atmosphere packaging [42]. The application of ozone may result in
improving the health-promoting properties of the fruit. However, the effect depends on the
type and variety of fruit, the form and method of treatment, and the dosage of ozone [43].
The influence of the above-mentioned and other technologies on the external structure of
black currants could also be assessed using image analysis and machine learning. This
could allow the development of models to predict the maintenance of optimal fruit structure
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during storage under various conditions. Furthermore, different storage technologies can
affect changes in biochemical and other quality indicators, e.g., total soluble solids, citric
acid, vitamin C, the total content of phenolic compounds, color, firmness, and taste [22]. In
further studies, models to predict the chemical properties of stored black currants can be
developed. The available literature data indicate the possibility of using image processing
and machine learning to estimate the chemical properties of plant materials [44,45].

4. Conclusions

Procedures for the classification of unstored black currants and fruit stored in the room
for one and two weeks and in the refrigerator for one and two weeks were developed. The
innovative models including textures selected separately for images from color space RGB,
color space Lab, and color space XYZ were built using machine learning algorithms belonging
to groups of Lazy, Functions, Meta, Rules, Trees, and Bayes. Combining image processing and
artificial intelligence was a non-destructive and objective approach to quality monitoring of
stored black currant. Due to the use of a digital camera to obtain the color images of unstored
and stored black currant samples, image acquisition was performed quickly and inexpensively.
The models developed proved to be very effective. The greater effect of storage in the room
on the black currant quality was determined. The average accuracy of the classification of
unstored samples and fruit stored at room temperature for one and two weeks reached 100%,
whereas unstored black currants and samples stored in a refrigerator were distinguished
with an average accuracy of up to 98.67%. This confirmed the possibility of determining the
changes in black currant quality during storage using image features. Due to the promising
results, further research to investigate the influence of other storage technologies on the
structure of black currants and predict the chemical properties of stored fruit using image
processing and machine learning may be undertaken.
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Abbreviations

a Color component—green for negative and red for positive values
b Color component—blue for negative and yellow for positive values
B Blue
BMP Bitmap
CA Controlled atmosphere
CFS Correlation-based feature selection
G Green
L Lightness component from black to white
Lab Color space composed of color channels L, a, and b
LED Light-emitting diode
MAP Modified atmosphere packaging
MCC Matthews correlation coefficient
NA Normal atmosphere
O3 Gaseous ozone
PRC Area Precision–recall area
R Red
RGB Color space composed of color channels R, G, and B
ROC Area Receiver operating characteristic area
X Component with color information
XYZ Color space composed of color channels X, Y, and Z
Y Lightness
Z Component with color information
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