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Abstract: Manual harvesting of coconuts is a highly risky and skill-demanding operation, and the
population of people involved in coconut tree climbing has been steadily decreasing. Hence, with the
evolution of tree-climbing robots and robotic end-effectors, the development of autonomous coconut
harvesters with the help of machine vision technologies is of great interest to farmers. However,
coconuts are very hard and experience high occlusions on the tree. Hence, accurate detection of
coconut clusters based on their occlusion condition is necessary to plan the motion of the robotic end-
effector. This study proposes a deep learning-based object detection Faster Regional-Convolutional
Neural Network (Faster R-CNN) model to detect coconut clusters as non-occluded and leaf-occluded
bunches. To improve identification accuracy, an attention mechanism was introduced into the Faster
R-CNN model. The image dataset was acquired from a commercial coconut plantation during
daylight under natural lighting conditions using a handheld digital single-lens reflex camera. The
proposed model was trained, validated, and tested on 900 manually acquired and augmented images
of tree crowns under different illumination conditions, backgrounds, and coconut varieties. On
the test dataset, the overall mean average precision (mAP) and weighted mean intersection over
union (wmIoU) attained by the model were 0.886 and 0.827, respectively, with average precision
for detecting non-occluded and leaf-occluded coconut clusters as 0.912 and 0.883, respectively. The
encouraging results provide the base to develop a complete vision system to determine the harvesting
strategy and locate the cutting position on the coconut cluster.

Keywords: machine vision; deep learning; object detection; coconut harvesting; occlusions; atten-
tion mechanism

1. Introduction

Coconut (Cocos nucifera) is one of the main cash crops grown throughout the year,
predominantly along the coastal regions of Asia, South America, and the Pacific Islands.
Coconut cultivation globally accounts for about 11.8 million hectares of agricultural land
across 93 countries and nearly 63 million tonnes per year [1]. Among the Asian countries
that contribute to almost 75% of the global production (52 million tonnes), Indonesia
(17.1 million tonnes), Philippines (14.8 million tonnes), and India (14.7 million tonnes)
account for more than 90% of the coconut production [2].

Coconut products have become an indispensable part of our day-to-day lives and
for numerous industries in many parts of the world due to their high nutritional value
and wide range of food and industrial products [1]. However, farmers are often trapped
in financial losses despite increased demand for coconut products due to costly human
labour and arduous work in many stages of its production. Manual harvesting of coconuts
is one such operation that involves many operational risks and safety issues because of the
tree’s height and hard trunk. Conventionally, coconuts are harvested by specially trained
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and experienced climbers who climb to the tree top and then cut the coconut bunches.
This operation is hazardous, as falling from a tree due to slippage can result in severe
irrecoverable physical damage and sometimes death [3]. Because of this high-risk manual
harvesting operation, most young people are not interested in adopting it as an occupation
despite decent wages. This scenario has led to an acute shortage of trained and skilled
labour for this high-skill-demanding operation, especially during peak harvesting season.

In order to mechanize this operation, various tree climbing devices have been pro-
posed [4–7]. Abraham et al. [8] developed a remote-controlled coconut tree climbing robot
in which the ground operator can regulate the locomotion and harvesting operations with
the help of a camera mounted on a robot. As an improvement, Dubey et al. [9] proposed an
autonomous climbing robot; however, its harvesting and spraying mechanisms needed to
be manually controlled.

With the rapid advances in artificial intelligence and robotics technologies over the
past decade, autonomous vision-based robotic harvesting has emerged as a preferred
approach for the selective harvesting of various fruits and vegetables [10,11]. In general, a
typical vision-based fruit-harvesting robot includes two main subsystems: a machine-vision
system and an end-effector system. The vision system detects and localizes the harvesting
targets, and then the end-effector approaches these targets. The successful execution of the
harvesting task requires accurate detection and localization of the harvesting targets [10,12].
Moreover, information about the robotic arm’s working environment is crucial for obstacle-
free access to these targets.

Thus, the effectiveness of robot end-effector manipulation depends greatly on the
performance of the fruit detection algorithm. With the recent advancements in computa-
tional resources and the evolution of deep learning as a promising tool, researchers are
increasingly relying on deep learning algorithms for developing vision-based harvesting
systems [13–15]. Unlike traditional computer vision solutions that relied on identifying
important features and tedious feature-engineering tasks [16–18], deep learning uses convo-
lutional neural networks (CNNs) to automatically learn important features within training
data, resulting in a less biased model. Deep learning algorithms have shown potential in
many machine-vision operations applied to agriculture [19–22]. Numerous studies have
employed CNN-based fruit detection models to support robotic harvesting, such as in the
case of apples [23,24], tomatoes [25], strawberries [26], mangoes [27], kiwifruit [28], and
blueberries [29].

In the case of the robotic harvesting of coconuts, the robotic end-effector could be
damaged if the robot attempts to harvest occluded coconut clusters, which results in poor
efficiency and economic loss. In recently developed coconut harvesting machines, the
end-effector consists of a sharp circular high-speed rotating blade intended to cut the
stalk of coconut bunches. For instance, Megalingam et al. [7] proposed a robotic arm
with four degrees of freedom and a rotatory cutter end-effector. However, such an end-
effector is very likely to damage the tree crown. Therefore, a crucial step for an automated
harvesting system is to approach the coconut bunches via a path that avoids collision with
the occlusions. For that purpose, the coconut bunches should be detected according to the
occlusion condition. Thus, the objective of this study was to develop a deep learning object-
detection model based on an improved Faster R-CNN algorithm to detect the coconut
clusters as two classes: non-occluded coconuts and leaf-occluded coconuts.

2. Related Work

The performance of the fruit detection algorithm greatly determines the efficiency of
autonomous harvesting. Over the past few years, there has been remarkable progress in
developing smart fruit detection systems [13]. The conventional methods of fruit detection
involve deriving the colour, texture, and morphology-based features present in the im-
ages [30,31]. However, they suffer from poor detection performance and robustness and fall
short of the working needs of robotic harvesters. These image-processing-based algorithms
are also prone to errors in unstructured backgrounds, occlusions, and different varieties of
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fruit (such as in the case of coconuts). In recent years, CNN-based algorithms have shown
great advantages in fruit detection [32,33]. Many researchers have studied multi-class
fruit identification in a variety of orchards for robotic harvesting [32]. Among various
deep learning models, the Faster R-CNN family of networks has shown great potential for
detecting objects of different sizes and aspect ratios, which makes them extensively useful
for fruit detection [23,24,28,34–36].

In this regard, Fu et al. [23] used Faster R-CNN for detecting apples from RGB-D
images of dense foliage orchards. They compared the performances of ZFNet and VGG16
networks for feature extraction, and the highest mean precision value of 0.89 was achieved
by VGG16. The same networks as the feature extraction component of Faster R-CNN
were compared for their result of multi-class apple fruit detection based on the occlusion
condition [24]. Again, the VGG16 achieved the highest mean precision of 0.88 for the four-
class detection at an average speed of 0.24 s per image. In another study, the Faster R-CNN
model achieved the highest F1-score of 0.84 for sweet pepper detection [34]. Wan et al.
proposed an improved Faster R-CNN network for the detection of apples, mangoes, and
oranges [36]. Their model showcased a mean precision value of 0.86, which was higher
than that of YOLOv3. Parvathi and Selvi [37] proposed a Faster R-CNN-based model to
detect two main coconut maturity stages of consumer interest, namely, ripened and tender
coconuts, under complex field conditions. The authors reported that the performance
was better than other object-detection models, such as YOLOv3, R-FCN, and Single Shot
Detector (SSD). Henceforth, motivated by results from these studies, we adopt the Faster
R-CNN network for developing the machine-vision system for detecting coconuts based
on their occlusion conditions.

Moreover, some previous studies have implemented an attention module to further
optimize the deep learning model. The attention mechanism focuses more on the important
features and reduces the huge number of intermediate features. For instance, a small CNN
model (with 2.13 million parameters) with an attention mechanism and feature fusion
module was designed to identify wheat ear diseases in field conditions [38]. The mentioned
study achieved an accuracy of 94.1% and reduced the impact of complex backgrounds. The
mechanism has also shown potential for the segmentation [39] and detection tasks [40].
The recent YOLOv4-tiny model was enhanced with adaptive feature fusion and attention
modules to detect green peppers for developing a robotic picking system [41]. Notably, this
model improved occluded and overlapped green pepper detection with an average preci-
sion of 95.1%, which was better than the performance of the algorithm tested without the
attention mechanism. Hence, an attention module was additionally attached to the Faster
R-CNN model to highlight and captivate the necessary features for coconuts detection.

3. Materials and Methods
3.1. Dataset and Software
3.1.1. Image Acquisition

The image data for this study were collected during a harvest season (July 2021) on
a commercial coconut plantation in Western Tamil Nadu, India (Figure 1). The height of
the coconut trees on the farm ranged from around 8 m to 20 m. The temperature and
humidity ranged between 25–35 ◦C and 78–83%, respectively, with occasional clouds
during the daytime. A total of 900 Red-Green-Blue (RGB) images of coconut tree crowns
were acquired during daylight between 08:00 to 17:00 (morning to evening) under natural
lighting conditions using a handheld digital single-lens reflex (DSLR) camera (Nikon-
D3200, 40–60 mm lens, with a resolution of 300 × 300 dpi and 6016 × 4000 pixels). The
experimenter stood on the ground near the tree trunk and used the camera to photograph
the tree crown. Since the camera of the vision system in a coconut tree climbing robot
would be facing towards the crown, the images collected in this study (the experimenter
also points the camera upwards towards the tree crown) were analogous to the ones that
would be captured by the system. Images were acquired standing at multiple locations
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around the tree so that different sections of the tree crown were covered. The path aside
from every plantation row was used by the experimenter to move to subsequent trees.
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Figure 1. Commercial coconut plantation from where the dataset was collected.

The dataset experienced variation in the illumination conditions when the sun angle
changed, which could aid in the development of a more robust detection model. Because
the ultimate motive of this study was to develop a machine vision platform for an auto-
mated coconut harvester (real-time application), the images were collected at different
positions (elevation), angles, and lighting conditions (frontal, back, and scattered lighting)
to ensure effective generalization of the model. The images also featured diverse conditions
associated with the background, shadows, and tree crown orientation. The images were
resized to 512 × 512 pixels since the original size was too large and demanded high compu-
tational resources and time for detection. A few images from the dataset are presented in
Figure 2. The dataset can be accessed at https://data.mendeley.com/datasets/w4t73tvrf8.
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Machine Learning Toolbox, and Deep Learning Toolbox were additionally installed into
the MATLAB® software.

3.1.2. Coconut Classes and Ground Truth Preparation

Unlike apples and berries, coconuts cannot be harvested through common robotic
approaches like picking or shaking mechanisms due to their hard nature. The region
of impact on the coconut cluster for robotic harvesting is often occluded by the petiole,
cushion, leaflets, or other parts of the tree crown (Figure 3). Hence, the coconut clusters
were categorized into two classes based on occlusion (Figure 4). The first ‘non-occluded
coconuts’ class represents the independent coconut clusters that can be harvested directly
with priority. The second ‘leaf-occluded coconuts’ class refers to the coconut clusters
occluded by the various portions of the coconut leaf.

Foods 2022, 11, x FOR PEER REVIEW 5 of 18 
 

 

Figure 2. Sample images in the coconut dataset. 

A Windows 10-based system with MATLAB® R2021b (Mathworks Inc., Natick, MA, 
USA) software was used for the analysis. The Image Processing Toolbox, Statistics and 
Machine Learning Toolbox, and Deep Learning Toolbox were additionally installed into 
the MATLAB® software. 

3.1.2. Coconut Classes and Ground Truth Preparation 
Unlike apples and berries, coconuts cannot be harvested through common robotic 

approaches like picking or shaking mechanisms due to their hard nature. The region of 
impact on the coconut cluster for robotic harvesting is often occluded by the petiole, cush-
ion, leaflets, or other parts of the tree crown (Figure 3). Hence, the coconut clusters were 
categorized into two classes based on occlusion (Figure 4). The first ‘non-occluded coco-
nuts’ class represents the independent coconut clusters that can be harvested directly with 
priority. The second ‘leaf-occluded coconuts’ class refers to the coconut clusters occluded 
by the various portions of the coconut leaf.  

 
Figure 3. Occluded coconuts and structure of coconut leaf. 

 
Figure 4. Coconuts categorized into two classes based on the condition of occlusion: (a) non-oc-
cluded coconuts and (b) leaf-occluded coconuts. 

Figure 3. Occluded coconuts and structure of coconut leaf.

Foods 2022, 11, x FOR PEER REVIEW 5 of 18 
 

 

Figure 2. Sample images in the coconut dataset. 

A Windows 10-based system with MATLAB® R2021b (Mathworks Inc., Natick, MA, 
USA) software was used for the analysis. The Image Processing Toolbox, Statistics and 
Machine Learning Toolbox, and Deep Learning Toolbox were additionally installed into 
the MATLAB® software. 

3.1.2. Coconut Classes and Ground Truth Preparation 
Unlike apples and berries, coconuts cannot be harvested through common robotic 

approaches like picking or shaking mechanisms due to their hard nature. The region of 
impact on the coconut cluster for robotic harvesting is often occluded by the petiole, cush-
ion, leaflets, or other parts of the tree crown (Figure 3). Hence, the coconut clusters were 
categorized into two classes based on occlusion (Figure 4). The first ‘non-occluded coco-
nuts’ class represents the independent coconut clusters that can be harvested directly with 
priority. The second ‘leaf-occluded coconuts’ class refers to the coconut clusters occluded 
by the various portions of the coconut leaf.  

 
Figure 3. Occluded coconuts and structure of coconut leaf. 

 
Figure 4. Coconuts categorized into two classes based on the condition of occlusion: (a) non-oc-
cluded coconuts and (b) leaf-occluded coconuts. 
Figure 4. Coconuts categorized into two classes based on the condition of occlusion: (a) non-occluded
coconuts and (b) leaf-occluded coconuts.

The coconut clusters were annotated into two classes with rectangular bounding boxes
(Figure 5). All images were manually annotated using the interactive MATLAB® Image
Labeler app. The following abbreviations/class names were used to indicate the classes
(which will be followed in the rest of the article): ‘NOC’ for non-occluded coconuts, and
‘LOC’ for leaf-occluded coconuts.
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3.1.3. Image Augmentation

To increase the size of the dataset and prevent the model from overfitting, geometry-
and intensity-based image augmentations were additionally performed. Image geometry-
based augmentation techniques that were adopted include random rotations at 90◦, 180◦,
and 270◦ as well as horizontal and vertical flipping. While performing the above geometry
transformations, a small code strip was written in the MATLAB® environment to automati-
cally calibrate the bounding box coordinates of the transformed images from the original
image’s bounding box annotations. Furthermore, image intensity transformations included
brightness variation with propositional coefficients of 0.8, 0.9, 1.1, and 1.2 as well as his-
togram equalization after converting the RGB images to their HSV (Hue-Saturation-Value)
equivalents. The blurring of images is a potential problem in vision-based harvesting
systems due to the camera’s movement. To make the detection network more adaptable to
such real conditions, a Gaussian filter with a standard deviation value of two was applied
to the images as another augmentation strategy for artificial blurring.

Thus, the size of the dataset was increased by 12 times (from 900 to 10,800 sample im-
ages) through data augmentation, which was randomly separated as follows: 6800 images
for training the model; 2000 images for validation; and 2000 images for testing purposes.
The class-wise distribution of coconut clusters in the dataset is presented in Table 1.

Table 1. Class-wise distribution of coconut clusters in the training, validation, and test datasets after
performing image augmentation.

Class
Number of Coconut Clusters Total Number of Coconut Clusters

in the Class (in Complete Dataset)Training Validation Test

Non-occluded coconut clusters 7674 2220 2310 12,204
Leaf-occluded coconut clusters 11,250 2856 2814 16,920

Total 18,924 5076 5124 29,124

3.2. Deep Learning Network Architecture

The architecture of the proposed coconut detection model is detailed in this section.
The structure of the improved Faster R-CNN model is illustrated in Figure 6, which consists
of a features extraction network, a Region Proposal Network (RPN), and a final classification
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network. To improve the quality of features derived from the feature extraction network,
an attention mechanism was affixed to this feature extraction network to concentrate on
the informational channels more than the less important channels.
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3.2.1. Feature Extraction Network and Attention Module

In the proposed model, the VGG16 network was incorporated as the backbone feature
extraction network. The network comprises four maximum-pooling layers that divide
the thirteen convolutional layers into five groups. These pooling layers help extract a
broad range of feature maps from different levels of the network. To enhance the feature
representation, this was followed by an attention module (before feeding the feature maps
into the RPN) that amended and improved the feature maps and provoked a better quality
of region proposals by emphasizing the descriptive feature channels.

In the attention module, a global average pooling operation is initially performed on
the input feature map to convert them into a channel descriptor. The descriptor is then
passed into two successive fully connected layers, which were respectively modulated
by the ReLU and sigmoid function. This arrangement aids in gaining the properties of
a channel from a global perspective and handling channel-wise interdependencies. The
output from the second fully connected layer (modulated by sigmoid function) accords an
attention descriptor β, whose values emulate the importance of the respective channels. If
X ∈ RH×W×C denotes the input features to the attention module, the H ×W dimensional
feature maps were compressed to a channel descriptor z ∈ R1×C by the dense layer as in
Equation (1).

zc =
1

H ×W ∑H
i=1 ∑W

j=1 Xc(i, j) (1)

The descriptor z is converted into the probabilistic attention descriptor
(

β ∈ R1×1×C)
by the sigmoid operation. Thus, the input feature channel maps are recalibrated in accor-
dance with the attention descriptor by multiplying this channel-by-channel (Equation (2))
to generate informative feature maps with more emphasis.

YCn = Fhadamard(X, β) = β� X (2)

where Fhadamard denotes the Hadamard product (channel-wise element-wise multiplication).
The attention module used in the coconut detector is presented in Figure 7. The final feature
maps are fed into the RPN for region proposal.

3.2.2. Region Proposal Network and Classification Network

A typical region-based object detection CNN is based on the following steps: (i) iden-
tify the region that might contain the object (called the region proposals), (ii) extract the
features from the proposed regions, and (iii) classify the objects and adjust the bounding
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box. The RPN, which is also a fully convolutional network, is used to create the region pro-
posals using the features from the VGG16 feature extractor. The region of interest pooling
operation (ROI-pooling) is carried out to transform these region proposals (which do not
have a uniform size) into the same size. In the ROI-pooling layer, the non-uniform region
proposals are divided into a fixed dimension, say Nw × Nh sub-blocks, and a max-pooling
operation is carried out in each sub-block. This constructs a feature map of fixed sizes with
the most salient features. These fixed-size bounding box guesses are called anchors, which
are uniformly placed throughout the image to capture the aspect ratio of target objects. The
typical dimensions (height and width) of anchor boxes (Nw × Nh) were chosen based on
the size of the coconut clusters in the images.
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The classification network leverages the RPN’s proposals and the feature maps from
the attention module as the inputs. This network consisted of two convolution layers and
two fully connected layers followed by two branches (a region classification branch and
a regression branch) for fine-tuning the anchor box coordinates. Based on the scores and
predictions of the classification layer, the positions of the plausible anchor boxes can be
traced back from the output of the CNN back to the input image. Once the position of an
anchor box is mapped, the localization errors (between the ground truth bounding box
and the predicted tiled anchor box) are fixed. Through the regression branch, the detector
learns the offsets to be applied to the anchor box to adjust its position and size.

3.3. Network Training

The attention-guided Faster R-CNN network with VGG16 as the feature extraction
network was trained for the task of coconut cluster detection. The fully convolutional RPN
was optimized using the back-propagation algorithm and mini-batch gradient descent,
with a loss function comprising the sum of the classification and bounding box regression
losses. The hyperparameters set during the training process are provided in Table 2.
The MATLAB® application was run on Acer Nitro 5 Intel Core i5 9th Generation Laptop
(32 GB/1 TB HDD/Windows 10 Home/GTX 1650 Graphics).

Table 2. Some hyperparameters set during training of the model.

Hyperparameter Value

Optimizer Stochastic gradient descent with momentum (sgdm)
Initial learn rate 0.001
Maximum epochs 1000
Mini batch size 32
Learn rate drop factor 0.0005
Learn rate drop period 10
Momentum 0.9

3.4. Performance Evaluation Metrics

The performance of the detection model was evaluated using the weighted mean
Intersection-over-Union (wmIoU) and mean Average Precision (mAP) metrics.

3.4.1. Weighted Mean Intersection-over-Union

Intersection-over-Union (IoU), or the Jaccard similarity coefficient or Jaccard index, is
a measure of the overlap between the ground truth and predicted bounding boxes. The
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IoU can be determined via the ratio of the area of overlap to the area of the union of
two bounding boxes (Figure 8). Predicted bounding boxes that have heavily overlapped
with the ground truth have a higher IoU value compared to ones with less overlap. If
Apredicted denotes the predicted bounding box and Agroundtruth is the ground truth, then IoU
is mathematically expressed as Equation (3).

IoU =
Apredicted ∩ Agroundtruth

Apredicted ∪ Agroundtruth
(3)
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Intuitively, the mean IoU (mIoU) for an image is the average of IoU values of the
predicted bounding box with the ground truth for each class in the image. In this work, to
reduce the biasing effect of IoU for dominating classes, the mIoU was weighted with the
number of objects in each class (Xc) for all images in the dataset, called the weighted mean
IoU (wmIoU). The wmIoU can be expressed in terms of mIoU for N images and C classes
as in Equation (4).

wmIoU =
1

N × C
×∑C

c=1 X−1
c ∑N

n=1 mIoU (4)

3.4.2. Mean Average Precision

In this study, a detection was considered a positive prediction if the IoU was greater
than 0.5. With that, all detections were classified as true positive (TP), false positive (FP),
true negative (TN), or false negative (FN). Thus, precision (P) and recall (R) were defined as:

Precision (P) =
TP

TP + FP
(5)

Recall (R) =
TP

TP + FN
(6)

The global performance of a network to detect the target object is determined by its
Average Precision (AP), defined as the area under the precision–recall curve (Equation (7)),
which is obtained by plotting P and R in the vertical and horizontal axes, respectively.
If APc represents the AP of a particular class c, then the mean AP (mAP) is given as the
average precision of all classes (Equation (8)). Hence, the greater the value of APc, the better
the results of the coconut detection system. The value of c represents the classes considered
in the experiment: NOC (c = 1) and LOC (c = 2).

APc =
∫ 1

0
P(Rc) dRc (7)

mAP =
1
C ∑C

c=1 APc (8)
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4. Results and Discussion

In order to verify the performance of the attention-guided Faster R-CNN model for
the detection of coconut clusters, 2000 images were used to test the model. The mAP
and wmIoU values for the test data were 0.88 and 0.83, respectively. The class-wise
detection results on test and validation sets are presented in Table 3, and example images
are illustrated in Figure 9. Since NOCs are completely visible, they were easier to be
detected with a higher mIoU (0.90) and AP rate (0.91). The LOCs were also identified with
better precision, but the mIoU value (0.80) was relatively low. This shows that although
the LOC clusters were detected with high precision, the regression loss due to localization
of the bounding boxes was high, thus resulting in reduced IoU measure (which indicates
the proximity of predicted and ground truth bounding boxes). The model was also able to
effectively detect coconut clusters occluded by many leaves (Figure 9).

Table 3. Class-wise results for coconut cluster detection using attention-guided Faster R-CNN.

mIoU Average Precision (AP)

Validation Test Validation Test

Non-occluded coconuts 0.906 0.895 0.924 0.912
Leaf-occluded coconuts 0.812 0.807 0.899 0.883
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Figure 9. Detection of coconut clusters using the proposed model. The labels show the detected class
(NOC: Non-Occluded Coconuts; LOC: Leaf-Occluded Coconuts) and confidence score.

The model took 0.774 s on average to detect coconut clusters in images of size
512 × 512 pixels, which was deemed adequate for developing a real-time vision-based
harvester. The size of the model’s trained weights was 548 MB, comparable to other
Faster R-CNN-based models in the literature designed for real-time fruit detection [13,24].
Because the coconut detection system would potentially be deployed in a tree climbing
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robot, the size and number of clusters in the field of view will differ with its movement
on the tree trunk. The size would be larger, and fewer coconuts would be visible when
the vision system is near the tree crown, hence making it easier to detect. However, more
clusters will be present in the field of view when the robot is farther. Therefore, the model’s
performance was analyzed for test images that were acquired closer to the tree crown and
farther away from it (Figure 10). The images were considered to be taken farther from the
crown when more than approximately 20% of the length of the tree was captured in the
image. Inspection of the images showed that bounding boxes detected for close images had
a better prediction of the ground truth than the farther images that had intensive coconut
clusters. Nevertheless, the result for closer images is more significant since harvesting is
performed at the time when the robot is near the tree crown. Moreover, it is to be noted
that the anchor box size used by the model can have a deliberate impact on the recognition
of coconuts of different sizes and the box’s aspect ratio.
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Figure 10. Coconut detection result concerning tree crown proximity: (a) near to the tree crown and
(b) farther from the tree crown.

The results imply that the model can facilitate the detection of different numbers of
coconut clusters from the image captured from any position on the tree trunk. Including an
attention mechanism provided higher weight to the features of coconuts, thus improving
the ability to recognize coconuts with a range of occlusions. As shown in Figure 11,
the proposed method was suitable for images with different illumination conditions. In
addition, the detection results were impressive for images collected under direct sunlight
(Figure 11a,b) and backlight (Figure 11c) conditions. The method was also applicable for
the detection of poorly illuminated coconut clusters under strongly backlit conditions
(Figure 11d). However, the manual analysis showed that the IoU value was lower for
detection in images with intensive coconut clusters under backlighting. Unlike the detection
of small fruit such as apples and strawberries, which experienced poor performance
due to shadows and similarities with backgrounds [26,42], coconut detection under such
conditions appears relatively easier due to its large size and unique shape among the objects
in the image’s field of view.
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Figure 11. Detection of coconut clusters under different illumination: (a,b) direct sunlight, and
(c,d) backlight conditions.

Practically, the colour of coconuts differs greatly in a plantation due to the accommo-
dation of many varieties, which comprise shades of green, yellow, orange, and brown. It
was observed through the experiment that this did not have any impact on the prediction
performance, meaning that the principal features utilized for coconut detection were shape-
and texture-based. Additionally, very accurate detection of the coconut clusters when their
edges are occluded is problematic since their sizes and shape vary greatly (unlike fruit
such as apples, whose shape can be very closely determined even when partially occluded).
In real-time, the vision system may also capture images without any coconuts during the
robot’s operation. To test the validity of the model in this case, ten tree crown images
that did not contain any coconut were derived from internet sources. As expected, no
predictions were reported by the model in these images.

Since the features of coconuts belonging to different clusters in the same tree are very
similar, identifying and differentiating the coconuts of two bunches when one occluded
another was challenging (Figure 12). Although considerable detection of the coconut cluster
causing the occlusion was possible, the model faced difficulty in placing the prediction box
coordinates of the occluded coconut cluster.

Overall, this study statistically analyzed the performance of a deep learning approach
for coconut detection to assist the robot in planning the harvesting strategy based on
occlusion conditions. The proposed model proved effective in detecting the coconut
clusters into two classes with a high precision rate (Table 3). Many previous studies have
stressed the potential of the attention mechanism in Faster R-CNN for improving the result
as well as reducing the prediction time [43–45]. In the case of leaf-occlusion, either a special
path must be adapted for the end-effector to reach the coconut bunch, or the leaf must
be cut down before proceeding to harvest in order to free the cluster from obstruction.
In that case, if many leaves occlude a cluster, more research should be carried out in the
future to locate the position of leaves as well for efficient harvesting. With good results
obtained through the attention-guided Faster R-CNN model for the detection of a complete
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coconut bunch, further investigation on model development is intended to be carried out
for localizing and estimating the position of a cutting point in the cluster.
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Multi-class detection based on occlusion conditions for harvesting has been widely
studied for other fruits, including apples [24,42], tomatoes [46], cereal grains [47,48], and
citrus fruits [49]. Similar to the proposed model, Gao et al. [24] used Faster R-CNN with
VGG-16 as a feature extraction network for detecting apples and classifying them into
four classes based on occlusion (non-, leaf-, branch/wire-, and fruit-occluded). The model
achieved mAP of 0.88 and AP of 0.91, 0.90, 0.86, and 0.85 for the respective classes. In a
similar study, Mu et al. [46] used R-CNN with Resnet-101 to detect occluded tomatoes and
achieved an mAP of 0.88. There have been no previously reported studies on real-time
coconut detection for harvesting or other robotic applications. Hence, it is difficult to
compare the results of this study with others. To the best of our knowledge, only Parvathi
and Selvi [37] have worked on the development of a deep learning-based coconut detection
system for maturity stage identification. They tested four algorithms, namely, Faster R-
CNN, SSD, YOLOv3, and FCN, and concluded that the results achieved by Faster R-CNN
(mAP = 0.89) were significantly better than the other models. Importantly, the maturity
identification approach can be combined with occlusion condition analysis to give a better
perception of the vision system for decisive coconut harvesting. However, such a model
demands more classes to be comprehended. Another interesting topic for future research is
the performance of similar state-of-the-art deep learning models in robotic systems for other
applications such as grading agri-food products [50–58], monitoring crop diseases [59–61],
and assessing crop growth and yield [62–66].

5. Conclusions

In this study, a deep learning model based on state-of-the-art Faster R-CNN with VGG-
16 was proposed for detecting coconuts based on their occlusion condition. The analysis
showed that the model achieved high precision and speed for identifying non-occluded
and leaf-occluded coconuts, which can evade potential damage to the tree and robot end-
effector during robotic harvesting. The attention mechanism was introduced into the Faster
R-CNN model to improve the ability of the network to identify occluded coconuts. The
model achieved mAP of 0.88 and wmIoU of 0.83 for coconut detection in the two classes,
and the speed was 0.77 s per image. The proposed method offers valuable information in
planning the end-effector movement for coconut harvesting safely and efficiently.
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