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Abstract: This review takes a snapshot of the main multivariate statistical techniques and methods
used to process data on the concentrations of wine volatile molecules extracted by means of solid
phase micro-extraction and analyzed using GC-MS. Hypothesis test, exploratory analysis, regression
models, and unsupervised and supervised pattern recognition methods are illustrated and discussed.
Several applications in the wine volatolomic sector are described to highlight different interactions
among the various matrix components and volatiles. In addition, the use of Artificial Intelligence-
based methods is discussed as an innovative class of methods for validating wine varietal authenticity
and geographical traceability.
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1. Introduction

Wine is a very complex matrix composed of molecules of diverse nature and structure
(e.g., proteins, amino acids, carbohydrates, phenolic compounds, volatile components,
and inorganic compounds), present in a wide range of concentrations [1]. The chemical
composition of wine, and its quality as well, is influenced by numerous factors, including
grape variety, climate, cultivation practices, geographical location, vintage, yeast strains,
and fermentation conditions [1]. The use of metabolomics in the wine sector has provided
an effective tool for obtaining a holistic picture of viticulture and winemaking practices
that are useful for ensuring the quality and traceability of wine [2,3]. In this scenario,
volatolomics play an important role, because the volatile profile constitutes a fingerprint of
the aroma properties of a wine, making feasible the identification of adulterations and the
traceability of geographical origin of raw materials [2–4].

The principal technique used to separate, identify, and quantify volatile organic
compounds (VOCs) in wine is Gas Chromatography coupled to Mass Spectrometry (GC-
MS) [2]. Wine aroma studies using gas chromatography for the separation and identification
of volatiles employ different techniques to achieve accurate and reliable extractability of
these analytes. The most common are liquid–liquid extraction, headspace extraction,
purge and trap extraction, solid phase extraction (SPE), and solid-phase micro-extraction
(SPME). In the last few years, the latter has been extensively used for the study of wine
volatiles [5–7]. Compared to other techniques, SPME is characterized by simplicity of use,
sensitivity, ease of automation, and also does not require the use of solvents and offers
the possibility of integrating the two phases of extraction and concentration into a single
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step. Also, several studies have shown the SPME’s abilities to be versatile and able to cover
different aspects in the wine field, such as the origin and flavor characterization [8–10];
the off-flavor identification [11,12]; the improvement of the fermentation process [13]; the
ageing studies [14,15]; the evaluation of the packaging’s impact on the sensory profile [16];
and the influence of pedo-climatic conditions [17].

The development of the SPME method requires the setup of some fundamental pa-
rameters to obtain good extraction efficiency, and good results in terms of accuracy and
repeatability. It is necessary to identify the optimal time and temperature conditions for
the equilibration and extraction phases, to choose the most suitable fiber according to the
analytes to be extracted, to determine the volume of the sample, and the amount of salt to be
used. The availability of fibers with different adsorbent polymeric coatings makes SPME a
very versatile technique suitable for the extraction of different classes of volatile compounds
from different matrices. For specific applications, the choice of a suitable solid phase de-
pends on the class of compounds to be analyzed [18]. Polydimethylsiloxane (PDMS)-coated
fibers have shown very good extraction efficiency with non-polar compounds [19], as their
coating consists of a non-polar material.

However, in recent years, the use of coatings based on the combination of different
adsorbent polymers including poly divinylbenzene (DVB) and carbowax (CAR), such as
DVB/CAR/PDMS or CAR/PDMS, has gained popularity, since they can be used for the
extraction of a wider range of analytes [20]. The growing interest in this SPME technique,
especially focused on the wine headspace (HS), is demonstrated by an almost linear in-
crease in the number of manuscripts related to SPME applications in wine, evidenced
from a search on the Scopus database between 1998 and 2021 using the keywords “HS-
SPME/wine/volatile”, as shown in Figure 1.

Figure 1. Number of published articles between 1998 and 2022 related to HS-SPME/wine/volatile.

Generally, metabolomic analysis, and, in particular, the volatolomic approach, gener-
ates extremely large volumes of data. Traditionally, wine VOCs’ data have been evaluated
using a univariate approach, based on assessing the influence of a single variable on the
overall aroma. This approach can provide useful information, but not specific indications
on the relationships between the variables [21,22]. In order to study complex matrices
such as wine, characterized by the presence of different interactions among the various
matrix components, multivariate analysis techniques are required. The latter can exploit
and determine, beyond the classic covariance between variables, more complex functional
relationships that can be used in different ways, depending on the specific research needs.
Different goals require different chemometric techniques to be applied, e.g., for data explo-
ration, classification, or curve resolution [23,24]. Principal Component Analysis (PCA) and
Discriminant Analysis (DA), in particular, have been extensively applied to characterize
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wines based on their volatile content [25–29]. Cluster Analysis (CA) has been used to
categorize wines based on their volatile composition [30,31].

Analysis Of Variance (ANOVA), along with PCA, CA, and DA, have been used to clas-
sify South African wines, according to cultivar based on volatile content [32]. Moreover, the
volatile profile, in combination with unsupervised methods, like Hierarchical Clustering
Analysis (HCA) and PCA, was exploited for the discrimination or differentiation of grape
cultivars and wines [33]. Noble and Ebeler [34] employed multivariate statistics (General-
ized Procrustes Analysis, GPA, and Partial Least Squares regression, PLS) in understanding
wine flavor, whereas Marengo et al. [35] revealed the differences in the distribution of
metals in Nebbiolo-based wines through supervised pattern recognition methods such as
Soft Independent Modelling of Class Analogies [36] and Linear Discriminant Analysis [37]
with a new interesting approach characterized by use of neural networks [38].

Starting from this background and in the context of a broad evaluation of the literature
concerning the quantitative analysis of wine VOCs based on HS-SPME-GC-MS, including
the consideration of method development and calibration approaches [39], this review aims
to give a brief description of the different multivariate methods employed to process wine
VOCs data obtained by HS-SPME-GC-MS, highlighting the main aspects and applications
of each of them.

2. Processing of HS-SPME-GC-MS Data on Wine Volatiles by Multivariate Statistics

Multivariate statistical methods are used in different ways to process HS-SPME-GC-
MS data on wine volatiles. The main approaches are: (i) hypothesis testing, to determine, for
example, whether there are statistically significant differences between different datasets ob-
tained under different experimental conditions or treatments [40–43]; (ii) exploratory anal-
ysis, through which the main similarities and dissimilarities between multivariate data are
highlighted [4]; (iii) regression models, by which values of the dependent variables are pre-
dicted from those of the measured (independent) variables [23,24]; (iv) pattern recognition,
aiming to create clusters of similar multivariate data (unsupervised methods/clustering)
or to identify relationships between different variables that allow each of the available data
to be classified in a class known a priori (supervised methods/classification) [4,44]. Both
unsupervised and supervised methods also make it possible to associate an unknown data
item with one of the identified clusters or to classify it in one of the a priori known classes.
With regard to supervised classification methods, these include a training step, during
which a model is optimized for the best possible classification of a multivariate dataset after
a prior classification is given for samples. The application of these methods also requires
an accurate validation, consisting in evaluating the model performance on further samples,
not used for training, whose classification is known a priori. Once validation is completed,
the obtained model can be exploited to classify samples whose classification is unknown,
starting from multivariate data. In some cases, besides allowing the classification of new
samples, it is also possible to study the factors (e.g., the combinations of independent
variables) that the method itself identifies as the basis for the best classification.

In some cases, the same multivariate statistical technique can be used for different
objectives. For example, analysis of variance techniques (ANOVA-MANOVA) can be
used both as hypothesis tests and, by means of various post-hoc methods, to obtain data
clustering. Other methods, such as PCA, are used for exploratory analysis, for clustering
and to determine latent factors. Other methods, such as PLS or Artificial Neural Networks
(ANNs), can be used for both regression and pattern recognition (Figure 2).
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Figure 2. Schematic diagram of different objectives and multivariate statistical analysis techniques
used for HS-SPME/GC-MS data.

The following paragraphs describe the main multivariate statistical methods used
for the analysis of HS-SPME-GC-MS data on wine volatiles. For each method, a brief
description of its principle of operation, the peculiar characteristics, and the different
applications is given.

2.1. ANOVA-MANOVA

A great volume of data is usually obtained for wine volatile compounds by HS-
SPME-GC-MS analysis, therefore, in order to understand if there are significant differences
between the means of data referred to different groups of samples, analysis of variance
(ANOVA) is generally the mostly adopted statistical method. ANOVA allows to check if
the so called null-hypothesis, i.e., the one stating that samples in all groups are taken from
populations with the same mean value, can be accepted or not. If the null hypothesis is
rejected, post-hoc methods performing a multiple comparison between the mean values
of the groups can be applied to verify which of them differ significantly. Commonly
adopted approaches to make multiple comparisons between means under the assumption
of Gaussian distribution of data are the Tukey’s and the Tukey–Kramer’s methods, which
are appropriate when the within-group variances are comparable with each other and are
used for groups including equal or different numbers of data, respectively.

One Way ANOVA described so far is suitable if the effect of a single factor (independent
variable) is to be determined; when the effect of more than one factor has to be evaluated,
the multi-way ANOVA, also called N-way ANOVA can be used. This technique provides
not only information about the effect of a single factor on the dependent variable (peak
area or compound concentration), but also about the effects of the interactions among
factors. Different contributes are reported in the literature on the application of multi-way
ANOVA analysis to determine if there were statistically significant differences between wine
varieties [40] and wines aged in wood barrels [41]. Moreno-Olivares et al. [42] used a two-
way ANOVA analysis to characterize the volatile profile of new white wine varieties made
from Monastrell grapes grown in southeastern Spain. The analysis considered different
groups of aromatic compounds in wines as a function of variety and vintage, revealing
a great variability for different samples in terms of the concentrations obtained in the
different families of volatile compounds.

The comparison of multivariate sample means can be obtained by Multivariate
ANOVA (MANOVA), in which covariance between dependent variables is used to test the
statistical significance of the differences. Pérez-Prieto et al. [41] used MANOVA to study
the effects of oak origin, barrel volume, and barrel age on all the constituents measured
in wines. Aragoni et al. [43] determined the effects of variety, clarification, temperature,
and yeast type on all constituents of the acid fraction, higher alcohols, and conventional pa-
rameters of wines obtained from grape must of Muscatel and Malvasia varieties. MANOVA
analysis was employed to compare the variations of volatile compounds in the white wine
Muscat Ottonel variety aged in the presence of untoasted oak chips, toasted oak chips, and
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untoasted barrel, considering three ageing periods [45]. ANOVA has also been recruited in
descriptive sensory analysis, to check overall differences among the products for aroma,
taste, and mouthfeel terms [46].

2.2. Principal Component Analysis

Principal Component Analysis (PCA) is a multivariate data statistical analysis that
provides a reduction in data set dimensionality by finding linear combinations of the
original independent variables, called principal components, which explain the maximum
of data-set variance. Principal components are orthogonal latent variables generated from
the correlation or covariance matrices of data; original data projections along the axes
identified by principal components are called scores. The full set of principal components
can be as large as the original set of variables, but most of the original data variance is
typically concentrated in a limited number of principal components. Similarities or differ-
ences between the original multivariate data can thus be usually appreciated on a simple
two-dimensional scatterplot, called a score plot, reporting the scores based on the first two
principal components. Moreover, by plotting the contribution of the original variables to
the principal components (loading plots) it is also possible to understand how the original
variables contribute to the similarity or to the difference between original samples. PCA is
used as a tool for screening, extracting, and compressing multivariate data [24,26–29]. In
the context of the HS-SPME-GC-MS analysis of wines’ volatile compounds, PCA is one of
the most useful multivariate techniques to assess the authenticity of wines [47,48]. As an
example, it was adopted to distinguish 22 red wines produced in the four main wine regions
in France, starting from data obtained from both sensory and VOCs analyses [49]. Re-
cently, the combined use of the ANOVA technique to select the most “class-distinguishing”
chromatographic peaks area and the subsequent PCA analysis allowed Sudol et al. [50] to
cluster white wines (Grillo wines) produced in different areas of Sicily and to determine
geographic differences in their volatiloma.

Vilanova et al. [51] investigated the correlation between the volatile composition and
sensory properties in Spanish Albariño wines, through PCA. Following this, the multivariate
regression approach based on the use of PLS and PCA was used by Poggesi et al. [52] to
study the correlation between sensory data and volatile compounds, in Pinot Blanc, in
order to use chemical fingerprints to obtain a prediction of the sensory profile of the wine.
PCA analysis was also used to evaluate the impact of different yeast strains on the wine
quality and on the progress of the fermentation process. As an example, Tufariello and co-
workers [53] applied PCA to identify the volatile compounds that best discriminated wines
produced by yeast strains selected in the two different areas, i.e., north and south Salento in
the Apulia region of Italy. In addition, PCA was used for highlighting the differences among
sparkling wines produced using different autochthonous yeast strains for the secondary
fermentation step [54]. PCA coupled with discriminant analysis (DA) analysis has recently
been used as a chemometric tool to identify the ageing process (barrel- or chip-aged) the
wine undergoes, by selecting key volatile molecules detected via GC-MS [55]. Through a
PCA-based elaboration of data on phenolics and volatile compounds, Casassa et al. [56]
highlighted that there were significant differences between wines aged in control and new
barrels, while fewer clear-cut differences were detected between wines aged in barrels
produced with different bending/toasting protocols. More recently, PCA was applied,
in conjunction with Hierarchical Cluster Analysis, to a set of 103 volatile compounds
identified by HS-SPME-GC-MS, indicating peculiar features in the VOC profile related to
the geographical origin of nine red wines produced in Brazil [57]. Maioli et al. [58] used
PCA to assess the effect of different tank materials on the profile of VOCs of a Sangiovese
red wine obtained using HS-SPME-GC-MS. In a further recent study, PCA was adopted to
investigate the influence of iron deficiency in the vineyard on the profile of VOCs related to
floral notes or green-herbaceous aroma, recognized by HS-SPME-GC-MS in the headspace
of wines produced in the Ribera del Duero region in North-Central Spain [59].
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2.3. Hierarchical Cluster Analysis

Cluster Analysis represents a set of unsupervised methods that aim at grouping dif-
ferent samples based on the similarity assessed from a set of multivariate data provided
for them. One of the most common methods for Cluster Analysis is Hierarchical Cluster
Analysis (HCA), which allows a grouping of data without a prior knowledge of the number
of clusters to be formed. In particular, the agglomerative approach is usually adopted for
HCA, i.e., single samples are progressively grouped in clusters of increasing dimensions
based on their distance in the multivariate space, with Euclidean distance being the most
adopted. Different agglomerative algorithms, starting from these distances, can be used,
like those referred to as “single” (shortest distance), “complete” (farthest distance) and “aver-
age” (unweighted average distance) linkage and Ward’s method, based on the minimization
of variance inside groups.

Following the metrics and linkage criteria indicated by the user, HCA allows the
building of a complete clustering dendrogram, through which a qualitative visualization
of grouping among samples in a two-dimensional space is possible. This aspect has
made HCA the preferred technique when Cluster Analysis is performed for exploratory
purposes in the oenological field. Among reported applications, Marengo et al. [35] used
HCA based on Euclidean distances and Ward’s method of agglomeration to evaluate
similarities between wine samples produced from the Nebbiolo grape in the Langhe and
Roero areas (Piedmont, Northern Italy) but differing in vintage (respectively, 3 years,
2 years, 1 year, 8 months and a few months) and production zone, starting from data
on volatile compounds. Dall’Asta et al. [60] demonstrated the possibility of classifying
high quality wines according to their brand based on their volatile fingerprint using PCA
and HCA analysis. HCA was exploited, in synergy with PCA, to study grape and wine
aroma [61] i.e., as a tool to find the key aromatic series of pulp juice, skin, and whole
berries. This type of investigation is also important in the context of fraud prevention in the
oenological field. In research about the authenticity of red wines from Poland, Stoij et al. [62]
used HCA analysis to assess that the Polish wines were separated thoroughly from wines
produced in other European countries, notably France, Italy, and Spain, starting from data
on ethyl phenylacetate, hexan-1-ol, ethyl 2-hydroxy-4-methylpentanoate, (E)-3-hexen-1-ol,
2-phenylethanol and 3-(methylsulfanyl)propan-1-ol. Recently, Valentin et al. [63] identified
the chemical profile (including the volatile profile) that characterizes Chilean Carmérère
wines by using HCA and PCA, starting to establish a database for further analysis of the
authenticity of South American wines. Costa et al. [64] used HCA analysis coupled with
other statistical techniques to evaluate, for the first time, the impact of mannoproteins on
the aroma quality of sparkling wines produced with the Champenoise method.

2.4. Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is one of the most used methods to perform
supervised pattern recognition. This method is usually based on identifying linear combi-
nations of independent variables (called Linear Discriminant Functions, LDF) maximizing
the between-class variance and minimizing the within-class variance. In particular, if
k is the number of classes, and if the number of independent variables is larger than k,
then k-1 LDFs are identified. The resulting LDF may be used as a linear classifier, or for
dimensionality reduction before later classification. LDF can be used as a dimensionality
reduction technique as it determines a hyperspace with less dimensions than the original
data, on which these can be projected to achieve the best possible linear separation among
the given classes. The LDA is based on fairly strong assumptions, i.e., that the classes are
linearly separable in the multidimensional space of the independent variables and that
the variance–covariance matrices are equal for each class. These assumptions do not allow
this type of analysis to be applied without a careful validation. A further condition for
the application of the LDA is that the number of samples in the training dataset must be
greater than the number of independent variables. If the number of independent variables
is greater, “feature selection” techniques, i.e., determining a limited but representative
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subset of independent variables, or “feature reduction” techniques, that enable a reduction
of the size of data without significant loss of information, can be adopted. As previously
mentioned, the PCA can be used for this purpose.

Turning to applications of LDA to wine volatiles’ data, the combination of LDA and
PCA analysis was successfully applied for the varietal differentiation of Loureira, Dona
Branca, and Treixadura wines [28], starting from their volatile profiles. Thirty-four Sauvignon
Blanc wine samples from three different countries and six regions were analyzed by HS-
SPME-GC-MS by Berna et al. [65] and LDA was applied to the resulting data, showing three
distinct clusters or classes of wines with different aroma profiles. In particular, wines from
the Loire Region in France and wines from Tasmania and Western Australia were found
to have similar aroma patterns. In a research on the effect of time and storage conditions
on major volatile compounds of Zalema white wine, LDA was exploited to distinguish
among wines with different conditions and times of storage [66]. Ubeda et al. [67] adopted
the synergy between PCA and LDA to find the differences in the volatile profiles among
Chilean sparkling wines obtained with different production methods. In addition, LDA,
coupled with PCA and multilayer perceptrons’ neural networks (MLP-NN) were used
as chemometric tools to differentiate several Spanish white wines according to their geo-
graphical origin, using selected volatile compounds as input variables [68]. Similarly, linear
discriminant analysis (LDA) was successfully applied to obtain an appropriate classification
of white and red wines of various geographical origins using the volatolomic approach [8].

Recently, Moreno-Olivares et al. [42] used LDA to study the volatile profile of different
crosses of white wines obtained from Monastrell and other varieties, showing that the white
crosses obtained from red varieties were aromatically more similar to the white wine than
to the respective parental.

2.5. Partial Least Squares

If the number of independent variables is greater than the number of samples, it is
still possible to use multivariate statistical techniques, such as Partial Least Square (PLS),
that are not subject to this constraint. The PLS approach is particularly suited for data
containing correlated independent variables, since it constructs new predictor variables,
called latent variables or components, as linear combinations of the original ones. PLS is
designed to evaluate these components while considering the observed response values.
The working principle of PLS is to find a finite number of linear combinations of the
independent variables describing its variance as much as possible and at the same time
having the largest correlation with the dependent variables. This is obtained by algorithms
capable of maximizing the covariance between independent and dependent variables.

Guillén et al. [69], illustrated a study on the possibility of obtaining regression models
by means of Partial Least Squares (PLS) and Multiple Linear Regression (MLR) to correlate a
series of parameters, such as the concentration of short-chain organic acids, higher alcohols,
and phenolic compounds, to the age of vintage Sherry wines. PLS was also successfully
applied in a study focused on the correlations between volatile compounds of Albariño
wines and sensory descriptors [51]. As demonstrated by other authors, PLS regression is,
among multivariate techniques, the best approach to highlight the correlations between
chemical data, obtained by HS-SPME-GC-MS, and sensory descriptors [70–72].

If the independent variable is categorical, the PLS technique can be used as a super-
vised pattern recognition technique. In this case, reference is made to the Partial Least
Square Discriminant Analysis (PLS-DA) variant. In this variant, the operating principle
remains unchanged, and the dependent categorical variable (the class) is replaced by a
suitable “dummy” multivariate variable. This consists of as many single variables as classes.
The value of dummy variables is set to 1 if the sample belongs to its corresponding class,
and to 0 otherwise. PLS-DA is a compromise between the usual discriminant analysis
and a discriminant analysis based on the principal components of the predictor variables.
PLS-DA can provide a good insight into the factors leading to effective discrimination
between samples by the analysis of the components (the loading vectors) and their related
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sample scores, which gives it a relevant role in exploratory data analysis. In order to
discriminate between selected wines with different geographical origin (Azores, Canary
and Madeira Islands) and of different types (white wine, red wine and fortified wine), the
volatile profiles were characterized by Perestrelo et al. [73]. The authors applied the PLS-DA
to the dataset to obtain a predictive model for classification of examined wine samples
according to their geographical origin and type. This information is crucial to prevent fraud
and, therefore, to guarantee wine authenticity. In a study on the volatiles of Chardonnay
wine, PLS-DA was adopted to find the key volatile metabolites able to discriminate wines
fermented by different yeast strains [74].

Recently, Oliveira et al. [75] used PLS-DA to successfully study the discrimination
in the volatile composition of a 48-month old bottle-stored white wine closed with either
cork, micro-agglomerated or synthetic stoppers, revealing the most discriminating volatiles.
PLS-DA was also applied, along with PCA, by Licen et al. [10] to discriminate white wines
produced in the Friulano Collio area in the region of Friuli (North-East of Italy) from those
produced in other areas of the same region. In a paper by Karabagias et al. [76], PLS-
DA based on VOCs recognized by HS-SPME-GC-MS analysis was adopted to assess the
differences between dry and semi-sec white wines produced from eight different Greek
grape varieties.

2.6. Artificial Neural Networks

A further family of techniques for the statistical analysis of multivariate data are the
Artificial Neural Networks (ANNs). ANNs are one of the most flexible and performing
techniques within the Machine Learning (ML) paradigm. The name of this type of tech-
niques derives from the structure of the algorithm itself, which was originally designed
to imitate the learning and operational model of neurons within the brain. ANNs consist
of a complex structure of interconnected units that are called artificial neurons. The most
widespread neural network models considered in the framework of wine data analysis
are the feed-forward ANNs. In this case, single neurons are organized and structured in
different layers: an input layer, one or more hidden layers, and an output layer. Typically,
each neuron of each intermediate layer is connected with each neuron of the previous layer
and each neuron of the next layer. This kind of ANN is called a fully connected network.
The individual neurons of each layer operate in parallel and in a very simple way through
a function, called transfer function, which the neuron applies to a linear combination of the
outputs from the neurons of the previous layer. The weights of the linear combinations de-
termine the functioning of the network itself and are the free parameters that are optimized
during the training phase. For neurons belonging to the hidden layers, the transfer function
is generally non-linear, typically a sigmoidal function. This type of transfer function allows
the network to “learn” highly non-linear relationships between the independent input
variables and the dependent output variables and even the use of a mix of continuous
and categorical independent/input variables. Conversely, the transfer function of the
output layer is chosen according to the type of output desired. The dependent/output
variables can be continuous (in this case the network can be trained to perform a regression)
or categorical (in this case the network can be trained to perform a classification). The
design of an ANN depends on several parameters, called hyper-parameters, which must
be carefully chosen. Among these, the main ones are the various transfer functions in the
different layers, the number of hidden layers and the number of neurons that constitute
them and various parameters linked to the specific optimization algorithm used. Gener-
ally, the regression or pattern recognition models constituted by neural networks have a
high number of free parameters to optimize. This aspect necessarily requires a number
of available samples greater than the number of independent variables used. To avoid
overfitting phenomena, it is also necessary to carry out an accurate model validation. This
validation can be carried out directly during the training phase by imposing an early stop
when performance on a validation dataset tends to deteriorate.
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Over the last 20 years, ANNs have found application in the wine studies for various
purposes, including authenticity and traceability assessment [38,77,78], discrimination
between treatments [79], and wines [80]. As regards the use of VOCs’ data as an input
for training the networks, 35 volatile compounds were used by Marengo et al. [35] as
input to a Self-Organizing Map to obtain clusters related to wines’ varietal origin and
vintage. Kruzlicova and co-workers [81] demonstrated the possibility to use them for the
classification of white varietal wines. In particular, they employed ANNs to classify Slovak
white wines of different variety, year of production and from different producers by using,
as independent variables, volatile species analyzed by the GC–MS technique.

Jurado et al. [68] employed MultiLayer Perceptrons Neural Networks (MLP-NN),
together with PCA and LDA, as chemometrics tools to differentiate Spanish white wines
according to their geographical origin. In particular, they highlighted the possibility to
identify the product’s geographical origin and authenticity, using the volatile compounds
and the chemical composition as input data. Recently, some authors [82] have illustrated
the use of the machine learning modelling strategies, using weather and water management
information from a Pinot noir vineyard from 2008 to 2016 vintages as inputs and aroma
profiles from wines from the same vintages, assessed using gas chromatography and
chemometrics analyses, as targets. The results showed that the ANN models produced a
high accuracy in the prediction of aroma profiles (Model 1; R = 0.99) and chemometrics wine
parameters (Model 2; R = 0.94) with no indication of overfitting. These models could offer
powerful tools to winemakers to assess the aroma profiles of wines before winemaking,
which could help them to adjust some techniques to maintain/increase the quality of wines
or wine styles that are characteristic of specific vineyards or regions. These models can be
modified for different cultivars and regions by including more data from vertical vintages,
to implement artificial intelligence in winemaking. However, the use of ANNs in wine
volatolomics remains little exploited compared with the other chemometrics’ techniques.
The prediction of wine process parameters is an ambitious objective, as fermentation is
a very dynamic process that depends on many variables [83]. In order to address this
type of problem, several ANN architectures are available specifically focused on the study
of dynamic processes. These are, however, more difficult to implement and require a
considerable amount of diversified data, that make them more suitable for training and use
in industrial scale plants, than for laboratory experiments [84].

The limited use of these instruments is also thought to be due to a greater difficulty
in interpreting the results obtained. The ANNs are in fact generally considered as “black
boxes” that give very good results, but without giving explanations on how they obtain
them. This factor considerably limits the possibilities to provide interpretations and discus-
sions of the results [85]. However, it should be noted that lately this problem has become
an important focus of AI (Artificial Intelligence) research that is starting to provide valid
and consolidated tools for the interpretation of the cause–effect links exploited by these
types of algorithms to obtain the required results [86].

3. Conclusions

The large volume of data generally provided by the HS-SPME-GC-MS analysis of
wine volatile compounds represents a precious repository of information on wines and
multivariate analysis techniques are a powerful tool to recover the highest possible amount
of that information. As described in the present review, the awareness of such potential
is constantly increasing in the oenological context and several chemometrics techniques,
including PCA, LDA, PLS and ANN, have been applied successfully to evaluate different
aspects, like the relationship between viticulture and winemaking practices and the wine
aroma profile or the recognition of authenticity or geographical origin of the product.
Further research is still needed to enhance the use of ANNs, too little exploited, likely
due both to the requirement of a large amount of data and the difficulty to interpret the
obtained results. This overview of the chemometrics’ techniques and their application
constraints, together with the description of their specific applications in wine volatile
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HS-SPME-GC-MS studies, could help to increase the awareness of such potential and
improve research advances in wine volatolomics. Table 1 gives an overview of the statistical
techniques described. For each of them, the general scope, pros and cons (with particular
reference to the criticalities introduced by the pre-processing of the data and the size of
the available dataset) are described. The main applications mentioned in this review are
also summarized.

Table 1. Overview of the statistical techniques, pro, cons and applications to HS-SPME/GC-MS data.

Name Scope Pros Cons Applications

M-ANOVA Hypothesis testing
M-ANOVA allows a deeper analysis
than ANOVA in determining
changes introduced by a given factor.

It requires a larger number of
samples than the number of
variables. The extension of
the analysis to N factors is
more complex. Results can be
misleading if the working
assumptions are
not respected.

Determination of significant differences
between wine varieties [40];
characterization of the volatile profile [42];
effects of oak origin, barrel volume, and
barrel age [41]; effects of variety,
clarification, temperature, and yeast type
[43]; descriptive sensory analysis [46].

PCA

Hypothesis testing;
Exploratory analysis;
Unsupervised
classification

Explain multivariate variance by a
limited number of factors. It does not
suffer the possible multi-collinearity
between variables; on the contrary it
exploits it. It allows to visualize both
the similarity and dissimilarity
between samples and the correlation
and influence of variables.

Highly dependent on the
pre-treatment of the data, e.g.,
standardization. Sensitive to
outliers. The detection of
orthogonal (uncorrelated)
factors can lead to a
misinterpretation of the true
cause-effect relationship.
Only Euclidean metrics can
be considered.

Assessment of the authenticity of wines
[47,48]; distinguishing different wines [49];
correlation between volatile composition
and sensory properties [51,52];
discrimination of wines produced by
selected yeast strains [53]; identification of
key-role molecules in aging process [55];
identification of peculiar features in the
VOC profile [57].

PLS Linear regression

It can be used in cases where the
number of variables is greater than
the number of samples. Handles
well any multi-collinearity between
variables.

The interpretation of the
results is more complex than
that of the results of a simple
multilinear regression.
Results can be poor in the
case of non-linear
relationships between
variables.

Correlation between VOCs and wine ageing
[69]; correlations between volatile
compounds and sensory descriptors [51];
correlations between chemical data and
sensory descriptors [70–72].

ANN

Non-linear regression;
Supervised
classification;
Unsupervised
classification

Capable to handle strong
non-linearity in the underlying
model. They are robust to the
presence of noise and outliers. They
are unaffected by, and indeed exploit,
multi-collinearity between variables.

A large number of samples is
required. Interpretability of
results is more difficult.
Validation of results is
necessary to exclude
overfitting.

Authenticity and traceability assessment
[38,77,78]; discrimination between
treatments [79] and wines [80]; clustering of
wines by varietal origin and vintage; high
accuracy in the prediction of aroma profiles
from weather and water management
information [82]; prediction of wine process
parameters [83,84].

LDA Supervised
classification

Interpretability of results
is straightforward.

It cannot be used if the
number of variables exceeds
the number of samples.
Conditioned by
multi-collinearity. Results can
be poor in the case groups are
non-linearly separable.

Varietal differentiation from volatile profiles
[28]; classification of wines with different
aroma profiles [65]; distinguishing among
wines with different conditions and times of
storage [66].

PLS-DA Supervised
classification

It can be used in cases where the
number of variables is greater than
the number of samples. Handles
well any multi-collinearity between
variables

The interpretation of the
results is more complex than
that of the results of a
simple LDA.

Discrimination of selected wines with
different geographical origin and type [73];
identification of key volatile metabolites
able to discriminate different wines by
origin, fermentation, type [74–76].

HCA Unsupervised
classification

Straightforward interpretation. It
allows different levels of clustering
to be evaluated. It allows the use of
metrics other than Euclidean to
assess similarity and dissimilarity
between samples.

The results are highly
dependent on the
pre-treatment of the data, e.g.,
whether or not
standardization is applied.

Classification of high-quality wines
according to their brand based on their
volatile fingerprint [60]; fraud prevention by
verification of authenticity of wines [62–64].
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