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Abstract: To achieve accurate detection the content of multiple parts pork adulterated in mutton under
the effect of mutton flavor essence and colorant by RGB images, the improved CBAM-Invert-ResNet50
network based on the attention mechanism and the inversion residual was used to detect the content of
pork from the back, front leg, and hind leg in adulterated mutton. The deep features of different parts
extracted by the CBAM-Invert-ResNet50 were fused by feature, stitched, and combined with transfer
learning, and the content of pork from mixed parts in adulterated mutton was detected. The results
showed that the R2 of the CBAM-Invert-ResNet50 for the back, front leg, and hind leg datasets were 0.9373,
0.8876, and 0.9055, respectively, and the RMSE values were 0.0268 g·g−1, 0.0378 g·g−1, and 0.0316 g·g−1,
respectively. The R2 and RMSE of the mixed dataset were 0.9264 and 0.0290 g·g−1, respectively. When
the features of different parts were fused, the R2 and RMSE of the CBAM-Invert-ResNet50 for the mixed
dataset were 0.9589 and 0.0220 g·g−1, respectively. Compared with the model built before feature fusion,
the R2 of the mixed dataset increased by 0.0325, and the RMSE decreased by 0.0070 g·g−1. The above
results indicated that the CBAM-Invert-ResNet50 model could effectively detect the content of pork from
different parts in adulterated mutton as additives. Feature fusion combined with transfer learning can
effectively improve the detection accuracy for the content of mixed parts of pork in adulterated mutton.
The results of this study can provide technical support and a basis for maintaining the mutton market
order and protecting mutton food safety supervision.

Keywords: adulterated mutton; quantitative detection; smart phone; deep learning; CBAM-Invert-ResNet

1. Introduction

Mutton is popular because of its rich protein content, low cholesterol and fat content,
unique flavor, and delicate taste [1]. The prices of mutton have been rising in recent years.
Under the temptation of huge economic benefits, some illegal traders take the risk of mixing
low-value meat, such as pork, with mutton for the sale of adulterated products [2]. At the
same time, illegal traders add food additives, such as mutton flavor essence and colorant, to
the adulterated mutton to further achieve the effect of “fake with real”. It not only seriously
infringes the economic interests of consumers and destroys the market order but also poses
a threat to the health of consumers and causes food safety problems. Therefore, it is urgent
to seek a rapid and accurate method for the detection of adulterated pork in mutton under
the action of mutton flavor essence and colorant.

At present, the detection methods for meat or food adulteration mainly include sensory
tests, chromatographic analysis [3], immunoassay [4], DNA analysis [5], intelligent sensing
technology [6,7], optical-colorimetric methods [8], and modern optical rapid detection
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technology. With the increasing level of adulteration, sensory analysis has been completely
unable to meet the demand of current detection. The methods of chromatography, im-
munoassay, and DNA analysis require expensive instruments and complex pretreatment
methods, so it is becoming increasingly difficult to meet the requirements of rapid and
accurate detection. With the development of artificial intelligence, modern optical rapid
detection methods have developed rapidly. Among them, with the popularity of smart-
phones and the great improvement in computing power, the development of mobile phone
camera technology has made rapid progress. Smartphones have the characteristics of
convenience, speed, and high calculation accuracy, and they have been widely used in the
field of food detection [9,10]. In recent years, there have also been some studies on the use
of smartphone image technology to classify meat parts [11], detect adulteration [12,13], and
perform other functions. Previous studies have shown that there are certain differences in
different parts of meat. The images taken with a smartphone can be used to detect mutton
parts and meat adulteration. However, there are few studies on detecting meat adulteration
(using different and mixed parts) with smartphone images. In addition, the detection of
adulterated pork content in mutton using RGB images of smartphones under the effect of
mutton flavor essence and colorant presents some challenges.

With the development of intelligence and information technology, deep learning
has played an irreplaceable role in the fields of artificial intelligence, such as computer
vision and natural language processing. As a typical representative of deep learning, a
convolutional neural network (CNN) can effectively learn feature expressions from a large
number of sample images and enhance the generalization ability of the model. It has
the advantages of fast and accurate image processing and is currently widely used in the
detection of agricultural products [14–16]. With the continuous expansion of computing
requirements, the network layers of CNN models were continuously deepened to improve
network performance. As a result, the model began to have problems such as gradient
disappearance and network degradation. He et al. [17] proposed the ResNet network
that used residual structure in the model to effectively solve the above problems. The
superior performance has enabled it to achieve good results in many tasks, such as image
classification [1,18,19], object detection [20,21], and so on. However, the ResNet network
still has problems such as too many network parameters and slow convergence speed.
Studies have shown that the inverted residual structure in the MobileNet can improve the
convergence speed and reduce the model parameters by reducing the computation amount
of high-dimensional space and the memory requirement so as to realize the lightweight
of the model structure [22,23]. Cui et al. [24] added the inversion residual structure in
the MobileNet v2 network to the DenseNet network model and proposed an improved
lightweight DenseNet network to effectively realize the surface defect detection of mobile
phone screens. Xu et al. [25] introduced an inverted residual structure into YOLOv5 for
gesture recognition, and the model size was reduced by 33 MB compared with that before
the improvement. Although the inverted residual structure meets the requirements of a
lightweight model, its ability to learn features with small differences is limited. There is
little difference in the characteristics of adulterated mutton with different contents of pork
under the influence of additives such as mutton flavor essence and coloring agent, and it is
still difficult to accurately predict its content by existing models [26]. The convolutional
block attention module (CBAM) [27] can effectively improve the accuracy of the model
by using the spatial and channel features of the images to redistribute the feature weights
and strengthen the feature differences of the image. Du et al. [28] effectively classified the
quality of plug seedlings using the improved CNN based on the attention mechanism.
Zhang et al. [29] improved the YOLOv4 model with the CBAM to realize sheep facial
biometrics recognition. The results were compared with other different object detection
models, and it was proved that the improved model had good recognition performance.
The existing research has proved that adding the CBAM to deep learning models can
effectively improve the performance of the model. At present, there is no report on the use
of the CBAM to improve the ResNet50 network for the detection of the content of pork
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from different parts in adulterated mutton. However, most of the adulterated mutton on
the market is mixed with multiple parts of pork. Previous studies have shown that there
was some difference in different parts of the meat [11,19]. The detection model established
by using a single part makes it difficult to detect the content of pork from mixed parts
in adulterated mutton. Feature fusion can comprehensively utilize the image features of
multiple parts and complement the advantages of multiple features [30]. It is helpful to
establish a more accurate adulteration detection model for mixed parts. Although the
models established by using fusion features realize the advantages of multiple features to a
certain extent and meet the basic training needs when detecting the content of pork from
mixed parts adulterated in mutton, the results of the model are often not accurate enough
because of the difference between the fusion features and the actual features. Transfer
learning uses the “knowledge” learned from previous tasks, such as data characteristics
and model parameters, to assist the learning process in the new domain and obtain its own
model [31,32]. Therefore, when the model mixed parts are established, the prior parameters
of the model built by a single part are transferred by transfer learning, and the models are
fine-tuned by fusion features [33]. Based on the full use of fusion features, the real features
of adulterated meat in each part can be further extracted. At present, there are no reports
on the improvement of the ResNet50 network using the CBAM to detect the content of
pork from different parts in adulterated mutton and using feature fusion combined with
transfer learning for the detection of mixed parts.

To sum up, to quickly and accurately detect the content of specific and mixed parts
of pork in adulterated mutton under the effect of mutton flavor essence and colorant
using RGB images of the smartphone, an improved CBAM-Invert-ResNet50 based on the
attention mechanism and inversion residual structure was used. The specific work of the
current study is as follows: (1) The images of minced pork of different proportions (10,
20, 30, and 40%) from three parts (back, front leg, and hind leg) in adulterated mutton
under mutton flavor essence and colorant were collected by a smartphone. (2) The effect
of the improved network model on the feature extraction of different amounts of pork
in adulterated mutton was analyzed by feature visualization. (3) The detection model of
the content of pork from different parts adulterated in mutton was established using the
improved network and compared with the conventional network model. (4) The features
of different parts were fused by feature stitching and combined with transfer learning to
detect the content from mixed parts in adulterated mutton. The results provide strong
evidence for market regulators to crack down on the adulteration of mutton. At the same
time, our study also provides a certain theoretical basis and technical support for the
quantitative detection of ingredient content in agricultural and livestock products using
images combined with deep learning.

2. Materials and Methods
2.1. Sample Preparation

Fresh mutton from the hind leg and fresh pork from different parts (back, foreleg,
and hind leg) were selected to make adulterated mutton samples in this study. Mutton
flavor essence and colorant were used to further interfere with the adulterated mutton
samples to bring them closer to reality. The mutton flavor essence was purchased from
Qingdao Xianghaisheng Food Ingredients Co., Ltd. (Qingdao, China), and the Monascus
red colorant was purchased from Guangdong kelong biotechn.co., Ltd. (Jiangmen, China).
Fresh hind leg meat of mutton and different parts of pork were purchased from the Youhao
supermarket of Shihezi City in Xinjiang, and all of them met the quarantine standards.
The meat was transported to the laboratory in an incubator. Adulterated mutton samples
were prepared according to the following procedure. First, the obvious fascia and tissue on
the surface of the meat were removed, and the meat was ground into 3 to 5 mm minced
meat particles. After being marked and sealed with plastic wrap, the meat was stored
in a refrigerator at −5 ◦C for subsequent use. The solvent of mutton flavor essence and
colorant was obtained according to the food safety code. The mutton flavor essence solvent
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with a mass concentration of 0.05 g/mL was obtained by dissolving mutton flavor essence
in distilled water at a dosage of 3 g per kilogram of pork and stirring for 5 min. The
0.001 g/mL solvent of the Monascus red colorant was obtained by dissolving the Monascus
red colorant in distilled water at a dosage of 0.5 g per kilogram of pork. Then, the two
solvents were mixed at a ratio of 1:1 and stirred for 10 min. The minced pork from different
parts was soaked in the mixed solvent for 20 min, and the residual liquid on the surface
was removed after the solvent was fully immersed in the minced pork. Finally, different
parts of minced pork mixed with mutton flavor essence and colorant were mixed into
minced mutton at different ratios (10, 20, 30, and 40%) to make adulterated mutton samples.
Each sample was obtained from about 30 g of fully mixed minced meat, which was placed
in a petri dish with a diameter of 6 cm and compacted to obtain a smooth surface. Eight
samples were prepared from each part and each ratio of pork adulterated mutton. A total
of 96 (8 × 4 × 3 = 96) samples were prepared from three parts with four ratios per part.
The prepared samples were stored in a refrigerator at −5 ◦C for image data acquisition.
The prepared various samples are shown in Figure 1.
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Figure 1. Image of different proportions of mutton adulteration with pork from the back: (a) 10%;
(b) 20%; (c) 30%; (d) 40%.

2.2. Sample Image Acquisition and Pretreatment
2.2.1. Sample Image Acquisition

The mobile phone used for sample image acquisition was Huawei P40, and the camera
model was ANA-AN00. Images were acquired with a camera sensitivity of 500, aperture of
f/1.9, exposure time of 1/100, focal length of 7 mm, color temperature parameter of 4500 K,
image resolution of 6144 × 8192 pixels, and image acquisition height of 18 cm. The ambient
temperature of the laboratory was 26 ± 1 ◦C, and the relative humidity was 30 ± 5%. A
schematic diagram of the sample image acquisition device is shown in Figure 2. There was a
constant light source on the top of the dark box, and the mobile phone was fixed with a tripod.
After adjusting the acquisition height of the mobile phone and the camera parameters, the
images were collected. One image was collected for each sample, making it a total of 96 images.
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2.2.2. Image Preprocessing

In order to reduce the interference factors of the image background, the HoughCircles
detection algorithm was used to extract the region of interest (ROI) of samples. In the
training of deep learning models, the effect is often not ideal when the amount of data is
small. To learn enough features, deep learning models need to input a large amount of
data. The sample images were expanded by randomly rotating and mirroring the original
images in this study. The process of random rotation was as follows: The rotation threshold
was set to 0.3, and two random seeds generated random numbers between 0 and 1. When
the random number generated by the No. 1 random seed was greater than 0.3, the image
was rotated at the center of the origin by 360◦ times the random number generated by
the No. 2 random seed. In addition, the brightness of the image was randomly increased
and decreased to exclude the influence of different illumination intensities on the image.
The process was similar to the random rotation. The preprocessed images are shown in
Figure 3.
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2.3. Production of Datasets
2.3.1. Datasets of Pork from Different Parts in Adulterated Mutton

The data were divided into three datasets according to the part of pork adulterated
in mutton: the back, front leg, and hind leg. Each dataset contained four adulteration
ratios: 10%, 20%, 30%, and 40%. First, 1/3 of the images were taken from each dataset as an
independent validation set. A total of 700 images for the independent validation set were
obtained by data augmentation. Then, the remaining 2/3 data of each set were divided into
a training set and a test set according to the 3:1 ratio. All images were expanded according
to the methods in Section 2.2.2. The images from each dataset were expanded to obtain
1575 images for the training set and 525 images for the test set.

2.3.2. Datasets of Pork from Mixed Parts in Adulterated Mutton

The datasets of pork from mixed parts in adulterated mutton contain all data from
three parts. First, 1/3 of the data were taken from each part dataset as an independent
validation set. A total of 2100 images for the independent validation set were obtained by
data expansion. Then, the remaining 2/3 data were divided into the training set and test
set according to 3:1. A total of 4725 images for the training set and 1575 images for the test
set were obtained.

Due to the large size of the extended image, it takes a long time to train the model. To
reduce the computational load and operation time of CNN, the expanded images of all
datasets were compressed to 224 × 224 pixels.

2.4. Construction of the Model
2.4.1. Construction of the CBAM-Invert-ResNet50 Model

The ResNet network effectively solves the problems of gradient disappearance and network
degradation in the deep CNN model by using a residual structure. However, the ResNet
network still has problems such as too many network parameters and slow convergence speed,
which is not conducive to porting to mobile terminals. Referring to the lightweight idea of the
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MobileNet, the inverted residual structure was used to replace the original residual structure in
the ResNet50 network in this study, which could improve the convergence speed of the model
and reduce the model parameters. Existing studies have shown that attention mechanisms
can make full use of the spatial and channel features of the images [27,34]. It strengthens the
feature differences of the images and effectively improves the accuracy of the model through
the adaptive allocation of feature weights. With the effects of additives such as mutton flavor
essence and colorant, the characteristics of adulterated mutton meat with different pork content
show little difference [26]. Therefore, the feature differences between adulterated mutton with
different pork content can be strengthened by adding a CBAM attention mechanism to the
ResNet50 network. By strengthening the weight allocation of important features, the detection
efficiency of the model for adulteration content was improved. Based on the ResNet50 network
combined with the CBAM attention mechanism, our research team proposed a lightweight
inversion residual network CBAM-Invert-ResNet50 [35]. It was used to classify and detect
mutton, adulterated mutton, and pork. However, its feasibility in quantitative detection needs
to be further verified. Therefore, this study aimed to explore the feasibility of using the CBAM-
Invert-ResNet50 to detect the content of pork from different parts in adulterated mutton and
combine feature fusion and transfer learning to achieve an accurate prediction of adulteration
content in mixed parts.

The CBAM-Invert-ResNet network is mainly composed of seven parts: convolutional
layer, pooling layer, normalization layer, inverted residual structure, CBAM structure, and fully
connected layer. The structure of the CBAM-Invert-ResNet50 and ResNet50 is shown in Figure 4.
The CBAM-Invert-Resnet50 is obtained by replacing the residual structure in the ResNet50
network with the inverted residual structure and adding the CBAM module after each inverted
residual structure.
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2.4.2. Feature Fusion

In order to realize the adulterated mutton with multiple pork parts, the feature fusion
method was used to stitch the features of different parts and construct the model for the
detection of the content of pork from mixed parts in adulterated mutton. The feature
fusion method can comprehensively utilize a variety of image features and complement
the advantages of multiple features to improve the accuracy and robustness of the model.
According to the sequence of fusion and prediction, feature fusion was divided into early
fusion and late fusion. Early fusion is first achieved by fusing the features of multiple
network layers and then by using the fused features for model training. Late fusion
improves the detection performance by combining the detection results of different layers.
Before the final fusion is completed, the model starts to perform detection on the partially
fused layer. Multiple detection results of multiple layers will be fused. The mixed dataset
contains the back, foreleg, and hind leg datasets. Therefore, a series of feature fusion in the
early fusion method was selected to join the features of the three detection models of the
back, front leg, and hind leg to improve the accuracy of the model. First, the back, front
leg, and back leg datasets were input into models 1, 2, and 3 for training, respectively. The
features of the back, front leg, and back leg datasets were extracted using models 1, 2, and
3, respectively. Then the features extracted by the three models were stitched to obtain the
fusion features. Finally, the fusion features were input into the feature fusion model for
training. The feature fusion process is shown in Figure 5.
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2.4.3. Transfer Learning

When detecting the adulteration content of pork from mixed parts in adulterated mut-
ton, the results of the model are often not accurate because of the difference between the
fusion characteristics and the actual characteristics. Therefore, it is necessary to further ex-
tract the real features on the basis of making full use of the fused features. Transfer learning
combined with fine-tuning was used to achieve the detection of adulteration content in the
mixed part in this study. Fine-tuning was used to obtain data features or model parameters
in both the original and new domains by freezing part of the convolutional layers of the
pretrained model (usually the convolutional layers close to the input because these layers
retain a large amount of underlying information) and training the remaining convolutional
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layers and fully connecting layers again. In this study, after the fusion features were fed
into the pretrained model, the fusion features of the back, front leg, and hind leg datasets
and the true features of the mixed dataset could be obtained by fine-tuning. The difference
between the fused features and the actual features was eliminated by this method. Based
on making full use of the fused features, the model further extracted the true features of
the mixed dataset to improve the accuracy and robustness of the model.

2.5. Test Environment and Model Evaluation
2.5.1. Evaluation Criteria of the Model

When establishing the adulteration content prediction model, the predictive effect of
the model was evaluated by calculating the correlation coefficient R2 and root mean square
error RMSE of the model. Their calculation equations are shown in (1) and (2):

R2 =
∑(x̂i − x)2

∑(xi − x)2 (1)

RMSE =

√
1

n − 1∑(x̂i − xj)2 (2)

where x̂i represents the predicted value, xj represents the actual value, and x represents
the mean value of the actual value. R2 is the correlation between the predicted value of
the model and the actual value, and a larger value of R2 indicates a stronger correlation
between the two. The RMSE represents the deviation between the predicted value of the
model and the actual value, and a smaller value of RMSE indicates a smaller prediction
error of the model.

2.5.2. Performance Evaluation of the Model

A boxplot is often used to reflect the characteristics of the distribution of the original
data. It can also be used to compare the distribution characteristics of multiple groups of
data. In this study, a boxplot was used to visually evaluate the stability of the model. In
the boxplot, the data were divided into 4 equal fractions after being arranged from large
to small. The three quartiles were the first quartile (Q1), the second quartile (Q2), and the
third quartile (Q3) in descending order. In the boxplot, the top and bottom edges of the
box are the third quartile (Q3) and first quartile (Q1) of the data, respectively. The entire
box contains 50% of the data. IQR (Inter Quartile Range) is the interquartile range, and its
formula is shown in (3):

IQR = Q3 − Q1 (3)

The upper and lower short horizontal lines represent the minimum and maximum
data values except for outliers, respectively, and their equations are shown in (4) and (5):

Min = Q1 - 1 × IQR (4)

Max = Q3 + 1 × IQR (5)

The variation range of IQR in the boxplot represents the distribution of the predictive value
of the model for the dataset. The smaller the value, the more concentrated the distribution of
the predictive value of the model. It indicates that the stability of the model is better.

2.5.3. Model Test Environment

The hardware used in this study included Intel®CoreTM i7-10750HCPU @ 2.60 GHz
processor, 16 GB memory, and NVIDIA GeForce RTX 2060 graphics card. The software included
the operating system Windows 10 (64-bit), the programming language Python 3.8, the deep
learning framework TensorFlow 2.3.0, General-purpose computing architecture CUDA 10.1.243,
and GPU acceleration library CUDNN 7.4.1.
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3. Results and Discussion
3.1. Visualization and Comparison of Depth Features Extracted by Different Models

To explore the effect of the improved model based on the attention mechanism on the
feature extraction of different pork content from different parts in adulterated mutton, the
models of the ResNet50, Invert-ResNet50, and CBAM-Invert-ResNet50 were used to extract the
features of the original images of samples. The output features of the last layer for the three
network models are visualized, as shown in Figure 6.
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In Figure 6, the columns represent the adulteration content, and from left to right are
images of adulterated mutton with 10%, 20%, 30%, and 40% pork. The original input image
of the sample is presented in the first row. The second, third, and fourth rows are the output
features extracted by the ResNet50, Invert-ResNet50, and CBAM-Invert-ResNet50 models,
respectively. It can be concluded that for the dataset of mutton adulterated with pork from
the back, front leg, and hind leg, it is difficult to directly distinguish the differences in raw
images of mutton adulterated with different contents of pork. After processing with the
ResNet50 and Invert-ResNet50 network models, the differences in the output feature of
the four proportions for adulterated mutton images are still small. Their colors and shapes
are visually similar. After processing with the CBAM-Invert-ResNet50 network model, the
color of the output features for the four proportions of the adulterated mutton images in
the visualization map has obvious differences. The main reason is that the CABM attention
mechanism can enlarge the receptive field, create dependencies between different channels,
and strengthen the weight allocation of more important features [27]. The above analysis
shows that the addition of the CABM in the model can strengthen the differences in the
characteristics of mutton with different levels of pork adulteration, which is conducive to
the rapid and accurate prediction of the content of pork from different parts in adulterated
mutton under the effects of mutton flavor essence and colorant.

3.2. Lightweight Analysis of Improved Model

In order to verify the effect of the inverted residual structure on the complexity of
the adulteration detection model, the model size and the number of parameters were
used to measure the lightweight degree of the model. The model size and the number of
parameters for the CBAM-Invert-ResNet50 model and ResNet50, Invert-ResNet50, and
CBAM-ResNet50 models are shown in Figure 7.
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Figure 7 shows that the model of the Invert-ResNet50 was obtained by using the
inverted residual structure to replace the original residual structure in the ResNet50. Com-
pared with ResNet50, the total number of parameters of the Invert-ResNet50 was reduced
by 58.25%, from 2.359 × 107 to 9.85 × 106, and the size of the model was reduced from 44.89
MB to 18.66 MB, with a reduction of 58.43%. The CBAM-ResNet50 model was obtained by
directly introducing the CBAM attention mechanism into the ResNet50 model. Compared
with ResNet50, both the number of parameters and the model size were increased, which
did not meet the requirements of the model lightweight. Therefore, the CBAM-Invert-
ResNet50 network was obtained by replacing the residual structure in the CBAM-ResNet50
with the inverted residual structure. The number of parameters reduced to 2.612 × 107

from 1.002 × 107, with a reduction of 61.64%. The size of the model was reduced to 19.11
MB from 49.75 MB, with a reduction of 61.59%. Compared with the ResNet50 and CBAM-
ResNet50, the number of parameters of the Invert-ResNet50 and CBAM-Invert-ResNet50
networks was significantly reduced, indicating that the inverse residual structure could
significantly reduce the number of network parameters of the model, thus reducing the
volume of the model and realizing the lightweight of the model structure. The results were
consistent with those reported in previous studies. Cui et al. added the residual structure
to the DenseNet network, and the number of parameters in the model was reduced from
1.08 × 107 to 0.89 × 107 [24]. Xu et al. added the inverted residual structure in YOLOv3
and combined it with depthwise separable convolution to recognize the gesture, and the
size of the model was only 0.89 M [25]. Compared with the Invert-ResNet50, the number
of parameters of the CBAM-Invert-ResNet50 increased by only 1.73%, and the model size
increased by 2.41%. However, the attention mechanism could strengthen the features of
different pork content in pork-adulterated mutton. It made the model easier to realize the
rapid and accurate prediction of the content of pork in adulterated mutton under the action
of mutton flavor essence and colorant. Therefore, the CBAM-Invert-ResNet50 network
could not only meet the lightweight requirements of the model but also ensure the precision
of the model.

3.3. The Content Detection Model of Adulterated Mutton with Pork from Different Parts
3.3.1. Results of the CBAM-InvertResNet50 Model

To verify the feasibility of the CBAM-InvertResNet50 model to detect the content of
pork from different parts in adulterated mutton, the models of different pork contents from
the back, front leg, and hind leg mixed into mutton were established. The results are shown
in Table 1.
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Table 1. The results of the model for the content of pork from back, front leg, and hind leg adulterated
in mutton.

Part Evaluation Index Train Set Test Set Validation Set

Back
R2 0.9609 0.9398 0.9373

RMSE/g·g−1 0.0203 0.0265 0.0268

Front leg R2 0.9699 0.9054 0.8876
RMSE/g·g−1 0.0180 0.0323 0.0378

Hind leg R2 0.9440 0.9119 0.9055
RMSE/g·g−1 0.0244 0.0259 0.0316

It can be obtained from Table 1 that all three models used the CBAM-InvertResNet50
to predict the content of pork from the back, front leg, and hind leg in adulterated mutton
have good effects. The values of R2 were all greater than 0.88, and the RMSE values were all
less than 0.38 g·g−1. Among them, the effect of mutton mixed with the back dataset was the
best, followed by the hind leg dataset, and the prediction effect of the front leg dataset was
the worst. The R2 of the back dataset was 0.9373, and of front leg dataset was 0.8876, with a
difference of 0.0497. The results showed that using the RGB image in combination with the
CBAM-Invert-ResNet50 could be able to detect the content of the different parts of pork
in adulterated mutton, but pork parts had a great influence on the adulteration detection
model. This may be caused by some differences in the color, texture, and other aspects
among the different parts of the pork. Previous research results showed that different parts
of mutton had certain differences in color, texture, and other aspects [11,19].

3.3.2. The Comparison of the Different Models

To verify the superiority of the improved model, the ResNet50, Invert-ResNet50, and
CBAM-ResNet50 networks were used to establish the prediction models of different pork
content from the back, front leg, and hind leg in adulterated mutton, and the model results
were compared with the CBAM-Invert-ResNet50. In addition, the CBAM-Invert-ResNet50
model was compared with the most popular lightweight network MobileNetV3 to verify
its reliability. The validation set results of the five models for predicting the content of pork
from the back, front leg, and hind leg in adulterated mutton are shown in Table 2.

Table 2. Comparisons of the different models with three datasets of the back, front leg, and hind leg
in the validation set.

Models
Back Dataset Front Leg Dataset Hind Leg Dataset

R2 RMSE/g·g−1 R2 RMSE/g·g−1 R2 RMSE/g·g−1

ResNet50 0.8926 0.0342 0.7406 0.0502 0.7959 0.0457
Invert-ResNet50 0.8995 0.0333 0.7629 0.0482 0.8664 0.0405
CBAM-ResNet50 0.9116 0.0301 0.8774 0.0347 0.9084 0.0317

CBAM-Invert-ResNet50 0.9373 0.0268 0.8876 0.0357 0.9055 0.0316
MobileNetV3 0.8494 0.0400 0.8121 0.0444 0.7398 0.0497

As shown in Table 2, compared with the ResNet50 and Invert-ResNet50 network
models, the CBAM-ResNet50 and CBAM-Invert-ResNet50 network models have large
increases in R2 and decreases in RMSE for three datasets (back, front leg, and hind leg
datasets). In the three datasets, the R2 value of the CBAM-ResNet50 network model was
0.019, 0.1368, and 0.1125 higher than that of the ResNet50 network model, and the RMSE
value was 0.0041 g·g−1, 0.0155 g·g−1 and 0.0147 g·g−1 lower than that of the ResNet50
network model, respectively. The R2 values of the CBAM-Invert-ResNet50 network model
for the back dataset, the front leg dataset, and the hind leg dataset were 0.0378, 0.1247, and
0.0391 higher than those of the Invert-ResNet50 network model, respectively. The RMSE
values of the CBAM-Invert-ResNet50 network model were 0.0065 g·g−1, 0.0125 g·g−1,

and 0.0089 g·g−1 lower than those of the Invert-ResNet50 network model, respectively.
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Compared with the CBAM-ResNet50, the R2 values of the CBAM-Invert-ResNet50 network
model for the back and front leg datasets increased by 0.0257 and 0.0102, respectively,
and the RMSE values decreased by 0.0033 g·g−1 and 0.0010 g·g−1, respectively. But the
results were slightly lower than the results of the CBAM-ResNet50 for the back dataset.
The results showed that adding the attention mechanism CBAM to the ResNet50 and
Invert-ResNet50 models could improve the model performance. Our research results were
similar to those of Zhang et al. [29] who added the CBAM in the YOLOv4 model to enhance
the feature extraction ability of the model, and the results showed that the mAP@0.5 of
When they identified the sheep, group1 and group2 were 91.58% and 90.61%, respectively.
This was also proved by the study of Du et al. [28]. They incorporated the CBAM in the
EfficientNet-B7 model to classify the plug seedling quality. The result showed that the
achieved average accuracy of the test set for the proposed model was higher by 7.32%
than the accuracy before the improvement. Based on the results in Section 3.2 that the
inverted residual structure could make the model meet the requirements of the lightweight,
the performance of the improved CBAM-Invert-ResNet50 model was ideal. In addition,
compared with MobileNetV3, the R2 values of the CBAM-Invert-ResNet50 network model
for the back and front leg datasets increased by 0.0879, 0.0755, and 0.1657, respectively, and
the RMSE values were reduced by 0.0132 g·g−1, 0.0087 g·g−1 and 0.0181 g·g−1, respectively.
The results indicated that the improved CBAM-Invert-ResNet50 model was reliable for
predicting the content of pork from the back, front leg, and hind leg in adulterated mutton.

3.3.3. Stability Evaluation of the Models

Boxplots were used to visually evaluate the performance of each model in predicting
the content of pork from different parts in adulterated mutton. Figure 8 shows the boxplots
of the adulterated content prediction values of three models (CBAM-Invert-ResNet50,
ResNet50, and MobileNetV3) for the three datasets (back, front leg, and hind leg) of pork-
adulterated mutton, respectively.

Figure 8 shows that the predictive values of the CBAM-Invert-ResNet50, ResNet50,
and MobileNetV3 are relatively concentrated in the back dataset, and the differences in
boxplots among the three are small. Among them, the CBAM-Invert-ResNet50 box is more
concentrated than the other two. The boxplots of CBAM-Invert-ResNet50 and MobileNetV3
show little difference in the front leg dataset. In the boxplots of MobileNetV3, the IQR of
the predicted value with an adulteration content of 0.4 is small and the data are relatively
concentrated. However, when the adulteration content is 20% and 30%, the IQR of the
predicted value is too large and the data are scattered. For the hind leg dataset, when the
adulterant content is 10%, the IQR of the predicted values for the three models is small,
which proves that the three models have a better prediction effect on the hind leg dataset.
Among them, the IQR of the CBAM-Invert-ResNet50 is the smallest, which proves that
the CBAM-Invert-ResNet50 has the best prediction effect. In addition, for the adulteration
content of 20%, 30%, and 40%, the CBAM-Invert-ResNet50 obviously performed better
compared with the results of the MobileNetV3 and ResNet50 network models. The above
results show that the CBAM-Invert-ResNet50 model had the best stability and significantly
better prediction results than ResNet50 and MobileNetV3 in the back dataset, front leg
dataset, and back leg dataset.
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Figure 8. Boxplots of three network models of the MobileNetV3, ResNet50, and CBAM-Invert-
ResNet50 for the back, foreleg, and hind leg datasets in the validation set: (a) ResNet50 for the back
dataset; (b) MobileNetV3 for the back dataset; (c) CBAM-Invert-ResNet50 for the back dataset; (d)
ResNet50 for the front leg dataset; (e) MobileNetV3 for the front leg dataset; (f) CBAM-InvertResNet50
for the front leg dataset; (g) ResNet50 for the hind leg dataset; (h) MobileNetV3 for the hind leg
dataset; (i) CBAM-Invert-ResNet50 for the hind leg dataset.

3.4. The Content Detection Model of Mutton Adulterated with Pork from Mixed Parts
3.4.1. Results of the Different Models

Table 2 shows that the CBAM-Invert-ResNet50 model had obvious differences in
model performance when detecting the content of pork from different parts in adulterated
mutton. In order to use the CBAM-Invert-ResNet50 model to accurately detect the content
of pork in adulterated mutton in the mixed -dataset, the features of three models, including
back, front leg, and back leg, were stitched to eliminate the influence of different parts on
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the model. To further improve the prediction performance of the model on the mixed-part
dataset, transfer learning was used to optimize the pretrained model. After the fusion
features were input into the pretrained model, the differences between the fusion features
and the actual features were eliminated by fine-tuning. This would ensure that the real
features of the mixed-part dataset were further extracted on the basis of making full use
of the fused features to improve the accuracy and robustness of the model. At the same
time, ResNet50 and MobileNetV3 models were used to establish a feature fusion model to
detect the adulteration content in the mixed-part dataset, and the results were compared
with those of the CBAM-Invert-ResNet50. The R2 and RMSE results of the validation set of
the three models for the mixed-part dataset before and after feature fusion are shown in
Figure 9.
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According to Figure 9, before feature fusion, the R2 values of MobileNetV3, ResNet50,
and CBAM-Invert-ResNet50 models for the mixed-part dataset were 0.7133, 0.8802, and
0.9264, respectively. Based on feature fusion, the R2 values of the MobileNetV3, ResNet50,
and CBAM-Invert-ResNet50 combined with transfer learning for the mixed-part dataset
were 0.8728, 0.9200, and 0.9589, respectively, with an increase of 0.1595, 0.0398, and 0.0325,
respectively, compared with those before feature fusion. The RMSE values of the Mo-
bileNetV3, ResNet50, and CBAM-Invert-ResNet50 combined with transfer learning for
the mixed-part dataset were reduced by 0.0153 g·g−1, 0.0059 g·g−1, and 0.0070 g·g−1, re-
spectively, compared with those before feature fusion. The above results show that the
prediction performance of MobileNetV3, ResNet50, and CBAM-Invert-ResNet50 models
based on feature fusion combined with transfer learning was improved on the mixed-part
dataset. Among them, the CBAM-Invert-ResNet50 had the best prediction effect on the
mixed-part dataset, with R2 and RMSE of 0.9589 and 0.0220 g·g−1, respectively.

3.4.2. Stability Evaluation of the Models

Figure 10 shows the boxplots of the adulterated content predicted by CBAM-Invert-
ResNet50, ResNet50, and MobileNetV3 models combined with transfer learning for the
mixed dataset before and after feature fusion.
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Figure 10. Comparison of boxplots for three network models with mixed-part datasets in the
validation set: (a) MobileNetV3 model; (b) MobileNetV3 model based on feature fusion; (c) ResNet50
model; (d) ResNet50 model based on feature fusion; (e) CBAM-Invert-ResNet50 model; (f) CBAM-
Invert-ResNet50 model based on feature fusion.

It can be obtained from Figure 10 that the IQR range of the MobileNetV3 model was
0.1079–0.3299 and 0.1827–0.3996, respectively, when the adulteration content was 20% and 30%.
The range of the IQR was too large and the data were scattered. The IQR of the MobileNetV3
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model based on feature fusion combined with transfer learning for the prediction of 20% and
30% adulterated mutton was significantly reduced and was 0.1296–0.2639 and 0.2450–0.3568,
respectively. Similar results were obtained by the ResNet50 model. The IQR of the ResNet50
model based on feature fusion combined with transfer learning for the prediction of 20% and
30% adulterated mutton was significantly reduced, and the range was 0.1590–0.2457 and
0.2550–0.3705, respectively. Compared with the results before the feature fusion, the IQR
range of the CBAM-Invert-ResNet50 model based on feature fusion combined with transfer
learning for 10%, 20%, 30%, and 40% adulterated mutton was significantly reduced and was
0.0940–0.1391, 0.1892–0.2390, 0.2903–0.3399, and 0.3774–0.4321, respectively. The above results
show that the three models, the MobileNetV3, ResNet50, and CBAM-Invert-ResNet50, based
on feature fusion combined with transfer learning could improve the stability of the prediction
value of the mixed-part dataset. The predicted values were all concentrated. Among them,
the CBAM-Invert-ResNet50 had the best prediction stability for the mixed-part dataset.

4. Conclusions

The improved CBAM-Invert-ResNet50 model based on inverted residual structure
and attention mechanism was used to detect the content of pork from the back, front leg,
and hind leg in adulterated mutton under the effect of mutton flavor essence and colorant.
Feature fusion and transfer learning were combined to accurately detect the content of pork
from mixed parts in adulterated mutton. The results showed that the R2 of the CBAM-
Invert-ResNet50 model for predicting the contents of pork from the back, front leg, and
hind leg in adulterated mutton was 0.9373, 0.8876, and 0.9055, respectively, and the RMSE
was 0.0268 g·g−1, 0.0357 g·g−1 and 0.0316 g·g−1, respectively. After obtaining the fusion
features of different parts by feature stitching, the CBAM-Invert-ResNet50 combined with
transfer learning was used to predict the content of pork from mixed parts in adulterated
mutton. The R2 and RMSE were 0.9589 and 0.0220 g·g−1, respectively. Compared with
that before feature fusion, the R2 of the mixed-part dataset increased by 0.0325 g·g−1 and
RMSE decreased by 0.0070 g·g−1, respectively. The results showed that the improved
CBAM-Invert-ResNet50 model combined with RGB images from mobile phones can be
used to quickly and accurately detect the content of pork from specific and mixed parts
in adulterated mutton. Among them, the CBAM could effectively increase the feature
differences between different content data and significantly improve the accuracy of the
prediction model of mutton adulteration content under the effect of additives. Using an
inversion residual structure to replace the original residual in the ResNet50 network can
make the model more lightweight. For the mixed-part dataset with more complex data
features, the feature fusion method could comprehensively utilize multiple image features
and complement the advantages of multiple features. Combined with transfer learning,
more robust and accurate results could be obtained to predict the content of pork from
mixed parts in adulterated mutton. The results of this study can provide guidance for the
safety of mutton and its products. At the same time, it promotes the development and
application of deep learning combined with image data in the quantitative detection of
components of agricultural and livestock products.
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